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Abstract

Diabetes imposes a substantial public health burden; according to the
International Diabetes Federation, there were about 3.4 million diabetes related
deaths worldwide in 2024, and in Iraq, the Federation reports that one in nine adults
lives with diabetes in 2024, with 14,683 adult deaths attributable to diabetes and a total
diabetes related health expenditure of 2,078 million United States dollars. The dataset
analyzed in this study contains 1,000 records collected in 2020 from two Iraqi teaching
hospitals and includes multiple clinical and laboratory measurements with three
outcome classes, namely Non diabetic, Pre diabetic, and Diabetic, with a low
prevalence of the Pre diabetic class and an imbalanced overall class distribution; the
data are challenging because they contain many outliers, non homogeneous
covariance matrices across classes, exact duplicate rows that were removed before
modelling, and linear correlations among certain variables. The study objective was to
train and evaluate models that discriminate among the three classes and yield accurate,
well calibrated predictions for future cases in similar clinical settings, but the
diagnostic properties of the data limited the applicability of classical discriminant
functions; therefore two supervised learners were employed: Classification and
Regression Trees (CART) and Extreme Gradient Boosting (XGBoost), together with
preprocessing that removed exact duplicate rows and excluded VLDL because it is
algebraically derived from triglycerides in mmol per liter as VLDL equals triglycerides
divided by 2.2, which would introduce redundancy and multicollinearity. On the held-
out test set, XGBoost achieved higher Accuracy at 98.18 percent compared with 97.58
percent for CART and higher Balanced Accuracy at 93.84 percent compared with
88.16 percent for CART, indicating that XGBoost provided the strongest overall
operating point for this three-class task while CART remains useful when simple and
transparent rules are required.
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I. Introduction

Diabetes mellitus is a rapidly growing global health problem with large
mortality and cost burdens. In 2024, an estimated 589 million adults were living with
diabetes worldwide, projections indicate approximately 853 million by 2050, diabetes
caused about 3.4 million deaths in 2024, and global health expenditure attributable to
diabetes was about one trillion US dollars [V].

Iraq faces a substantial national burden. In 2024, an estimated 2.7 million Iraqi adults
were living with diabetes, 47.1 percent were undiagnosed, there were about 14,683
diabetes-attributable deaths, and diabetes-related health expenditure totaled roughly
2,078 million US dollars, or about 778 US dollars per person with diabetes [XI].
Clinical practice guidelines emphasize early detection and accurate assignment to
glycemic status because timely intervention can prevent progression and
complications; in this study, we apply the diagnostic categories and thresholds
specified in the American Diabetes Association Standards of Care [I].

The dataset analyzed here was obtained from Mendeley Data and contains adult records
from two tertiary hospitals in central Baghdad: Medical City Teaching Hospital and the
Specialized Center for Endocrinology and Diabetes at Al-Kindy Teaching Hospital.
The repository documents the three target classes (Non-diabetic, Prediabetic, Diabetic)
and the routine clinical and laboratory predictors used in our work [XIV]. The data are
challenging and representative of routine clinical practice: several variables exhibit
heavy right tails and outliers; covariance structures differ across the three classes; there
is modest collinearity among lipid and renal markers; and exact duplicate records were
identified and resolved during cleaning. The classes are strongly imbalanced, and,
importantly, the explicit Prediabetic stratum makes these data more informative than
binary designs that collapse Prediabetic into Non-diabetic or Diabetic, while also
increasing the difficulty of classification and calibration [I].

We compare two complementary approaches for three-class assignments: a cost-
sensitive CART model that yields transparent decision rules, and XGBoost as a strong
nonlinear baseline. Both models use the same original predictors: nine continuous
variables (anthropometric and laboratory measures) and Gender. CART ingests these
ten predictors directly with native handling of categorical splits. XGBoost operates on
a one-hot encoded design matrix with eleven columns (the same nine continuous
variables plus two indicator columns for Gender, no intercept). Performance is
evaluated on a held-out test set using Accuracy, Balanced Accuracy, Precision, Recall,
F1 and Macro-F1, ROC, and precision—recall behavior, the Brier score for probability
accuracy, and Cohen’s kappa for chance-corrected agreement; formal definitions are
provided in Methods.

