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Abstract 

Diabetes imposes a substantial public health burden; according to the 

International Diabetes Federation, there were about 3.4 million diabetes related 

deaths worldwide in 2024, and in Iraq, the Federation reports that one in nine adults 

lives with diabetes in 2024, with 14,683 adult deaths attributable to diabetes and a total 

diabetes related health expenditure of 2,078 million United States dollars. The dataset 

analyzed in this study contains 1,000 records collected in 2020 from two Iraqi teaching 

hospitals and includes multiple clinical and laboratory measurements with three 

outcome classes, namely Non diabetic, Pre diabetic, and Diabetic, with a low 

prevalence of the Pre diabetic class and an imbalanced overall class distribution; the 

data are challenging because they contain many outliers, non homogeneous 

covariance matrices across classes, exact duplicate rows that were removed before 

modelling, and linear correlations among certain variables. The study objective was to 

train and evaluate models that discriminate among the three classes and yield accurate, 

well calibrated predictions for future cases in similar clinical settings, but the 

diagnostic properties of the data limited the applicability of classical discriminant 

functions; therefore two supervised learners were employed: Classification and 

Regression Trees (CART) and Extreme Gradient Boosting (XGBoost), together with 

preprocessing that removed exact duplicate rows and excluded VLDL because it is 

algebraically derived from triglycerides in mmol per liter as VLDL equals triglycerides 

divided by 2.2, which would introduce redundancy and multicollinearity. On the held-

out test set, XGBoost achieved higher Accuracy at 98.18 percent compared with 97.58 

percent for CART and higher Balanced Accuracy at 93.84 percent compared with 

88.16 percent for CART, indicating that XGBoost provided the strongest overall 

operating point for this three-class task while CART remains useful when simple and 

transparent rules are required. 
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I.    Introduction 

Diabetes mellitus is a rapidly growing global health problem with large 

mortality and cost burdens. In 2024, an estimated 589 million adults were living with 

diabetes worldwide, projections indicate approximately 853 million by 2050, diabetes 

caused about 3.4 million deaths in 2024, and global health expenditure attributable to 

diabetes was about one trillion US dollars [V].  

Iraq faces a substantial national burden. In 2024, an estimated 2.7 million Iraqi adults 

were living with diabetes, 47.1 percent were undiagnosed, there were about 14,683 

diabetes-attributable deaths, and diabetes-related health expenditure totaled roughly  

2,078 million US dollars, or about 778 US dollars per person with diabetes [XI]. 

Clinical practice guidelines emphasize early detection and accurate assignment to 

glycemic status because timely intervention can prevent progression and 

complications; in this study, we apply the diagnostic categories and thresholds 

specified in the American Diabetes Association Standards of Care [I].  

The dataset analyzed here was obtained from Mendeley Data and contains adult records 

from two tertiary hospitals in central Baghdad: Medical City Teaching Hospital and the 

Specialized Center for Endocrinology and Diabetes at Al-Kindy Teaching Hospital. 

The repository documents the three target classes (Non-diabetic, Prediabetic, Diabetic) 

and the routine clinical and laboratory predictors used in our work [XIV]. The data are 

challenging and representative of routine clinical practice: several variables exhibit 

heavy right tails and outliers; covariance structures differ across the three classes; there 

is modest collinearity among lipid and renal markers; and exact duplicate records were 

identified and resolved during cleaning. The classes are strongly imbalanced, and, 

importantly, the explicit Prediabetic stratum makes these data more informative than 

binary designs that collapse Prediabetic into Non-diabetic or Diabetic, while also 

increasing the difficulty of classification and calibration [I].  

We compare two complementary approaches for three-class assignments: a cost-

sensitive CART model that yields transparent decision rules, and XGBoost as a strong 

nonlinear baseline. Both models use the same original predictors: nine continuous 

variables (anthropometric and laboratory measures) and Gender. CART ingests these 

ten predictors directly with native handling of categorical splits. XGBoost operates on 

a one-hot encoded design matrix with eleven columns (the same nine continuous 

variables plus two indicator columns for Gender, no intercept). Performance is 

evaluated on a held-out test set using Accuracy, Balanced Accuracy, Precision, Recall, 

F1 and Macro-F1, ROC, and precision–recall behavior, the Brier score for probability 

accuracy, and Cohen’s kappa for chance-corrected agreement; formal definitions are 

provided in Methods.  

II.     Literature Review 

Sabariah et al. in 2014 [XVI]: In this research, the combined (CART) and (RF) 

were used to build the classification model that is used in the early detection of diabetes 

mellitus type II disease. Those methods are selected based on the characteristics of the 

dataset used in medical records of diabetes mellitus, which consist of complex 

attributes consisting of several categorical attributes and continuous attributes. This 
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research has tested a different number of trees and numbers of candidate attribute 

splitters, with the optimal inputs 50 trees and 3 number of attributes splitter, the average 

accuracy 83.8%. The important attributes of early detection of diabetes mellitus type II 

are heredity, age, and body mass index. 

