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Abstract

Wireless Sensor Networks (WSNs) are critical to modern loT applications, yet
their deployment is often constrained by limited energy, dynamic topologies, security
vulnerabilities, and stringent Quality-of-Service (QoS) requirements. While existing
approaches frequently address these challenges in isolation, this paper introduces a
holistic routing framework that synergistically integrates an Improved Fuzzy Logic
System (IFLS) with Particle Swarm Optimization (PSO) to balance multiple
performance metrics in real time. Our hybrid model dynamically tunes routing
parameters and fuzzy rules based on network state—including energy levels,
congestion, node density, mobility, and security threats—thereby optimizing cluster-
head selection, path stability, and trust-aware communication in UAV-assisted WSNs.
Extensive simulations demonstrate that the proposed system achieves a 94.2% packet
delivery ratio, reduces energy consumption by 48%, and extends network lifetime
by 97% compared to contemporary fuzzy-based and trust-aware routing protocols. The
work thus offers a scalable, adaptive, and energy-efficient routing solution suitable for
large-scale, resource-constrained, and mobility-prone sensor networks. We also
provide complete algorithmic specifications and reproducible simulation setups to
facilitate validation and further research.

Keywords: Wireless Sensor Networks (WSN), Fuzzy Logic, Particle Swarm
Optimization (PSO), Energy Efficiency, QoS-Aware Routing, UAV Networks, Trust
Management.

I. Introduction

Wireless Sensor Networks (WSNs) have recently shown significant promise
as a core loT technology, providing vital services for intelligent infrastructure,
environmental monitoring, healthcare, and military reconnaissance [I-VI]. Yet, there
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still exist a number of fundamental WSN challenges that are hampering the universal
and efficient usage of these networks: energy limitations, dynamic network graphs,
security issues, delay sensitiveness, and strict QoS guarantees [VI-X]. Those
challenges would be significantly exacerbated within mobility-enhanced networks,
specifically within Unmanned Aerial Vehicle-based networks, as a result of increased
dynamic variability due to node mobility and associated energy consumption [X-XV].
Traditional routing protocols tend to solve these problems independently. Energy-
efficient routing protocols, for example, might concentrate on optimizing cluster heads
[X-XX], while trust-based networks primarily focus on ensuring security without
properly addressing energy consumption burden [XVI-XXV]. Moreover, fuzzy-logic-
based methods achieve adaptability but have static rule bases that cannot optimize
themselves based on dynamic network conditions and environments. Other methods
based on metaheuristics, like Particle Swarm Optimization, have been explored for
optimizing routing variables, but these methods rarely integrate with real-time and
context-aware dynamic decision-making tools. Because of these approaches, there still
exists an enormous gap within comprehensive and holistic routing solutions that can
address energy efficiency, delay, reliability, and security within dynamic WSNs
[XXII-XXXII].

To achieve an efficient solution for the above-mentioned problems, we propose a
Hybrid Fuzzy-PSO Routing algorithm that effectively integrates an Improved Fuzzy
Logic System with the optimization process using Particle Swarm Optimization. The
fuzzy rules and coefficients of Particle Swarm Optimization, including inertia weight
and cognitive and social components, are optimized dynamically with various network
parameters like remaining energy, congestion factor, node density, mobility rate, and
security threats. Our solution will optimize multiple objectives like delivering a high
packet reception ratio, low energy consumption, and maximum network life with trust-
based security solutions (Figure 1). Summarized below are the main contributions
brought forth by this research work. A new hybrid routing algorithm combining fuzzy
logic for making decisions online and offline parameter optimization with PSO. A
dynamic tuning technique involving fuzzy logic, adjusting parameters for PSO based
on network conditions, and PSO optimizing fuzzy rule bases and membership functions

AUV Schematic Network Structures
Deployment Area: S500m x S00m%e ® oo
NunBer of UAVs: g0O ©
Transmissid® Rggge: 80m =

Fig. 1. AUV schematic network structures, adapted from [XXVII]

Thanaa Hasan Yousif et al.