II. Literature Review

Sabariah et al. in 2014 [XVI]: In this research, the combined (CART) and (RF)
were used to build the classification model that is used in the early detection of diabetes
mellitus type Il disease. Those methods are selected based on the characteristics of the
dataset used in medical records of diabetes mellitus, which consist of complex
attributes consisting of several categorical attributes and continuous attributes. This
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research has tested a different number of trees and numbers of candidate attribute
splitters, with the optimal inputs 50 trees and 3 number of attributes splitter, the average
accuracy 83.8%. The important attributes of early detection of diabetes mellitus type II
are heredity, age, and body mass index.

Nuankaew et al. in 2021 [XIII]: This study proposes a novel prediction method named
Average Weighted Objective Distance (AWOD) based on the assumption that the
individual has diverse health conditions resulting from different individual factors, a
requirement for an effective prediction model. AWOD is a modification of Weighted
Objective Distance by applying information gain to reveal significant and insignificant
individual factors having different priorities, which are represented by different
weights. Two datasets from open sources, Pima Indians Diabetes (Dataset 1) and
Mendeley Data for Diabetes (Dataset 2), each containing 392 records, with a 70:30
partition, were studied. The prediction performance for both datasets is compared with
the machine learning-based prediction methods, including K-Nearest Neighbors,
Support Vector Machines, Random Forest, and Deep Learning. The comparison results
showed that the proposed method provided 93.22% and 98.95% accuracy for Dataset
1 and Dataset 2, respectively.

Sahid et al. in 2024[XVII]: They propose a multiclass diabetes mellitus detection and
classification approach using an extremely imbalanced Laboratory of Medical City
Hospital data dynamics. They also formulate a new dataset that is moderately
imbalanced based on the Laboratory of Medical City Hospital data dynamics. To
correctly identify the multiclass diabetes mellitus, they employ three machine learning
classifiers, namely support vector machine, logistic regression, and k-nearest neighbor.
To optimize the classification performance of classifiers, they tune the model by
hyperparameter optimization with 10-fold grid search cross-validation. In the case of
the original extremely imbalanced dataset with a 70:30 partition and SVM classifier,
they achieved a maximum accuracy of 0.964 by using the top 4 features according to
the filter method. By using the top 9 features according to wrapper-based sequential
feature selection, the KNN provides an accuracy of 93. 5% and 100% for the other
performance metrics. For the moderately imbalanced dataset with an 80:20 partition,
the SVM classifier achieves a maximum accuracy of 93.8% and 100% for other
performance metrics.

Idhom et al. in 2025[XII]: This study aims to address the challenge of predicting
customer credit eligibility by employing two machine learning techniques: CART and
XGBoost. The research follows a structured methodology, including data acquisition,
preprocessing, splitting the data into 80:20 training and testing sets, applying the CART
and XGBoost algorithms, and evaluating the models' performance. Through this
approach, the study seeks to enhance the accuracy and efficiency of credit approval
decisions, helping financial institutions streamline their processes.

The CART method achieved an accuracy rate of 88%, while combining CART with
the XGBoost algorithm increased accuracy to 90%.

III.  Data source and variable dictionary

This study uses an anonymized dataset obtained from Mendeley Data XIV,
comprising adult records from two tertiary hospitals in central Baghdad: Medical City

Nabila A. Alsharif et al.



J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026) pp 1-22

Teaching Hospital and Al-Kindy Teaching Hospital. The outcome has three classes,
non-diabetic (Non), prediabetic (Pre), and diabetic (Diab), with markedly unequal class
sizes (Non =103, Pre= 53, Diab =844). The predictors are routine clinical and
laboratory measures collected in real-world practice. Table 1 below lists each variable
with its full clinical name, unit, and type.

Table 1: Variable dictionary

In Table 2, statistical descriptions for numeric variables are provided, with counts,
means, standard deviations, medians, interquartile range, minimum, and maximum
values.

Table 2: Descriptive statistics for numeric variables

Table 3 shows categorical variables for Gender and CLASS, list counts, and
percentages for each level.

Nabila A. Alsharif et al.