Nuankaew et al. in 2021 [XIII]: This study proposes a novel prediction method named 

Average Weighted Objective Distance (AWOD) based on the assumption that the 

individual has diverse health conditions resulting from different individual factors, a 

requirement for an effective prediction model. AWOD is a modification of Weighted 

Objective Distance by applying information gain to reveal significant and insignificant 

individual factors having different priorities, which are represented by different 

weights. Two datasets from open sources, Pima Indians Diabetes (Dataset 1) and 

Mendeley Data for Diabetes (Dataset 2), each containing 392 records, with a 70:30 

partition, were studied. The prediction performance for both datasets is compared with 

the machine learning-based prediction methods, including K-Nearest Neighbors, 

Support Vector Machines, Random Forest, and Deep Learning. The comparison results 

showed that the proposed method provided 93.22% and 98.95% accuracy for Dataset 

1 and Dataset 2, respectively. 

Sahid et al. in 2024[XVII]: They propose a multiclass diabetes mellitus detection and 

classification approach using an extremely imbalanced Laboratory of Medical City 

Hospital data dynamics. They also formulate a new dataset that is moderately 

imbalanced based on the Laboratory of Medical City Hospital data dynamics. To 

correctly identify the multiclass diabetes mellitus, they employ three machine learning 

classifiers, namely support vector machine, logistic regression, and k-nearest neighbor. 

To optimize the classification performance of classifiers, they tune the model by 

hyperparameter optimization with 10-fold grid search cross-validation. In the case of 

the original extremely imbalanced dataset with a 70:30 partition and SVM classifier, 

they achieved a maximum accuracy of 0.964 by using the top 4 features according to 

the filter method. By using the top 9 features according to wrapper-based sequential 

feature selection, the KNN provides an accuracy of 93. 5% and 100% for the other 

performance metrics. For the moderately imbalanced dataset with an 80:20 partition, 

the SVM classifier achieves a maximum accuracy of 93.8% and 100% for other 

performance metrics.  

Idhom et al. in 2025[XII] : This study aims to address the challenge of predicting 

customer credit eligibility by employing two machine learning techniques: CART and 

XGBoost. The research follows a structured methodology, including data acquisition, 

preprocessing, splitting the data into 80:20 training and testing sets, applying the CART 

and XGBoost algorithms, and evaluating the models' performance. Through this 

approach, the study seeks to enhance the accuracy and efficiency of credit approval 

decisions, helping financial institutions streamline their processes.  

The CART method achieved an accuracy rate of 88%, while combining CART with 

the XGBoost algorithm increased accuracy to 90%. 

III.      Data source and variable dictionary 

This study uses an anonymized dataset obtained from Mendeley Data XIV, 

comprising adult records from two tertiary hospitals in central Baghdad: Medical City 
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Teaching Hospital and Al-Kindy Teaching Hospital. The outcome has three classes, 

non-diabetic (Non), prediabetic (Pre), and diabetic (Diab), with markedly unequal class 

sizes (Non =103, Pre= 53, Diab =844). The predictors are routine clinical and 

laboratory measures collected in real-world practice. Table 1 below lists each variable 

with its full clinical name, unit, and type.  

Table 1: Variable dictionary 

 Variable 

(dataset label) 

Full name/definition Unit Type 

1 ID Record identifier none Categorical (identifier) 

2 No_Pation Patient identifier none Categorical (identifier) 

3 Gender Sex 

 

none Categorical 

4 AGE Age years Numeric 

5 Urea Serum urea 

(blood urea nitrogen) 

mmol/L Numeric 

6 Cr Serum creatinine µmol/L Numeric 

7 HbA1c Hemoglobin A1c % Numeric 

8 Chol Total cholesterol mmol/L Numeric 

9 TG Triglycerides mmol/L Numeric 

10 HDL High-density lipoprotein 

cholesterol 

mmol/L Numeric 

11 LDL Low-density lipoprotein 

cholesterol 

mmol/L Numeric 

12 VLDL Very-low-density lipoprotein 

cholesterol 

mmol/L Numeric 

13 BMI Body Mass Index kg/m² Numeric 

14 CLASS Glycemic class  none Categorical (outcome; 

levels: Non, Pre, Diab) 

 

In Table 2, statistical descriptions for numeric variables are provided, with counts, 

means, standard deviations, medians, interquartile range, minimum, and maximum 

values. 