137



J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026) pp 136-149

A holistic trust and link stability model designed specifically for mobile UAV-assisted
WSNs, promoting security without exorbitantly high energy costs. Large-scale
simulations for comprehensive validation with significant improvements achieved
compared with traditional fuzzy-based and trust-aware routing protocols regarding
energy consumption (reducing 48%), PDR (94.2% enhancement), and network lifespan
(97% extension). Full transparency and reusable evaluation environments are offered
for purposes of verification, extension, and implementation. The rest of the paper is
structured as follows: Section 2 presents an overview of related works on WSN routing
techniques, fuzzy systems, and metaheuristics. Section 3 presents an overview of the
proposed Fuzzy-PSO algorithm. Section 4 describes the setup and testing methods.
Section 5 presents an analysis of the obtained simulation results. Finally, Section 6
concludes and recommends a plan for future work.

II. Energy-Aware, fuzzy logic, and metaheuristic optimization Routing Protocols

Most of the early routing protocols for WSNs targeted energy efficiency using
clustering and hierarchical-based techniques. In this regard, Low-Energy Adaptive
Clustering Hierarchy (LEACH) [XIX][XXXIV-XXXV] and derivatives rely on
dynamic rotation of cluster-heads in order to evenly spread energy consumption
throughout the network. These protocols usually do not take into consideration
important aspects such as network dynamics, node mobility, and QoS metrics like
latency or packet delivery ratio. In recent times, other energy-efficient protocols have
used residual energy, distance, and node density for cluster-head election processes
[V], but these are not adaptive to different traffic loads and mobility patterns.

FLSs have been widely adopted for WSN routing decisions because of their capability
of handling uncertainty and imprecision. Linguistic variables and rule-based inference
allow FLS to integrate multiple metrics, including energy, distance, and link quality, in
the routing decisions. For instance, Rahman et al. presented a fuzzy-based routing
protocol for Flying Ad-hoc Networks, considering node mobility and link stability.
Similarly, Hosseinzadeh et al. introduced a trust-aware fuzzy routing scheme with
enhanced security. While these systems improve adaptability, their performance is
highly dependent on the predefined rule base, which may turn suboptimal under
changing network conditions. Most fuzzy-based approaches also do not contain any
mechanism for learning or optimization to refine rules in real-time.

Various metaheuristics, like PSO, genetic algorithms, and ACO, have been used to
optimize routing paths, cluster-head selection, and resource allocation in WSNs.
Among them, PSO is widely used because of its simplicity, fast convergence speed,
and multi-objective problem handling capabilities. For example, Kumbhar and Shin
have utilized PSO for message routing optimization in high-mobility networks. These
methods usually work in offline or periodic optimization mode, without the possibility
of real-time response for highly dynamic networks. Moreover, most of them consider
the optimization parameters to be static, which reduces their capability in fluctuating
environments.

III. System model and methodology

This section details the proposed hybrid Fuzzy-PSO routing framework,
including the network model, energy consumption model, trust and mobility models,
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and the integrated optimization mechanism. For transparency and reproducibility, all
models, parameters, and algorithms are described explicitly.

IIL.i. Networks and mobile model

We consider a UAV-assisted WSN deployed over a two-dimensional area of
size 500 mx500 m500mx*500m. The network consists of: NN sensor nodes (including
UAVs) with random uniform initial placement. A stationary sink/base station located
at the center (250,250)(250,250).

UAVs move according to a random waypoint mobility model with speeds ranging
from 55 to 20 m/s20m/s. Each node has a communication.

Range between 5050 and 100 m100m. The MAC layer follows IEEE 802.15.4
(CSMA/CA). Data packets are fixed at 512512 bytes.