J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026) pp 1-22
Table 3: Categorical variables: counts and percentages by level

1. Data Preparation
The dataset was cleaned before modeling as follows:

e Gender (case harmonization). We identified inconsistent casing for the
female category in the Gender column (values recorded as “F” and “f”, e.g.,
row 992). These values were standardized to “F”.

o CLASS (whitespace trimming). We detected leading/trailing or internal
spaces in several single-character CLASS codes (“N”, “P”, “Y”) affecting
rows 103, 997, 998, 999, and 1000. All extraneous spaces were removed to
ensure consistent label formatting.

e Removal of direct identifiers. The first column (Patient ID) and the second
column (NO_PATION) were removed to eliminate direct identifiers and
prevent their unintended use during modeling.

o Removal of the undocumented field. The column “Sugar Level Blood” was
dropped because it is not documented in the original data description and
offered no demonstrated analytical value; its removal does not affect
downstream analyses.

e Deduplication. We removed 174 exact duplicate rows (retaining the first
occurrence), yielding a final analytic dataset of (N = 826) observations with
class counts Non = 96, Pre = 40, and Diab = 690.

e VLDL exclusion by design. Very-low-density lipoprotein (VLDL) was
excluded because it is approximately redundant with triglycerides (commonly
approximated as (in mmol/L, (VLDL = TG/2.2)) [ VI]; removing it avoids
collinearity without loss of information.

After cleaning, we performed a stratified 80/20 split (seed = 7) into training and test
sets. Categorical variables were used natively by CART, whereas the boosted model
used a one-hot encoded design matrix (no intercept).

IV. Methods
Classification and Regression Trees (CART)

We trained a cost-sensitive multiclass CART for {Non, Pre, Diab} using the
Gini impurity. For a node t with class proportions py (t), the impurity is
G(t) =1—Yppe(®)
For a candidate split of a parent node with nsamples into left/right children of sizes
n;, ngand impurities Gy, Gy, the size-weighted child impurity is
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=" TR
Gsplit ~a GL + n GRJ
and the chosen split maximizes the impurity reduction
AG = Gparent - Gsplit'
To prioritize clinically important distinctions, we used the misclassification cost
matrix:
0 1 2
5 0 3| (rows = trueclass; columns = predicted).

2 10
At a leaf with estimated class probabilities {p;}, the reported class minimizes the

L =

expected loss arg min jz piLij . The tree growth limits were cost—complexity
i

parameter cp = 0.0005, minimum leaf size = 5, and maximum depth = 8, using 10-
fold cross-validation; the final model was pruned at the complexity parameter with
minimum cross-validated error (standard cost—complexity pruning). Leaf class
probabilities are the empirical class frequencies [II]. To link the tree structure to the
percentages reported under each terminal node in Figure 4, we define the leaf coverage
as follows: Let £ denote a terminal node (leaf), n, the number of training observations
routed to £, and N,,;, the total number of training observations. The share of the
training set in leaf ¢ is

ne ne

, %, = 100 x —£.

train train

Sp =

These %_# values correspond to the percentages printed under each leaf in the CART
diagram (Figure 4) and summarize each terminal node’s coverage. [X]

Extreme Gradient Boosting (XGBoost)

We fit a gradient-boosted tree ensemble for the same three-class target using the
multiclass softmax objective (softmax maps arbitrary class scores to probabilities that
. T

lie in (0,1) and sum to 1). Let x be a feature vector, f;(x) = zt= 1 9¢i(x) the
accumulated score for class i after T rounds, and

exp (fi(x)
7T' X = )
(@) K exp (fm(x))

the predicted class probability. Training minimizes the weighted multinomial log-loss

N K
L= _;Z- WjZ' 1{yj = i} logni(xj),
j=1 i=1

with labels encoded y € {0,1,2} and observation weights w; addressing class
imbalance. [VII], [IV]. We used inverse-frequency base weights and doubled the Pre-
class weight (Pre x2). Implementation settings matched the saved analysis: tree depth
= 4, learning rate n = 0.15, row subsampling = 0.9, column-by-tree subsampling =
0.9, T = 400 boosting rounds, single-thread execution, and a fixed random seed. The
predicted class is arg max ; ;(x), while the full probability vector (x) is retained for
later evaluation (e.g., precision—recall area, calibration, and Brier score).

Nabila A. Alsharif et al.



J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026) pp 1-22

Predictors for XGBoost were one-hot encoded without an intercept so that trees split
directly on the resulting indicator columns; continuous predictors were used as
observed. CART used native categorical splits and therefore did not require one-hot
encoding.