Table 2: Descriptive statistics for numeric variables 

 Variable n             Mean        SD Median IQR Min    Max 

1 AGE 1000 53.528 8.799 55.0 8.0 20.0 79.00 

2 Urea 1000 5.125 2.935 4.6 2.0 0.5 38.90 

3 Cr 1000 68.943 59.985 60.0 25.0 6.0 800.00 

4 HbA1c 1000 8.281 2.534 8.0 3.7 0.9 16.00 

5 Chol 1000 4.863 1.302 4.8 1.6 0.0 10.30 

6 TG 1000 2.350 1.401 2.0 1.4 0.3 13.80 

7 HDL 1000 1.205 0.66 1.1 0.4 0.2 9.90 

8 LDL 1000 2.610 1.115 2.5 1.5 0.3 9.90 

9 VLDL 1000 1.855 3.664 0.9 0.8 0.1 35.0 

10 BMI 1000 29.578 4.962 30.0 7.0 19.0 47.75 

Table 3 shows categorical variables for Gender and CLASS, list counts, and 

percentages for each level.  
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Table 3: Categorical variables: counts and percentages by level 

 Variable Level                n        Percent 

1 Gender Female 435 43.5 

Male 565 56.5 

2  

CLASS 

Non 103 10.3 

Pre 53 5.3 

Diab 844 84.4 

 

1. Data Preparation 

The dataset was cleaned before modeling as follows: 

• Gender (case harmonization). We identified inconsistent casing for the 

female category in the Gender column (values recorded as “F” and “f”, e.g., 

row 992). These values were standardized to “F”. 

• CLASS (whitespace trimming). We detected leading/trailing or internal 

spaces in several single-character CLASS codes (“N”, “P”, “Y”) affecting 

rows 103, 997, 998, 999, and 1000. All extraneous spaces were removed to 

ensure consistent label formatting. 

• Removal of direct identifiers. The first column (Patient ID) and the second 

column (NO_PATION) were removed to eliminate direct identifiers and 

prevent their unintended use during modeling. 

• Removal of the undocumented field. The column “Sugar Level Blood” was 

dropped because it is not documented in the original data description and 

offered no demonstrated analytical value; its removal does not affect 

downstream analyses. 

• Deduplication. We removed 174 exact duplicate rows (retaining the first 

occurrence), yielding a final analytic dataset of (N = 826) observations with 

class counts Non = 96, Pre = 40, and Diab = 690. 

• VLDL exclusion by design. Very-low-density lipoprotein (VLDL) was 

excluded because it is approximately redundant with triglycerides (commonly 

approximated as  )in mmol/L, )VLDL ≈ TG/2.2(( [VI]; removing it avoids 

collinearity without loss of information. 

 After cleaning, we performed a stratified 80/20 split (seed = 7) into training and test 

sets. Categorical variables were used natively by CART, whereas the boosted model 

used a one-hot encoded design matrix (no intercept). 

IV.     Methods  

Classification and Regression Trees (CART)  

We trained a cost-sensitive multiclass CART for {Non, Pre, Diab} using the 

Gini impurity. For a node 𝑡 with class proportions 𝑝𝑘(𝑡), the impurity is 

𝐺(𝑡) = 1 − ∑ 𝑝𝑘(𝑡)2.                               𝑘   

For a candidate split of a parent node with 𝑛samples into left/right children of sizes 

𝑛𝐿 , 𝑛𝑅and impurities 𝐺𝐿 , 𝐺𝑅, the size-weighted child impurity is  
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𝐺split =
𝑛𝐿

𝑛
𝐺𝐿 +

𝑛𝑅

𝑛
𝐺𝑅 ,  

and the chosen split maximizes the impurity reduction 

Δ𝐺 = 𝐺parent − 𝐺split.                                      

To prioritize clinically important distinctions, we used the misclassification cost 

matrix: 

𝐿   =    [
0 1 2
5 0 3
2 1 0

]     (𝑟𝑜𝑤𝑠 = 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠;  𝑐𝑜𝑙𝑢𝑚𝑛𝑠 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑).              

At a leaf with estimated class probabilities {𝑝𝑘}, the reported class minimizes the 

expected loss arg min 𝑗 ∑ 𝑝𝑖𝐿𝑖𝑗
𝑖

. The tree growth limits were cost–complexity 

parameter 𝑐𝑝 = 0.0005, minimum leaf size = 5, and maximum depth = 8, using 10-

fold cross-validation; the final model was pruned at the complexity parameter with 

minimum cross-validated error (standard cost–complexity pruning). Leaf class 

probabilities are the empirical class frequencies [II]. To link the tree structure to the 

percentages reported under each terminal node in Figure 4, we define the leaf coverage 

as follows: Let ℓ denote a terminal node (leaf), 𝑛ℓ the number of training observations 

routed to ℓ, and 𝑁train  the total number of training observations. The share of the 

training set in leaf ℓ is 

  𝑠ℓ =
𝑛ℓ

𝑁train
, %ℓ = 100 ×

𝑛ℓ

𝑁train
.                                    