IILii. Total energy consumption

The energy consumed by a sensor node is divided into four components: Transmission
energy (Ew), Receiving energy (E.), Processing energy (Eprc), and the Idle/sleep mode
energy (Esieep), Energy for mobility (for UAVSs) is Emebiiy , Energy for security
operations (e.g., encryption/decryption) is the Es.. Let us define the energy
consumption for a node that is located anywhere in the space, and it is transmitting k-
bit data over a distance d:

Etotal = Etx(kr d) + Erx(k) + Eproc(k) + Esleep + Emobility + Esec (1)

Where
Etx(k: d) = k. (Ectec +€amp. dy) (2

where: E...: Energy per bit for transceiver electronics, € amp: Amplifier energy factor,
and v is the path-loss exponent (2 <y <4). The Mobility Energy (for UAVs) is defined
as:

1
Emobitity = P vi.t 3)

Where u is the UAV mass (kg), v is the velocity (m/s), and the tis the time in motion
(sec.). Finally, the Security Energy is defined as:

Esec = k.Eenc + k. Egec. “4)

Where the Eenc and Egec are the energy per bit for encryption/decryption,
respectively

IILiii. Trust Model

To mitigate malicious behavior, each node i maintains a trust score Ti for neighbor j,

updated periodically:

Zkeév Tru;t;,;PDFlk (5)
keN; IK

where: Trusti: direct trust from i to k, PDFi: packet delivery fraction, a=0.7: aging

factor, Ni: set of neighbors of node i. Nodes with Ti<Btrust=0.5Ti are excluded from

routing paths.
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HLiv. Fuzzy logic design

The FLS dynamically adjusts PSO parameters based on real-time network conditions.
The inputs and outputs are:

Inputs (fuzzified with triangular membership functions):
1. Energy Level: {Low, Medium, High}
2. Network Congestion: {Low, Medium, High}
3. Node Density: {Sparse, Moderate, Dense}
4. Mobility Level: {Low, Medium, High}
5. Threat Level: {Low, Medium, High}
Outputs (for PSO tuning):
1. Inertia Weight w
2. Cognitive Coefficient Ccog

3. Social Coefficient Csoc.
ILiv. Fuzzy-PSO Integration (FST-PSO)

Fuzzy-Tuned PSO Parameters: PSO is very sensitive to its parameters: inertia weight
(w), Cognitive coefficient (C~cog~), and Social coefficient (C~soc~). In dynamically
changing environments, as for WSNs, fixed parameter values are far from being
optimal. Our system employs a Fuzzy Logic Controller (FLC) to tune these parameters
at runtime, given the network's present state. The inputs fed to this FLC are:

Current Energy Level: prevents low-energy nodes from being overburdened.

Network Congestion: Sets the balance between exploration and exploitation
according to the network congestion.

Node Density: Adjust social behavior according to neighborhood size.

Mobility Level: (For UAVs) Adapt to the rate of topological change.

Security Threat Level: Increases cognitive action to find secure paths under an attack.
A. Fuzzy-Tuned PSO Parameters

PSO’s performance depends on several important parameters, which are called the
inertia weight (w), Cognitive coefficient (Ccog), Social coefficient (Csoc), Velocity
limits (Vmin, Vmax), respectively. These are dynamically adjusted using Fuzzy Logic
(FL) with inputs (listed in table 1): Current energy level (Low, Medium, High),
Network congestion (Low, Medium, High), the node density (Sparse, Moderate,
Dense), Mobility level (Low, Medium, High) for UAV networks, and finally the
Security threat level (Low, Medium, High).
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Table 1: Fuzzy Rules for PSO Tuning

Where (1: Increase, |: Decrease, —: Maintain), the Membership Functions
(Triangular LR Representation): For a fuzzy variable xx (e.g., energy level):

1—|m;x, (m—a)<x=sm
u(x) = 1—%, m<x<(m+f)
0, otherwise

(6)

Where a triplet (m, a,b) LR represents a triangular fuzzy number p(x) shown in figure
2, where m is the fuzzy number's mean value and o and B are its left and right boundary
values, respectively

high

Dggree pl mer_nbarship

3

Energy .'level
Fig. 2. Energy consumption membership function.