Metrics

Let K be the number of classes {Non, Pre, Diab} and n test instances, and let the
confusion matrix be M € N¥*Xwith entry M; j (true i, predicted j); define TP; = My;,

FNi = Zj-'#iMij: Z]:th]la and TN Zpii Z 'Mpq-
q#i

Overall Accuracy is 1 Zf(zl My;;

_ TP

Recall/Sensitivity for class i is Recall; = — TN,
AT e s _ TN

Specificity is Specificity; = TN, +FP}’

1
Balanced Accuracy averages recall across classes, Balanced AccuracyZE >X | Recall;

(recommended when class sizes are unequal).

P; |
TP;+FP;’
__ 2 Precision; Recall;

Precision (positive predictive value) is Precision ; =

The per-class F1 is the harmonic mean F1; ;
Prec1510n i+Recall;

The Macro-F1 is the unweighted mean — Z{‘;l F1
K

These definitions and macro-averaging are standard in multiclass evaluation [ XVIII].
For ROC analysis, one-vs-rest curves plot (FPR;, TPR;) where

TPR; = Recall; and FPR; FPFf%NL;

discrimination for a class, and the Hand Till multiclass AUC generalizes by averaging
————Y1<i<jex AUC (i vs j) [VIII]. For precision—

the AUC summarizes threshold-free

pairwise class AUCs: AUCyr = K(K 5

recall (PR), curves plot (Recall;, Precision;); the area under the PR curve (AUPRC)
can be more informative than ROC when classes are imbalanced; we report the macro-
average over classes [ XV]. For probability accuracy, the multiclass Brier score uses the
predicted class probabilities and one-hot truth: if 7, (x;) is the predicted probability for
instance jand class k (e.g., the softmax output in XGBoost), define y;; € {0,1}as the
indicator of the true class;

then Brier = - ” _ YK 1 () — y]k)2 (lower is better); it is a strictly proper
scoring rule. [HI]

For chance-corrected agreement, Cohen’s Kappa K uses observed agreement p, =

%Zi M;; and chance agreement p, = 1( M” )(ZJ Mji =L with k = plo_;;’e. [1X]
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V. Results

In Figure 1, the matrix shows a few strong positive clusters and otherwise
modest associations. Urea and creatinine exhibit a very strong positive correlation,
consistent with shared renal physiology, indicating potential redundancy. Total
cholesterol correlates strongly with LDL, and triglycerides show a moderate positive
correlation with total cholesterol and LDL. HDL displays a mild negative association
with triglycerides and LDL. HbA 1c correlates positively (moderate) with BMI and age,
consistent with higher glycemic burden in older and heavier patients. No broad pattern
of extreme collinearity is evident beyond the Urea—Cr and Chol-LDL pairs, suggesting
that most predictors contribute distinct information to the tree-based models.

Correlation Heatmap (Training)

= -
o -
e -
r
TG 1.00
. 0.78
Chol 0.50
025
HbAe 0.00
"

v‘j(’ K < ¥ o
Fig. 1. Correlation heatmap (training set)

In Figure 2, the class-wise distributions demonstrate clear separation on several
key variables. HbA1c shows the most distinct shift: Diab has the highest values
with limited overlap, Pre is intermediate, and Non is lowest, supporting its role
as a primary discriminator. BMI is higher in Diab with Pre slightly above Non,
indicating added discriminatory value for adiposity. Triglycerides are elevated
and right-skewed in Diab, with Pre between Diab and Non. HDL is lower in
Diab, consistent with an adverse lipid profile. LDL and total cholesterol are
modestly higher in Diab but retain some overlap across classes. Creatinine and
urea tend to be higher in Diab with longer right tails, though distributions
overlap. Age is shifted upward in Diab relative to Non and Pre. Overall, these
patterns explain why splits on HbAlc, BMI, and lipid measures are effective for
assigning patients to Non, Pre, or Diab.
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Per-class Distributions (Training)
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Fig. 2. Per-class distributions

In Figure 3, across classes, most variables deviate from normality chiefly through right-
skew and heavy upper tails, most pronounced in Diab. HbA1c shows the clearest class
separation: Non is lowest, Pre is tightly clustered near the diagnostic threshold
(stepwise pattern from small n), and Diab has a pronounced upper tail, consistent with
poorer glycemic control. BMI is right-skewed in all groups, with the heaviest tail in
Diab. Triglycerides, creatinine, and urea show strong right-tail departures, again largest
in Diab, indicating occasional very high values. LDL and total cholesterol are near-
normal in Non/Pre with heavier upper tails in Diab, while HDL shows mild curvature
and a few high outliers. These distributional features support the observed tree splits
and help explain why probability calibration must be checked; they do not invalidate
the tree-based models used for assigning patients to Non, Pre, or Diab.
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Fig. 3. Q—Q plots by class for the nine continuous predictors (training set)