These %_ℓ values correspond to the percentages printed under each leaf in the CART 

diagram (Figure 4) and summarize each terminal node’s coverage. [X] 

Extreme Gradient Boosting (XGBoost) 

We fit a gradient-boosted tree ensemble for the same three-class target using the 

multiclass softmax objective (softmax maps arbitrary class scores to probabilities that 

lie in (0,1) and sum to 1). Let 𝑥  be a feature vector, 𝑓𝑖(𝑥) = ∑ 𝑔𝑡,𝑖(𝑥)
𝑇

𝑡=1
 the 

accumulated score for class 𝑖 after 𝑇 rounds, and 

  𝜋𝑖(𝑥) =
exp  (𝑓𝑖(𝑥))

∑ exp  (𝑓𝑚(𝑥))
𝐾

𝑚=1

,   

the predicted class probability. Training minimizes the weighted multinomial log-loss 

  ℒ = −
1

𝑛
∑ 𝑤𝑗

𝑛

𝑗=1
∑ 𝟏{𝑦𝑗 = 𝑖}  log 𝜋𝑖(𝑥𝑗)

𝐾

𝑖=1
,                     

with labels encoded 𝑦 ∈ {0,1,2} and observation weights 𝑤𝑗 addressing class 

imbalance. [VII], [IV]. We used inverse-frequency base weights and doubled the Pre-

class weight (Pre ×2). Implementation settings matched the saved analysis: tree depth 

= 4, learning rate 𝜂 = 0.15, row subsampling = 0.9, column-by-tree subsampling =
0.9, 𝑇 = 400 boosting rounds, single-thread execution, and a fixed random seed. The 

predicted class is arg max 𝑖 𝜋𝑖(𝑥), while the full probability vector 𝜋(𝑥) is retained for 

later evaluation (e.g., precision–recall area, calibration, and Brier score). 
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Predictors for XGBoost were one-hot encoded without an intercept so that trees split 

directly on the resulting indicator columns; continuous predictors were used as 

observed. CART used native categorical splits and therefore did not require one-hot 

encoding. 

Metrics  

Let 𝐾  be the number of classes {Non, Pre, Diab}  and 𝑛  test instances, and let the 

confusion matrix be 𝑀 ∈ ℕ𝐾×𝐾with entry 𝑀𝑖𝑗 (true 𝑖, predicted 𝑗); define TP𝑖 = 𝑀𝑖𝑖, 

FN𝑖 = ∑ 𝑀𝑖𝑗𝑗≠𝑖 ,  FP𝑖 = ∑ 𝑀𝑗𝑖𝑗≠𝑖 , and TN𝑖 = ∑   ∑ 𝑀𝑝𝑞
𝑞≠𝑖

𝑝≠𝑖 .  

Overall Accuracy is 
1

𝑛
∑ 𝑀𝑖𝑖

𝐾
𝑖=1 ;  

Recall/Sensitivity for class 𝑖 is Recall𝑖 =
TP𝑖

TP𝑖+FN𝑖
;  

Specificity is Specificity𝑖 =
TN𝑖

TN𝑖+FP𝑖
;  

Balanced Accuracy averages recall across classes, Balanced Accuracy=
1

𝐾
∑ Recall𝑖

𝐾
𝑖=1  

(recommended when class sizes are unequal).  

Precision (positive predictive value) is Precision 𝑖 =
TP𝑖

TP𝑖+FP𝑖
;  

The per-class F1 is the harmonic mean 𝐹1𝑖 =
2 Precision𝑖 Recall𝑖

Precision𝑖+Recall𝑖
;  

The Macro-F1 is the unweighted mean 
1

𝐾
∑ 𝐹1𝑖

𝐾
𝑖=1 .  

These definitions and macro-averaging are standard in multiclass evaluation [XVIII].   

For ROC analysis, one-vs-rest curves plot (FPR𝑖, TPR𝑖) where 

 TPR𝑖 = Recall𝑖  and FPR𝑖 =
FP𝑖

FP𝑖+TN𝑖
; the AUC summarizes threshold-free 

discrimination for a class, and the Hand–Till multiclass AUC generalizes by averaging 

pairwise class AUCs: AUCHT =
2

𝐾(𝐾−1)
∑ AUC1≤𝑖<𝑗≤𝐾 (𝑖 vs 𝑗) [VIII]. For precision–

recall (PR), curves plot (Recall𝑖, Precision𝑖); the area under the PR curve (AUPRC) 

can be more informative than ROC when classes are imbalanced; we report the macro-

average over classes [XV]. For probability accuracy, the multiclass Brier score uses the 

predicted class probabilities and one-hot truth: if 𝜋𝑘(𝑥𝑗) is the predicted probability for 

instance 𝑗and class 𝑘 (e.g., the softmax output in XGBoost), define 𝑦𝑗𝑘 ∈ {0,1}as the 

indicator of the true class;  

then Brier =
1

𝑛
 ∑ ∑ (𝜋𝑘(𝑥𝑗) − 𝑦𝑗𝑘)2𝐾

𝑘=1
𝑛
𝑗=1   (lower is better); it is a strictly proper 

scoring rule. [III] 