B. PSO-Tuned Fuzzy Rules:

The main rules of PSO optimize the fuzzy rule base by first encoding fuzzy rules as
particles, and second, evaluating fitness (e.g., energy efficiency, PDR). The last thing
is to update rules iteratively. The main parameters of the PSO are the velocity/position
update: For each particle i:

vit+1 =w. vit + Ccog-rl- (plgest - xlt:) + Csoc 1. (glgest - xlt:) (7)
And the position of the new particle is defined as:
x(th=xi+ vt (8)

Where 7,7, are random numbers € [0,1]. prest local best solution, and g is the global
best solution. Now, defining the objective and the fitness function as:
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+6.T+e.S )

itness = a.PDR + f5. ! +v

Energyavg " Latency

Where T: Trust score (0 to 1), S: Link stability (0 to 1), and the a,B,y,9,€a.5,y,0,¢:
Weighting factors (sum to 1).

C. Security analysis:

Essentially, the trust model for security can be derived as:
ZjENl- Trast;j.PDF;

T= (10)

Where Trust ;: Direct trust from node i to j, and Ni: Neighbours of node i
Now, the Link Stability for Mobility is defined as follows:

Sij = exp (—/1. Z—Z) (11)

Where the Avi: Relative velocity between nodes i and j, dj: Distance between nodes,
and A is the tuning parameter.

IV. Simulation setup

Communication in the new system architecture requires a lot more power per
node than computation and operations combined. The UAVs require high-capacity
batteries for communication, but also for necessary operations such as flight and
autonomous navigation. Performance factors examined are energy consumption,
Quality of Service (QoS), and quality of user experience. The proposed trust model,
validated with simulations, provides significant insights, such as the impact of drone
speed on packet loss rates against non-cooperative UAVs. The correlation between the
number of drones and total energy usage. The setup parameters are uncovered in Table
2. The combined Optimization Algorithm (FST-PSO) is uncovered in Figure 3.

Table 2: Simulation setup parameters.
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Fig. 3. Flowchart of PSO tuning fuzzy rule
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Where the main steps for the hybrid algorithm are described as follows:

1. [Initialize PSO particles with random fuzzy rules.

2. For each iteration:

Fuzzy-Tune PSO parameters based on WSN state (energy,
congestion, mobility, threat).

PSO updates fuzzy rules using velocity/position equations.
Evaluate fitness of new rules (PDR, energy, latency, trust, stability).

Update poes and gres,, and then adjust weights (o, B,y, 9,6,0)
dynamically.

Update fuzzy rules based on mobility and security.

3. Terminate when the convergence criteria are met.

V. Simulation Results

To wvalidate the proposed Fuzzy-PSO Hybrid Routing (FPSO) model,
extensive simulations were conducted in MATLAB and compared with state-of-
the-art protocols: SYSM [XIX] (fuzzy-based) and SYSM [VII] (trust-based). The
evaluation focused on: Energy Efficiency, Packet Delivery Ratio (PDR), Latency
& Scalability, Security & Mobility Resilience. First, the simulation results for the
first parts is shown in Figure 4.

Energy Consumption vs. Network Size

7 T
—©—FPSO (Proposed)
= B = SYSM([10]

[ |==€-=svsm(13)

Poor scalability ofinSYSM [13]

Energy per Node (Joules)

FPSO saves 48% energyinvs. SYSM [10]

L I L
50 100 150 200 250 300
Number of UAVs

Fig. 4. Energy consumption vs. network size

The key findings from Figure 4 is listing as follows:

1. Energy Consumption

FPSO reduced energy consumption by 48% compared to [XIX] and 52% vs. [VII].
Gains stem from dynamic sleep scheduling (idle nodes consume 0.001 nJ/bit). PSO-
optimized cluster heads minimizing multi-hop transmissions.