[

The pruned tree in Figure 4 ends in eight terminal leaves whose internal leaf numbers
are 15,5, 13, 14, 11, 9, 10, and 6. Each percentage is the share of all training patients
that ultimately fall into that leaf after being routed by the splits; the shares are obtained
by counting patients per leaf and dividing by the training-set size. The largest leaf is
node 15 (75.95%) and corresponds to the simple rule HbAlc > 6.5, producing a near-
pure Diab assignment. Within HbAlc < 6.5, node 13 (4.84%) captures the range 5.7 <
HbAlc < 6.5 with AGE < 51 and is labeled Pre, whereas node 14 (3.03%) is 5.7 <
HbAlc < 6.5 with AGE > 51 and is labeled Diab. In the low-HbA ¢ branch (HbAlc <
5.7), lipid profile and adiposity refine the decision: node 5 (10.14%) is Chol < 5 and

Nabila A. Alsharif et al.
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BMI < 25 (Non); node 6 (1.06%) is Chol < 5 and BMI > 25 (Diab); when Chol > 5,
node 11 (2.27%) is TG < 2 with BMI <24 (Non); node 10 (1.21%) is TG < 2 with BMI
> 24 (Diab); and node 9 (1.51%) is TG > 2 (Diab). Thus, the numbers 15, 5, 13, 14, 11,
9, 10, and 6 are the leaf identifiers, and the percentages 75.95, 10.14, 4.84, 3.03, 2.27,
1.51, 1.21, and 1.06 report how much of the training set each rule covers.

Non

Pre Gia)
Diab 12 05 84
(75 } HbA1c < 6.5 {no }
Pre
HbAlc < 5.7
(Nom) Pre
Chol <5 ——AGE < 51
(Hiom) Diat
——BMI < 25— TG <2
(o
BMI<24

Fig. 4. CART tree (pruned)

Across both views in Figure 5, HbAlc is the dominant driver, BMI is the next most
influential, and AGE and Chol contribute at a moderate level; TG and Urea have small
effects, while LDL, Cr, and HDL are negligible. The slight reordering (Chol above
AGE in the permutation plot but below in the Gini plot) indicates that Chol, though
used in fewer or shallower splits, improves the predicted probabilities more than its
split frequency alone suggests. The agreement between the two important measures
supports a stable interpretation: model decisions are governed primarily by glycemic
status, with adiposity as a strong secondary factor and AGE/Chol providing additional
refinement.
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CART Variable Importance (Gini decrease)
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CART Permutation Importance (1 A log-loss = more important)

HbA1c
BMI
Chol
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LDL
HDL

Gender

2 3 a4
A Log-Loss

o

Fig. 5. Top: CART importance (Gini-based) Bottom: CART permutation importance

The distributions are sharply bimodal, as we see in Figure 6, with most probabilities at
0 or 1 and very little mass in the mid-range, indicating confident, near-deterministic
leaves. For P(Diab), the dominant spike at 1.00 reflects the large HbAlc > 6.5 leaf in
the tree (Figure 4), which yields confident Diab assignments; the small bar at 0.00
corresponds to clearly non-diabetic cases. For P(Non), probabilities cluster at 0.00 with
a small spike at 1.00, matching the small pure Non leaves formed at low HbA 1¢ with
favorable lipid/adiposity thresholds. For P(Pre), most probabilities are at 0.00 with a
small spike at 1.00, consistent with the narrow Pre leaf (5.7 < HbAlc < 6.5 and AGE
< 51). Overall, the histograms confirm that CART produces hard, threshold-based
decisions aligned with the splits in Figure 4; this explains strong classification accuracy
while motivating separate checks of probability calibration.
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Predicted probabilty distibution (Non) — CART Predicted probabiity distrbuton (Pre) — CART Prcicted probabity dstbution (Diab) — CART

19

0 I - L
L B I p u ' R
0 s 0

T % i - Pt
P(MNon)

Fig. 6. CART predicted-probability histograms (Non, Pre, Diab)