For chance-corrected agreement, Cohen’s Kappa 𝜅  uses observed agreement 𝑝𝑜 =
1

𝑛
∑ 𝑀𝑖𝑖𝑖  and chance agreement 𝑝𝑒 = ∑ (

∑ 𝑀𝑖𝑗𝑗

𝑛
)(

∑ 𝑀𝑗𝑖𝑗

𝑛
)𝐾

𝑖=1 , with 𝜅 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
. [IX]       
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V.    Results 

In Figure 1, the matrix shows a few strong positive clusters and otherwise 

modest associations. Urea and creatinine exhibit a very strong positive correlation, 

consistent with shared renal physiology, indicating potential redundancy. Total 

cholesterol correlates strongly with LDL, and triglycerides show a moderate positive 

correlation with total cholesterol and LDL. HDL displays a mild negative association 

with triglycerides and LDL. HbA1c correlates positively (moderate) with BMI and age, 

consistent with higher glycemic burden in older and heavier patients. No broad pattern 

of extreme collinearity is evident beyond the Urea–Cr and Chol–LDL pairs, suggesting 

that most predictors contribute distinct information to the tree-based models. 

 

 

 
Fig. 1. Correlation heatmap (training set) 

In Figure 2, the class-wise distributions demonstrate clear separation on several 

key variables. HbA1c shows the most distinct shift: Diab has the highest values 

with limited overlap, Pre is intermediate, and Non is lowest, supporting its role 

as a primary discriminator. BMI is higher in Diab with Pre slightly above Non, 

indicating added discriminatory value for adiposity. Triglycerides are elevated 

and right-skewed in Diab, with Pre between Diab and Non. HDL is lower in 

Diab, consistent with an adverse lipid profile. LDL and total cholesterol are 

modestly higher in Diab but retain some overlap across classes. Creatinine and 

urea tend to be higher in Diab with longer right tails, though distributions 

overlap. Age is shifted upward in Diab relative to Non and Pre. Overall, these 

patterns explain why splits on HbA1c, BMI, and lipid measures are effective for 

assigning patients to Non, Pre, or Diab. 
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    Fig. 2. Per-class distributions  

 

In Figure 3, across classes, most variables deviate from normality chiefly through right‐

skew and heavy upper tails, most pronounced in Diab. HbA1c shows the clearest class 

separation: Non is lowest, Pre is tightly clustered near the diagnostic threshold 

(stepwise pattern from small n), and Diab has a pronounced upper tail, consistent with 

poorer glycemic control. BMI is right-skewed in all groups, with the heaviest tail in 

Diab. Triglycerides, creatinine, and urea show strong right-tail departures, again largest 

in Diab, indicating occasional very high values. LDL and total cholesterol are near-

normal in Non/Pre with heavier upper tails in Diab, while HDL shows mild curvature 

and a few high outliers. These distributional features support the observed tree splits 

and help explain why probability calibration must be checked; they do not invalidate 

the tree-based models used for assigning patients to Non, Pre, or Diab. 

 

 

 

 

   



 

 

 

J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026)  pp 1-22 

Nabila A. Alsharif et al. 

 
10 

 

   

   

 
 

  

Fig. 3. Q–Q plots by class for the nine continuous predictors (training set) 

 

The pruned tree in Figure 4  ends in eight terminal leaves whose internal leaf numbers 

are 15, 5, 13, 14, 11, 9, 10, and 6. Each percentage is the share of all training patients 

that ultimately fall into that leaf after being routed by the splits; the shares are obtained 

by counting patients per leaf and dividing by the training-set size. The largest leaf is 

node 15 (75.95%) and corresponds to the simple rule HbA1c ≥ 6.5, producing a near-

pure Diab assignment. Within HbA1c < 6.5, node 13 (4.84%) captures the range 5.7 ≤ 

HbA1c < 6.5 with AGE < 51 and is labeled Pre, whereas node 14 (3.03%) is 5.7 ≤ 

HbA1c < 6.5 with AGE ≥ 51 and is labeled Diab. In the low-HbA1c branch (HbA1c < 

5.7), lipid profile and adiposity refine the decision: node 5 (10.14%) is Chol < 5 and 
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BMI < 25 (Non); node 6 (1.06%) is Chol < 5 and BMI ≥ 25 (Diab); when Chol ≥ 5, 

node 11 (2.27%) is TG < 2 with BMI < 24 (Non); node 10 (1.21%) is TG < 2 with BMI 

≥ 24 (Diab); and node 9 (1.51%) is TG ≥ 2 (Diab). Thus, the numbers 15, 5, 13, 14, 11, 

9, 10, and 6 are the leaf identifiers, and the percentages 75.95, 10.14, 4.84, 3.03, 2.27, 

1.51, 1.21, and 1.06 report how much of the training set each rule covers. 

