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Abstract 

Wireless Sensor Networks (WSNs) are critical to modern IoT applications, yet 

their deployment is often constrained by limited energy, dynamic topologies, security 

vulnerabilities, and stringent Quality-of-Service (QoS) requirements. While existing 

approaches frequently address these challenges in isolation, this paper introduces a 

holistic routing framework that synergistically integrates an Improved Fuzzy Logic 

System (IFLS) with Particle Swarm Optimization (PSO) to balance multiple 

performance metrics in real time. Our hybrid model dynamically tunes routing 

parameters and fuzzy rules based on network state—including energy levels, 

congestion, node density, mobility, and security threats—thereby optimizing cluster-

head selection, path stability, and trust-aware communication in UAV-assisted WSNs. 

Extensive simulations demonstrate that the proposed system achieves a 94.2% packet 

delivery ratio, reduces energy consumption by 48%, and extends network lifetime 

by 97% compared to contemporary fuzzy-based and trust-aware routing protocols. The 

work thus offers a scalable, adaptive, and energy-efficient routing solution suitable for 

large-scale, resource-constrained, and mobility-prone sensor networks. We also 

provide complete algorithmic specifications and reproducible simulation setups to 

facilitate validation and further research. 

Keywords: Wireless Sensor Networks (WSN), Fuzzy Logic, Particle Swarm 

Optimization (PSO), Energy Efficiency, QoS-Aware Routing, UAV Networks, Trust 

Management. 

I.     Introduction 

Wireless Sensor Networks (WSNs) have recently shown significant promise 

as a core IoT technology, providing vital services for intelligent infrastructure, 

environmental monitoring, healthcare, and military reconnaissance [I-VI]. Yet, there 
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still exist a number of fundamental WSN challenges that are hampering the universal 

and efficient usage of these networks: energy limitations, dynamic network graphs, 

security issues, delay sensitiveness, and strict QoS guarantees [VI-X]. Those 

challenges would be significantly exacerbated within mobility-enhanced networks, 

specifically within Unmanned Aerial Vehicle-based networks, as a result of increased 

dynamic variability due to node mobility and associated energy consumption [X-XV]. 

Traditional routing protocols tend to solve these problems independently. Energy-

efficient routing protocols, for example, might concentrate on optimizing cluster heads 

[X-XX], while trust-based networks primarily focus on ensuring security without 

properly addressing energy consumption burden [XVI-XXV]. Moreover, fuzzy-logic-

based methods achieve adaptability but have static rule bases that cannot optimize 

themselves based on dynamic network conditions and environments. Other methods 

based on metaheuristics, like Particle Swarm Optimization, have been explored for 

optimizing routing variables, but these methods rarely integrate with real-time and 

context-aware dynamic decision-making tools. Because of these approaches, there still 

exists an enormous gap within comprehensive and holistic routing solutions that can 

address energy efficiency, delay, reliability, and security within dynamic WSNs 

[XXIII-XXXIII]. 

To achieve an efficient solution for the above-mentioned problems, we propose a 

Hybrid Fuzzy-PSO Routing algorithm that effectively integrates an Improved Fuzzy 

Logic System with the optimization process using Particle Swarm Optimization. The 

fuzzy rules and coefficients of Particle Swarm Optimization, including inertia weight 

and cognitive and social components, are optimized dynamically with various network 

parameters like remaining energy, congestion factor, node density, mobility rate, and 

security threats. Our solution will optimize multiple objectives like delivering a high 

packet reception ratio, low energy consumption, and maximum network life with trust-

based security solutions (Figure 1). Summarized below are the main contributions 

brought forth by this research work. A new hybrid routing algorithm combining fuzzy 

logic for making decisions online and offline parameter optimization with PSO. A 

dynamic tuning technique involving fuzzy logic, adjusting parameters for PSO based 

on network conditions, and PSO optimizing fuzzy rule bases and membership functions 

 

Fig. 1. AUV schematic network structures, adapted from [XXVII] 
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A holistic trust and link stability model designed specifically for mobile UAV-assisted 

WSNs, promoting security without exorbitantly high energy costs. Large-scale 

simulations for comprehensive validation with significant improvements achieved 

compared with traditional fuzzy-based and trust-aware routing protocols regarding 

energy consumption (reducing 48%), PDR (94.2% enhancement), and network lifespan 

(97% extension). Full transparency and reusable evaluation environments are offered 

for purposes of verification, extension, and implementation. The rest of the paper is 

structured as follows: Section 2 presents an overview of related works on WSN routing 

techniques, fuzzy systems, and metaheuristics. Section 3 presents an overview of the 

proposed Fuzzy-PSO algorithm. Section 4 describes the setup and testing methods. 