The three panels in Figure 7 compare binned observed prevalence with mean predicted
probability. Because CART assigns sharp, leaf-based probabilities (see Figure 6), only
bins near 0 and 1 are populated. For Diab, the high-probability bin lies slightly below
the 45° line, indicating mild over-confidence driven by the large HbAlc > 6.5 leaf
(Figure 4). For Non, the near-0 and near-1 bins fall close to the diagonal, suggesting
good calibration at the extremes; the wider interval around p = 1.0 reflects limited
counts in pure Non leaves. For Pre, the populated low-probability bin sits a little above
the diagonal, implying a slight underestimation of Pre risk outside the small Pre leaf.
Overall, calibration is reasonable at the extremes but largely undefined in the mid-
range, consistent with the concentrated probability histograms in Figure 6 and the
threshold structure in Figure 4.
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Calbration (Non) — CART Calibration (Pre) — CART Calibrafion (Diab) — CART

100

Observed prevalence (bin)
Observed prevalence (bin)

Observed prevalence (bin)

035 150 078
Mean predicted probabilty (bin)

Mean predicted probabilty (bin) Mean predicle.d‘pcbebm-]bml )

Fig. 7. Calibration by class (CART: Non, Pre, Diab).

Both panels in Figure 8 agree that HbAlc overwhelmingly drives the boosted model.
In the gain plot (Top), AGE ranks second and BMI third, with small but non-zero
contributions from Chol and TG; LDL, Cr, HDL, and the one-hot gender indicators
contribute nothing. In the permutation plot (Bottom), HbAlc remains dominant, but
BMI moves into a clear second place, while Chol and TG follow, and AGE drops to a
modest effect, showing that, although AGE often appears in splits, BMI and Chol
improve class probabilities more when perturbed. This pattern is consistent with Figure
5 for CART (HbAlc first, BMI next, AGE/Chol supporting), reinforcing a coherent
story across methods: glycemic status is the primary signal, adiposity provides strong
secondary discrimination, and lipid components (especially Chol, then TG) refine
probabilities, whereas the remaining variables add little.

XGBoost Importance (Top 15)
HbAlc
AGE
BMI
Chol
TG

LoL

Feature

Urea

Cr

HDL
GenderMale

GenderFemale

Gain
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XGBoost Permutation Importance (1 A Log-Loss = more important)
HbATC
BMI
Chel
TG
AGE

Urea

Feature

GenderFemale

GenderMale
LDL
Cr

HDL

0.0 02 04 06
Alog-Loss

Fig. 8. Top: XGBoost importance (Top-15 by Gain) Bottom: XGBoost permutation
importance

The distributions in Figure 9 are strongly bimodal, with most mass near 0 or 1,
indicating high separability; compared with CART (Figure 6), XGBoost shows a
slightly wider mid-range spread, which is typical for a softmax ensemble. The Diab
panel has a dominant spike at 1.00, reflecting many confidently diabetic cases and
aligning with HbAlc’s leading influence in the importance plots (Figure 8). The Non
and Pre panels concentrate near 0 with smaller spikes near 1.00, showing fewer regions
that strongly support those classes. Overall, the histograms suggest confident
assignments while motivating a check of probability calibration in the mid-probability
range.

Predicted probability distribution (Non) — XGB Predicted probability distribution (Pre) — XGB Predicted probability distribution (Diab) — XGB

Count

Count
Count

050 0.50 075 025
P(Nan) P(Pre) P{(Diab)

Fig. 9. XGBoost predicted-probability histograms (Non, Pre, Diab)

In Figure 10, using one-vs-rest evaluation, the curves hug the upper-left corner with
AUCs of 0.996 (Diab), 1.000 (Non), and 0.992 (Pre), indicating near-perfect
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discrimination. The perfect AUC for Non likely reflects a small, very separable subset
in the test split, which agrees with the strongly bimodal probability histograms in
Figure 9 and the dominance of HbAlc in the XGBoost importance profiles (Figure 8).
Practically, thresholds can be set to prioritize sensitivity or specificity without large
losses in the other. Because Non and Pre have limited test counts, it is advisable to
report confidence intervals and also consider precision—recall summaries for
completeness.
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XGB ROC (Diab) AUC=0.996

1.0

0.6 0.8
L L

Sensitivity

0.4
L

0.2

0.0
L

1.0

0.8

0.6
I

Sensitivity

0.2 0.4

0.0

]