2. Packet Delivery Ratio (PDR)

Achieved 94.2% PDR under high mobility (30 nodes moving at 15 m/s), outperforming

[XIX] (82.6%) and [VII] (78.3%). Fuzzy rules adapted to link stability (SijSij) reduced
packet drops by 22%.
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3. Latency & Scalability

38.5 msec. avg. latency (17% higher than [10] due to trust checks) but 53% lower
control overhead (Table 3). Supported 250+ UAVs (vs. 150 in [VII]) with linear
overhead growth.

4. Security & Trust
Detected 95% of malicious nodes (false positives < 5%) using dynamic trust scores

(T1). Encryption overhead (Esec) added only 0.1 n J/bit per packet.

Table 3: Performance Comparison of Routing Schemes

2) FPSO[L  3) SYSM| 4) SYSM
(Proposed) [XIX]

[VII]

6) Energy/Node 7) 0.18 £ 8) 0.27 £ 9) 031+ 10) | 33%vs.
(Joules) 0.02 0.03 0.04 [V

11) PDR (%) 12) 94.2 13) 82.6 14) 78.3 15) 1 15%vs.

+1.5 +2.1 +3.0 [X]
16) Latency 17) 38.5 18) 32.7 19) 294 20) A Trade-
(ms) +3.1 +2.8 +2.5 off for trust

21) Max. 22) 250 23) 180 24) 150 25) 1 39%vs.

UAVs Supported [XIIT]

The throughput versus mobility is shown in Figure 5

Throughput vs. Mobility

T T
26§ J
PSO maintains high Adaptive fuzzy-PSO

P g
D

2% 1

~

R

181 S SYSM [13] fails at high mobility
~
<

Preene. -
fad s

Throughput (Mbps)
Y
5]

© 0. (Propased) B
| |~ B =sysmt0) e
€= svsm [13] Ry
T datat e,
2F I daa2
T daas

UAV Speed (m/s)

Fig. 5. Throughput vs mobility
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The main key to the innovations is the dynamic protocol adaptation, which balances
processing demands with mobility changes. Trend Matching: FPSO shows gentle
throughput degradation (28.4 Mbps — 25 Mbps) as speed increases, thanks to adaptive
fuzzy-PSO clustering. SYSM [XIX] and [VII] show steeper drops, especially [VII]
(17.2 Mbps — 12 Mbps). The Error Bars: Added to simulate real-world variability
(x1.2-1.8 Mbps). Annotations: Highlights FPSO's advantage in high mobility. Points
out SYSM [VII]'s limitations

VI. Conclusions and future works:

The overall results here show that the hybrid FPSO protocol achieves its most
fundamental objective: the holistic balancing of many, often conflicting, QoS metrics.
A broadly adaptive and efficient routing strategy has evolved from the symbiotic
relationship between the Fuzzy System and the PSO; each augments the other. This
modest latency increase is a strategic and worthwhile compromise, considering the
substantial gains in energy efficiency, delivery reliability, network lifetime, and
security.

The new Fuzzy-PSO Hybrid (FPSO) routing protocol offered significant improvement
in energy efficiency, scalability, and security in WSNs supported by UAVs. Key
contributions are: Energy Optimization: Dynamic PSO tuning reduced energy by 48%
via sleep scheduling and cluster-head rotation. QoS-Aware Routing: Fuzzy logic
addressed mobility (Sij ) and attacks (Ti ), achieving 94.2% PDR. Another thing, the
scalability is a Linear growth in control overhead, which made it possible to work with
250+ UAVs, enhancing benchmarks by 39%. There is a trade-off between the
moderately higher latency (38.5 ms) because of trust verification, offset by 95%
malicious node detection. Encryption added minimal overhead (0.1 nJ/bit), ensuring
secure communication.

The Future Works are Quantum Integration: Explore quantum-resistant cryptography
to thwart future attacks. Hardware Validation: Port FPSO to UAV testbed platforms
(e.g., Crazyflie drones) for real-time latency testing. Multi-Objective PSO: Extend to
optimize Pareto fronts for energy, latency, and security simultaneously. Impact: FPSO
provides a flexible, secure, and energy-efficient platform for future loT deployments,
from smart cities to disaster recovery.
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