Section 5 presents an analysis of the obtained simulation results. Finally, Section 6 

concludes and recommends a plan for future work. 

II.    Energy-Aware, fuzzy logic, and metaheuristic optimization Routing Protocols 
Most of the early routing protocols for WSNs targeted energy efficiency using 

clustering and hierarchical-based techniques. In this regard, Low-Energy Adaptive 

Clustering Hierarchy (LEACH) [XIX][XXXIV-XXXV] and derivatives rely on 

dynamic rotation of cluster-heads in order to evenly spread energy consumption 

throughout the network. These protocols usually do not take into consideration 

important aspects such as network dynamics, node mobility, and QoS metrics like 

latency or packet delivery ratio. In recent times, other energy-efficient protocols have 

used residual energy, distance, and node density for cluster-head election processes 

[V], but these are not adaptive to different traffic loads and mobility patterns. 

FLSs have been widely adopted for WSN routing decisions because of their capability 

of handling uncertainty and imprecision. Linguistic variables and rule-based inference 

allow FLS to integrate multiple metrics, including energy, distance, and link quality, in 

the routing decisions. For instance, Rahman et al. presented a fuzzy-based routing 

protocol for Flying Ad-hoc Networks, considering node mobility and link stability. 

Similarly, Hosseinzadeh et al. introduced a trust-aware fuzzy routing scheme with 

enhanced security. While these systems improve adaptability, their performance is 

highly dependent on the predefined rule base, which may turn suboptimal under 

changing network conditions. Most fuzzy-based approaches also do not contain any 

mechanism for learning or optimization to refine rules in real-time. 

Various metaheuristics, like PSO, genetic algorithms, and ACO, have been used to 

optimize routing paths, cluster-head selection, and resource allocation in WSNs. 

Among them, PSO is widely used because of its simplicity, fast convergence speed, 

and multi-objective problem handling capabilities. For example, Kumbhar and Shin 

have utilized PSO for message routing optimization in high-mobility networks. These 

methods usually work in offline or periodic optimization mode, without the possibility 

of real-time response for highly dynamic networks. Moreover, most of them consider 

the optimization parameters to be static, which reduces their capability in fluctuating 

environments. 

III.    System model and methodology 

This section details the proposed hybrid Fuzzy-PSO routing framework, 

including the network model, energy consumption model, trust and mobility models, 
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and the integrated optimization mechanism. For transparency and reproducibility, all 

models, parameters, and algorithms are described explicitly. 

III.i.  Networks and mobile model 
 

We consider a UAV-assisted WSN deployed over a two-dimensional area of 

size   500 m×500 m500m×500m.  The network consists of: NN sensor nodes (including 

UAVs) with random uniform initial placement.  A stationary sink/base station located 

at the center (250,250)(250,250). 

 UAVs move according to a random waypoint mobility model with speeds ranging 

from 55 to 20 m/s20m/s. Each node has a communication.  

Range between 5050 and 100 m100m. The MAC layer follows IEEE 802.15.4 

(CSMA/CA). Data packets are fixed at 512512 bytes. 

III.ii.  Total energy consumption 
 

The energy consumed by a sensor node is divided into four components: Transmission 

energy (Etx), Receiving energy (Erx), Processing energy (Eproc), and the Idle/sleep mode 

energy (Esleep), Energy for mobility (for UAVs) is Emobility , Energy for security 

operations (e.g., encryption/decryption) is the Esec. Let us define the energy 

consumption for a node that is located anywhere in the space, and it is transmitting k-

bit data over a distance d: 
   𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑡𝑥(𝑘, 𝑑) + 𝐸𝑟𝑥(𝑘) + 𝐸𝑝𝑟𝑜𝑐(𝑘) + 𝐸𝑠𝑙𝑒𝑒𝑝 + 𝐸𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐸𝑠𝑒𝑐                  (1) 

Where 

 𝐸𝑡𝑥(𝑘, 𝑑) = 𝑘. (𝐸𝑒𝑙𝑒𝑐 +∈𝑎𝑚𝑝. 𝑑𝛾)                           (2)   

where: Eelec: Energy per bit for transceiver electronics, ϵ amp: Amplifier energy factor, 

and γ is the path-loss exponent (2 ≤ γ ≤4). The Mobility Energy (for UAVs) is defined 

as : 

𝐸𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =
1

2
 . 𝜇. 𝑣2. 𝑡                                  (3)    

Where μ is the UAV mass (kg), v is the velocity (m/s), and the tis the time in motion 

(sec.). Finally, the Security Energy is defined as: 

𝐸𝑠𝑒𝑐 = 𝑘. 𝐸𝑒𝑛𝑐 + 𝑘. 𝐸𝑑𝑒𝑐.                              (4)    