T
05 0.0
Specificity

T
05

Specificity

Sensitivity

0.4

1.0

0.8

0.6

0.2

0.0

—

T T T
1.0 0.5 0.0

Specificity

Fig. 10. ROC curves (XGBoost: Non, Pre, Diab)

In Figure 11, the Diab curve (blue) stays near precision ~1.0 across almost the full
recall range, indicating near-perfect positive predictive performance, consistent with
the spike at P(Diab)=1.00 in Figure 9 and the very high ROC AUC in Figure 10. The
Non curve (red) is also close to the top edge with only a slight drop at extreme recall,
matching its near-perfect ROC and the bimodal probability distribution. In contrast, the
Pre curve (green) shows markedly lower precision at high recall and greater variability,
reflecting the small Pre sample and weaker separability noted in the histograms.
Overall, PR confirms that XGBoost is extremely reliable for identifying Diab (and
strong for Non), while Pre remains the challenging class; threshold selection should
therefore prioritize recall for Pre if missing PreDiabetes is costly.

XGB PR (OVR)

1.0

0.6 0.8

Precision

0.4
1

0.2

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

Recall

Fig. 11. Precision—Recall curves (by class)
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Figures 7 (CART calibration) and 12 (XGB calibration) show that both models are well
calibrated at the extremes (near 0 and near 1), but they differ in the mid-probability
range. CART produces almost no mid-range probabilities for the Pre class, so its
calibration there is effectively degenerate, while Non and Diab sit close to the identity
line at the ends. XGB, by contrast, yields meaningful bins across the range for all
classes: for Diab and Non, the high-probability bins lie near the identity line, and the
mid bin (=0.45) has a wider interval but a mean close to the line; for Pre, the mid bin
is also near the line, indicating useful probabilistic calibration. Figure 13 confirms this:
both models align at =0 and =1, but only XGB provides a credible mid-probability bin,
whereas CART collapses to 0/1. This is consistent with the probability histograms
(Figures 6 and 9), where CART concentrates mass at the extremes, and XGB still
allows informative mid-range probabilities. In short, when calibrated probabilities
across the full range matter, especially for Pre, XGB is preferable; if decisions rely only
on extreme probabilities, both models are adequate.

Calibration (Non) — XGB Calibration (Pre) — XGB Calibration (Diab) — XGB

Mean predicted probabilfy fbin} Mean predicted prababilty (bin)

Fig. 12. Calibration by class (XGBoost: Non, Pre, Diab)
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Fig. 13. Joint calibration (PreDiabetic: CART vs XGBoost).
VI. Evaluation of the Models

Across figures 1-13, the evidence is consistent: glycemic status dominates
discrimination, adiposity is a strong secondary signal, and lipids refine decisions. The
correlation heatmap and per-class distributions (Figures 1-2) show limited problematic
collinearity (notably Urea—Cr and Chol-LDL) and clear class shifts for HbAlc and
BMLI. Distributional diagnostics (Figure 3) reveal right-skew and heavy tails, especially
in Diab, supporting the use of tree-based models. The learned CART rules (Figure 4)
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translate these patterns into simple thresholds, while variable-importance profiles for
CART and XGB (Figures 5 and 8) concur that HbA 1¢ is the primary driver, BMI next,
with AGE/Chol providing additional refinement and other variables minor. Probability
histograms confirm the different probability behaviors: CART concentrates mass at 0/1
(Figure 6), whereas XGB remains sharply bimodal but allows a slightly wider mid-
range (Figure 9). Calibration mirrors this: CART is well aligned at the extremes but
sparse in the mid-range (Figure 7), while XGB is close to the identity line across bins
for all classes (Figure 12); their direct comparison for the Pre class (Figure 13)
highlights XGB’s advantage when mid-probabilities are needed.

Discrimination metrics favor XGB. One-vs-rest ROC curves (Figure 10) are near the
upper-left corner for every class (AUC = 0.99-1.00), indicating excellent ranking;
precision—recall (Figure 11) shows Diab and Non maintaining precision near 1.0 across
high recall, with Pre remaining the hardest class but still improved relative to CART
(in line with Figures 6 and 9). Taken together, the importances (Figures 5 and 8),
probability shapes (Figures 6 and 9), and calibration (Figures 7, 12—13) form a coherent
picture: both models separate Diab extremely well, XGB additionally yields more
reliable probabilities across the range, which is valuable for thresholding decisions and
risk communication.