 

 

 
Fig. 4. CART tree (pruned) 

 

Across both views  in Figure 5, HbA1c is the dominant driver, BMI is the next most 

influential, and AGE and Chol contribute at a moderate level; TG and Urea have small 

effects, while LDL, Cr, and HDL are negligible. The slight reordering (Chol above 

AGE in the permutation plot but below in the Gini plot) indicates that Chol, though 

used in fewer or shallower splits, improves the predicted probabilities more than its 

split frequency alone suggests. The agreement between the two important measures 

supports a stable interpretation: model decisions are governed primarily by glycemic 

status, with adiposity as a strong secondary factor and AGE/Chol providing additional 

refinement. 
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Fig. 5. Top: CART importance (Gini-based) Bottom: CART permutation importance 

 

The distributions are sharply bimodal,  as we see in Figure 6, with most probabilities at 

0 or 1 and very little mass in the mid-range, indicating confident, near-deterministic 

leaves. For P(Diab), the dominant spike at 1.00 reflects the large HbA1c ≥ 6.5 leaf in 

the tree (Figure 4), which yields confident Diab assignments; the small bar at 0.00 

corresponds to clearly non-diabetic cases. For P(Non), probabilities cluster at 0.00 with 

a small spike at 1.00, matching the small pure Non leaves formed at low HbA1c with 

favorable lipid/adiposity thresholds. For P(Pre), most probabilities are at 0.00 with a 

small spike at 1.00, consistent with the narrow Pre leaf (5.7 ≤ HbA1c < 6.5 and AGE 

< 51). Overall, the histograms confirm that CART produces hard, threshold-based 

decisions aligned with the splits in Figure 4; this explains strong classification accuracy 

while motivating separate checks of probability calibration. 
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Fig. 6. CART predicted-probability histograms (Non, Pre, Diab) 

 

The three panels in Figure 7 compare binned observed prevalence with mean predicted 

probability. Because CART assigns sharp, leaf-based probabilities (see Figure 6), only 

bins near 0 and 1 are populated. For Diab, the high-probability bin lies slightly below 

the 45° line, indicating mild over-confidence driven by the large HbA1c ≥ 6.5 leaf 

(Figure 4). For Non, the near-0 and near-1 bins fall close to the diagonal, suggesting 

good calibration at the extremes; the wider interval around p ≈ 1.0 reflects limited 

counts in pure Non leaves. For Pre, the populated low-probability bin sits a little above 

the diagonal, implying a slight underestimation of Pre risk outside the small Pre leaf. 

Overall, calibration is reasonable at the extremes but largely undefined in the mid-

range, consistent with the concentrated probability histograms in Figure 6 and the 

threshold structure in Figure 4. 
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Fig. 7. Calibration by class (CART: Non, Pre, Diab). 

 

Both panels in Figure 8 agree that HbA1c overwhelmingly drives the boosted model. 

In the gain plot (Top), AGE ranks second and BMI third, with small but non-zero 

contributions from Chol and TG; LDL, Cr, HDL, and the one-hot gender indicators 

contribute nothing. In the permutation plot (Bottom), HbA1c remains dominant, but 

BMI moves into a clear second place, while Chol and TG follow, and AGE drops to a 

modest effect, showing that, although AGE often appears in splits, BMI and Chol 

improve class probabilities more when perturbed. This pattern is consistent with Figure 

5 for CART (HbA1c first, BMI next, AGE/Chol supporting), reinforcing a coherent 

story across methods: glycemic status is the primary signal, adiposity provides strong 

secondary discrimination, and lipid components (especially Chol, then TG) refine 

probabilities, whereas the remaining variables add little. 
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Fig. 8. Top: XGBoost importance (Top-15 by Gain) Bottom: XGBoost permutation 

importance 

 

The distributions  in Figure 9 are strongly bimodal, with most mass near 0 or 1, 

indicating high separability; compared with CART (Figure 6), XGBoost shows a 

slightly wider mid-range spread, which is typical for a softmax ensemble. The Diab 

panel has a dominant spike at 1.00, reflecting many confidently diabetic cases and 

aligning with HbA1c’s leading influence in the importance plots (Figure 8). The Non 

and Pre panels concentrate near 0 with smaller spikes near 1.00, showing fewer regions 

that strongly support those classes. Overall, the histograms suggest confident 

assignments while motivating a check of probability calibration in the mid-probability 

range. 
 

 

 

 

 

 

Fig. 9. XGBoost predicted-probability histograms (Non, Pre, Diab) 

In Figure 10, using one-vs-rest evaluation, the curves hug the upper-left corner with 

AUCs of 0.996 (Diab), 1.000 (Non), and 0.992 (Pre), indicating near-perfect 
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discrimination. The perfect AUC for Non likely reflects a small, very separable subset 

in the test split, which agrees with the strongly bimodal probability histograms in 

Figure 9 and the dominance of HbA1c in the XGBoost importance profiles (Figure 8). 

Practically, thresholds can be set to prioritize sensitivity or specificity without large 

losses in the other. Because Non and Pre have limited test counts, it is advisable to 

report confidence intervals and also consider precision–recall summaries for 

completeness. 
 