Where the Eenc and Edec are the energy per bit for encryption/decryption, 

respectively 

III.iii.     Trust Model 

To mitigate malicious behavior, each node i maintains a trust score Ti for neighbor j, 

updated periodically: 

𝑇𝑖𝑗(𝑡 + 1) = 𝛼𝑇𝑖𝑗(𝑡) + (1 − 𝛼)
∑ 𝑇𝑟𝑢𝑠𝑡𝑖𝑘𝑃𝐷𝐹𝑖𝑘𝑘∈𝑁

∑ 𝑃𝐷𝐹𝐼𝐾𝑘∈𝑁𝑖

                                  (5) 

where: Trustik: direct trust from i to k, PDFik: packet delivery fraction, α=0.7: aging 

factor, Ni: set of neighbors of node i. Nodes with Ti<θtrust=0.5Ti are excluded from 

routing paths. 
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III.iv.    Fuzzy logic design  
 

The FLS dynamically adjusts PSO parameters based on real-time network conditions. 

The inputs and outputs are: 

Inputs (fuzzified with triangular membership functions): 

1. Energy Level: {Low, Medium, High} 

2. Network Congestion: {Low, Medium, High} 

3. Node Density: {Sparse, Moderate, Dense} 

4. Mobility Level: {Low, Medium, High} 

5. Threat Level: {Low, Medium, High} 

Outputs (for PSO tuning): 

1. Inertia Weight w 

2. Cognitive Coefficient Ccog 

3. Social Coefficient Csoc. 

III.iv.    Fuzzy-PSO Integration (FST-PSO) 

 Fuzzy-Tuned PSO Parameters: PSO is very sensitive to its parameters: inertia weight 

(w), Cognitive coefficient (C~cog~), and Social coefficient (C~soc~). In dynamically 

changing environments, as for WSNs, fixed parameter values are far from being 

optimal. Our system employs a Fuzzy Logic Controller (FLC) to tune these parameters 

at runtime, given the network's present state. The inputs fed to this FLC are: 

Current Energy Level: prevents low-energy nodes from being overburdened. 

Network Congestion: Sets the balance between exploration and exploitation 

according to the network congestion. 

Node Density: Adjust social behavior according to neighborhood size. 

Mobility Level: (For UAVs) Adapt to the rate of topological change. 

Security Threat Level: Increases cognitive action to find secure paths under an attack. 

A. Fuzzy-Tuned PSO Parameters 

PSO’s performance depends on several important parameters, which are called the 

inertia weight (w), Cognitive coefficient (Ccog), Social coefficient (Csoc), Velocity 

limits (Vmin, Vmax), respectively. These are dynamically adjusted using Fuzzy Logic 

(FL) with inputs (listed in table 1): Current energy level (Low, Medium, High), 

Network congestion (Low, Medium, High), the node density (Sparse, Moderate, 

Dense), Mobility level (Low, Medium, High) for UAV networks, and finally the 

Security threat level (Low, Medium, High). 
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Table 1: Fuzzy Rules for PSO Tuning 

Ener

gy 

Conge

stion 

Node 

Density 

Mobility Threat w Cco

g 
Cso

c 
Low High Dense High High ↓ ↑ ↓ 

Medi

um 

Mediu

m 

Moderat

e 

Medium Mediu

m 

→ → → 

High Low Sparse Low Low ↑ ↓ ↑ 

 

 Where (↑: Increase, ↓: Decrease, →: Maintain), the Membership Functions 

(Triangular LR Representation): For a fuzzy variable xx (e.g., energy level): 

     (6) 

Where a triplet (m, a,b) LR represents a triangular fuzzy number μ(x) shown in figure 

2, where m is the fuzzy number's mean value and α and β are its left and right boundary 

values, respectively 

 

Fig. 2. Energy consumption membership function. 

B. PSO-Tuned Fuzzy Rules:  

The main rules of PSO optimize the fuzzy rule base by first encoding fuzzy rules as 

particles, and second, evaluating fitness (e.g., energy efficiency, PDR). The last thing 

is to update rules iteratively. The main parameters of the PSO are the velocity/position 

update: For each particle i: 

  𝑣𝑖
𝑡+1 = 𝑤. 𝑣𝑖

𝑡 + 𝐶𝑐𝑜𝑔. 𝑟1. (𝑝𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) +  𝐶𝑠𝑜𝑐  . 𝑟2 . (𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡)              (7) 

And the position of the new particle is defined as: 

  𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                    (8) 

Where r1,r2 are random numbers ϵ [0,1]. pbest local best solution, and gbest is the global 

best solution. Now, defining the objective and the fitness function as: 
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  𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼. 𝑃𝐷𝑅 + 𝛽 .
1

𝐸𝑛𝑒𝑟𝑔𝑦𝑎𝑣𝑔
+ 𝛾.