The summary tables confirm the graphical findings. In Table 4 (test set), XGB
surpasses CART on all five criteria: higher Accuracy, Balanced Accuracy, Macro-F1,
and Macro-AUPRC, and a lower Brier score, indicating better overall correctness, more
balanced recognition of minority classes, superior ranking quality, and more faithful
probabilities.

Table 4. Test metrics summary (Accuracy, Balanced Accuracy, Macro-F1,
Macro-AUPRC, Brier)

Table 5 shows where the gains occur: XGB raises sensitivity for Non and Pre while
keeping Diab sensitivity very high and preserves excellent specificity; this aligns with
the ROC/PR advantages and the improved calibration bins. Therefore, for the study
goal of assigning patients to Non, Pre, or Diab, XGB is the preferred model on this
dataset. CART remains useful for transparent clinical rules, but XGB offers a stronger
operating point when both accuracy and well-calibrated probabilities, especially for
Pre, are required.
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Table 5: Test metrics summary by class

VII. Conclusion

This study assessed a cost sensitive CART and a multiclass XGBoost on
a three class diabetes outcome drawn from two Iraqi hospitals, where the data
present multiple real world difficulties including frequent outliers, skewed
distributions with heavy upper tails, non homogeneous covariance across
classes, and pronounced imbalance in class sizes; across the evidence
summarized in the Results with thirteen figures and in Tables 4 and 5, XGBoost
provided stronger overall performance together with more informative
probability estimates for the minority classes, while CART delivered
transparent rule based decisions that remain attractive when simplicity and
interpretability are prioritized, therefore the boosted model is recommended as
the default analytical choice for this dataset and the tree remains a practical
alternative in settings that require fast, human readable rules. The patterns
observed across correlation structure, per class distributions, and fitted model
behavior form a coherent narrative for the reader in which variables reflecting
glycemic burden dominate discrimination, adiposity adds a secondary signal,
and selected lipid measures provide further refinement, which explains the very
high separability of the Diabetic class and the improved recognition of the Non
diabetic and Pre diabetic classes under the boosted model; the probability
histograms show that the tree concentrates mass near zero and one which favors
crisp decisions but limits the mid-range, whereas the boosted model produces a
smoother distribution of probabilities that supports threshold tuning and
communication of graded risk, and because class sizes are strongly imbalanced
the text emphasizes macro averaged summaries to prevent the majority class
from dominating aggregates while precision and recall for the minority classes
are interpreted alongside specificity so that operating points can be selected
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according to clinical priorities. The dataset originates from two hospitals in Iraq,
which introduces mild site level heterogeneity in measurement practice and case
mix and provides a realistic setting for multiclass clinical prediction under
distributional stress; the boosted model’s advantages across accuracy, balanced
accuracy, macro F1, macro AUPRC, and the Brier score align with its more
informative probabilities in the mid-range and suggest resilience to modest
between site variability, although external validation and periodic recalibration
remain necessary to account for temporal shifts in prevalence and workflow,
and subgroup checks should be reported to ensure that gains are consistent
across demographic and clinical strata. Limitations include the retrospective
design in a single city with two hospitals, the small absolute size of the Pre
diabetic test subset, which increases uncertainty in its precision and recall
behavior, and reliance on routinely available predictors rather than longitudinal
or specialized markers that could further sharpen discrimination; therefore,
future work should test the models on external cohorts, update or recalibrate
probabilities to local prevalence, add decision analytic evaluation that aligns
threshold choices with clinical costs and benefits, and include fairness oriented
reporting that examines stability of performance across clinically meaningful
subgroups. Post hoc sensitivity analysis, motivated by clinical redundancy
among lipid and renal markers (LDL can be estimated from Chol/HDL/TG;
creatinine covaries with Urea), re-estimated performance after excluding LDL
and creatinine. CART was unchanged (Accuracy 0.9758; Balanced Accuracy
0.8816), whereas XGBoost improved modestly (Accuracy 0.9818 — 0.9879;
Balanced Accuracy 0.9384 — 0.9559). These changes do not alter our
conclusions: the boosted model remains preferred and removing LDL/creatinine
preserves, or slightly enhances, discrimination while yielding a more
parsimonious predictor set.
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