 

 

 

 

 

Fig. 10. ROC curves (XGBoost: Non, Pre, Diab) 

In Figure 11, the Diab curve (blue) stays near precision ≈1.0 across almost the full 

recall range, indicating near-perfect positive predictive performance, consistent with 

the spike at P(Diab)=1.00 in Figure 9 and the very high ROC AUC in Figure 10. The 

Non curve (red) is also close to the top edge with only a slight drop at extreme recall, 

matching its near-perfect ROC and the bimodal probability distribution. In contrast, the 

Pre curve (green) shows markedly lower precision at high recall and greater variability, 

reflecting the small Pre sample and weaker separability noted in the histograms. 

Overall, PR confirms that XGBoost is extremely reliable for identifying Diab (and 

strong for Non), while Pre remains the challenging class; threshold selection should 

therefore prioritize recall for Pre if missing PreDiabetes is costly. 

 

 
Fig. 11. Precision–Recall curves (by class) 
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Figures 7 (CART calibration) and 12 (XGB calibration) show that both models are well 

calibrated at the extremes (near 0 and near 1), but they differ in the mid-probability 

range. CART produces almost no mid-range probabilities for the Pre class, so its 

calibration there is effectively degenerate, while Non and Diab sit close to the identity 

line at the ends. XGB, by contrast, yields meaningful bins across the range for all 

classes: for Diab and Non, the high-probability bins lie near the identity line, and the 

mid bin (≈0.45) has a wider interval but a mean close to the line; for Pre, the mid bin 

is also near the line, indicating useful probabilistic calibration. Figure 13 confirms this: 

both models align at ≈0 and ≈1, but only XGB provides a credible mid-probability bin, 

whereas CART collapses to 0/1. This is consistent with the probability histograms 

(Figures 6 and 9), where CART concentrates mass at the extremes, and XGB still 

allows informative mid-range probabilities. In short, when calibrated probabilities 

across the full range matter, especially for Pre, XGB is preferable; if decisions rely only 

on extreme probabilities, both models are adequate. 
 

 

 

 

 

 

Fig. 12. Calibration by class (XGBoost: Non, Pre, Diab) 

 

 

 
 

Fig. 13. Joint calibration (PreDiabetic: CART vs XGBoost). 

VI.    Evaluation of the Models 

Across figures 1–13, the evidence is consistent: glycemic status dominates 

discrimination, adiposity is a strong secondary signal, and lipids refine decisions. The 

correlation heatmap and per-class distributions (Figures 1–2) show limited problematic 

collinearity (notably Urea–Cr and Chol–LDL) and clear class shifts for HbA1c and 

BMI. Distributional diagnostics (Figure 3) reveal right-skew and heavy tails, especially 

in Diab, supporting the use of tree-based models. The learned CART rules (Figure 4) 
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translate these patterns into simple thresholds, while variable-importance profiles for 

CART and XGB (Figures 5 and 8) concur that HbA1c is the primary driver, BMI next, 

with AGE/Chol providing additional refinement and other variables minor. Probability 

histograms confirm the different probability behaviors: CART concentrates mass at 0/1 

(Figure 6), whereas XGB remains sharply bimodal but allows a slightly wider mid-

range (Figure 9). Calibration mirrors this: CART is well aligned at the extremes but 

sparse in the mid-range (Figure 7), while XGB is close to the identity line across bins 

for all classes (Figure 12); their direct comparison for the Pre class (Figure 13) 

highlights XGB’s advantage when mid-probabilities are needed. 

Discrimination metrics favor XGB. One-vs-rest ROC curves (Figure 10) are near the 

upper-left corner for every class (AUC ≈ 0.99–1.00), indicating excellent ranking; 

precision–recall (Figure 11) shows Diab and Non maintaining precision near 1.0 across 

high recall, with Pre remaining the hardest class but still improved relative to CART 

(in line with Figures 6 and 9). Taken together, the importances (Figures 5 and 8), 

probability shapes (Figures 6 and 9), and calibration (Figures 7, 12–13) form a coherent 

picture: both models separate Diab extremely well; XGB additionally yields more 

reliable probabilities across the range, which is valuable for thresholding decisions and 

risk communication. 

The summary tables confirm the graphical findings. In Table 4 (test set), XGB 

surpasses CART on all five criteria: higher Accuracy, Balanced Accuracy, Macro-F1, 

and Macro-AUPRC, and a lower Brier score, indicating better overall correctness, more 

balanced recognition of minority classes, superior ranking quality, and more faithful 

probabilities.  

Table 4. Test metrics summary (Accuracy, Balanced Accuracy, Macro-F1, 

Macro-AUPRC, Brier) 

Model Accuracy Balanced 

Accuracy 

MacroF1 Macro AUPRC Brier 

CART 0.9758 0.8816 0.9291 0.9214 0.0399 

XGBoost 0.9818 0.9384 0.9566 0.9750 0.0226 

 

Table 5 shows where the gains occur: XGB raises sensitivity for Non and Pre while 

keeping Diab sensitivity very high and preserves excellent specificity; this aligns with 

the ROC/PR advantages and the improved calibration bins. Therefore, for the study 

goal of assigning patients to Non, Pre, or Diab, XGB is the preferred model on this 

dataset. CART remains useful for transparent clinical rules, but XGB offers a stronger 

operating point when both accuracy and well-calibrated probabilities, especially for 

Pre, are required. 
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Table 5: Test metrics summary by class 

 CART XGBoost 

NonDiabetic PreDiabetic Diabetic NonDiabetic PreDiabetic Diabetic 

Sensitivity                
0.8947 0.75000 1.0000 0.9474 0.87500 0.9928 

Specificity               1.0000 1.00000 0.8519 0.9932 1.00000 0.9259 

Pos Pred 

Value            

1.0000 1.00000 0.9718 0.9474 1.00000 0.9856 

Neg Pred 

Value            

0.9865 0.98742 1.0000 0.9932 0.99367 0.9615 

Prevalence                0.1152 0.04848 0.8364 0.1152 0.04848 0.8364 

Detection 

Rate            

0.1030 0.03636 0.8364 0.1091 0.04242 0.8303 

Detection 

Prevalence      

0.1030 0.03636 0.8606 0.1152 0.04242 0.8424 

Balanced 

Accuracy          

0.9474 0.87500 0.9259 0.9703 0.93750 0.9593 

Kappa    0.9091        0.9351 

VII.      Conclusion 
 

  This study assessed a cost sensitive CART and a multiclass XGBoost on 

a three class diabetes outcome drawn from two Iraqi hospitals, where the data 

present multiple real world difficulties including frequent outliers, skewed 

distributions with heavy upper tails, non homogeneous covariance across 

classes, and pronounced imbalance in class sizes; across the evidence 

summarized in the Results with thirteen figures and in Tables 4 and 5, XGBoost 

provided stronger overall performance together with more informative 

probability estimates for the minority classes, while CART delivered 

transparent rule based decisions that remain attractive when simplicity and 

interpretability are prioritized, therefore the boosted model is recommended as 

the default analytical choice for this dataset and the tree remains a practical 

alternative in settings that require fast, human readable rules. The patterns 

observed across correlation structure, per class distributions, and fitted model 

behavior form a coherent narrative for the reader in which variables reflecting 

glycemic burden dominate discrimination, adiposity adds a secondary signal, 

and selected lipid measures provide further refinement, which explains the very 

high separability of the Diabetic class and the improved recognition of the Non 

diabetic and Pre diabetic classes under the boosted model; the probability 

histograms show that the tree concentrates mass near zero and one which favors 

crisp decisions but limits the mid-range, whereas the boosted model produces a 

smoother distribution of probabilities that supports threshold tuning and 

communication of graded risk, and because class sizes are strongly imbalanced 

the text emphasizes macro averaged summaries to prevent the majority class 

from dominating aggregates while precision and recall for the minority classes 

are interpreted alongside specificity so that operating points can be selected 
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according to clinical priorities. The dataset originates from two hospitals in Iraq, 

which introduces mild site level heterogeneity in measurement practice and case 

mix and provides a realistic setting for multiclass clinical prediction under 

distributional stress; the boosted model’s advantages across accuracy, balanced 

accuracy, macro F1, macro AUPRC, and the Brier score align with its more 

informative probabilities in the mid-range and suggest resilience to modest 

between site variability, although external validation and periodic recalibration 

remain necessary to account for temporal shifts in prevalence and workflow, 

and subgroup checks should be reported to ensure that gains are consistent 

across demographic and clinical strata. Limitations include the retrospective 

design in a single city with two hospitals, the small absolute size of the Pre 

diabetic test subset, which increases uncertainty in its precision and recall 

behavior, and reliance on routinely available predictors rather than longitudinal 

or specialized markers that could further sharpen discrimination; therefore, 

future work should test the models on external cohorts, update or recalibrate 

probabilities to local prevalence, add decision analytic evaluation that aligns 

threshold choices with clinical costs and benefits, and include fairness oriented 

reporting that examines stability of performance across clinically meaningful 

subgroups. Post hoc sensitivity analysis, motivated by clinical redundancy 

among lipid and renal markers (LDL can be estimated from Chol/HDL/TG; 

creatinine covaries with Urea), re-estimated performance after excluding LDL 

and creatinine. CART was unchanged (Accuracy 0.9758; Balanced Accuracy 

0.8816), whereas XGBoost improved modestly (Accuracy 0.9818 → 0.9879; 

Balanced Accuracy 0.9384 → 0.9559). These changes do not alter our 

conclusions: the boosted model remains preferred and removing LDL/creatinine 

preserves, or slightly enhances, discrimination while yielding a more 

parsimonious predictor set. 
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