1

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
+  𝛿 . 𝑇 +  𝜀 . 𝑆     (9)                                                                                                  

Where T: Trust score (0 to 1), S: Link stability (0 to 1), and the α,β,γ,δ,ϵα,β,γ,δ,ϵ: 

Weighting factors (sum to 1). 

C.   Security analysis: 

Essentially, the trust model for security can be derived as: 

  𝑇𝑖 =
∑ 𝑇𝑟𝑎𝑠𝑡𝑖𝑗𝑗∈𝑁𝑖

.𝑃𝐷𝐹𝑖𝑗

∑ 𝑃𝐷𝐹𝑖𝑗𝑗∈𝑁𝑖

                                   (10) 

Where Trust ij: Direct trust from node i to j, and Ni: Neighbours of node i 

Now, the Link Stability for Mobility is defined as follows: 

  𝑆𝑖𝑗 = 𝑒𝑥𝑝 (−𝜆 .  
𝑣𝑖𝑗

𝑑𝑖𝑗
)                                   (11) 

Where the Δvi: Relative velocity between nodes i and j, dj: Distance between nodes, 

and λ is the tuning parameter. 

IV.     Simulation setup  

Communication in the new system architecture requires a lot more power per 

node than computation and operations combined. The UAVs require high-capacity 

batteries for communication, but also for necessary operations such as flight and 

autonomous navigation. Performance factors examined are energy consumption, 

Quality of Service (QoS), and quality of user experience. The proposed trust model, 

validated with simulations, provides significant insights, such as the impact of drone 

speed on packet loss rates against non-cooperative UAVs. The correlation between the 

number of drones and total energy usage. The setup parameters are uncovered in Table 

2. The combined Optimization Algorithm (FST-PSO) is uncovered in Figure 3.  

Table 2: Simulation setup parameters. 

Category Parameters Values/Ranges 

Network Topology Deployment area 500m × 500m (Random 

uniform) 

 

Mobility Model 

Number of drones 50–300 

Drones speed  5-20 m/sec. 

Base station (sink) location Center (250m, 250m) 

 

Communication 

Transmission range 50m–100m 

Data packet size 512 bytes 

MAC protocol IEEE 802.15.4 (CSMA/CA) 

 

Energy Model 

Initial energy per node 2–5 Joules 

Eelec (Transceiver electronics) 50 nJ/bit 

ϵ amp (Amplifier energy) 10 pJ/bit/m² (γ=2) 
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Sleep mode energy 0.001 nJ/bit 

 

PSO Parameters 

Swarm size 20–50 particles 

Inertia weight (ww) Fuzzy-tuned (0.4–0.9) 

Cognitive (Ccog) / Social (Csoc) Fuzzy-tuned (1.0–2.5) 

Velocity bounds (Vmin, Vmax) ±10% of search space 

 

 

Fuzzy System 

Inputs Energy level, Congestion, Node 

density 

Outputs w, Ccog, Csoc 

Membership functions Triangular (LR) 

Defuzzification Centroid 

Security Model Encryption energy 0.1–0.5 nJ/bit 

Trust update interval 10–60 seconds 

Link Stability λ 0.1–1.0 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Flowchart of PSO tuning fuzzy rule 
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Where the main steps for the hybrid algorithm are described as follows: 

1. Initialize PSO particles with random fuzzy rules. 

2. For each iteration: 

• Fuzzy-Tune PSO parameters based on WSN state (energy, 

congestion, mobility, threat). 

• PSO updates fuzzy rules using velocity/position equations. 

• Evaluate fitness of new rules (PDR, energy, latency, trust, stability). 

• Update pbestt and gbest, and then adjust weights (α, β,γ, δ,ϵ,α) 

dynamically. 

• Update fuzzy rules based on mobility and security. 

3. Terminate when the convergence criteria are met. 

V.      Simulation Results 

To validate the proposed Fuzzy-PSO Hybrid Routing (FPSO) model, 

extensive simulations were conducted in MATLAB and compared with state-of-

the-art protocols: SYSM [XIX] (fuzzy-based) and SYSM [VII] (trust-based). The 

evaluation focused on: Energy Efficiency, Packet Delivery Ratio (PDR), Latency 

& Scalability, Security & Mobility Resilience. First, the simulation results for the 

first parts is shown in Figure 4. 

 

Fig. 4. Energy consumption vs. network size 

The key findings from Figure 4 is listing as follows: 

1. Energy Consumption 

FPSO reduced energy consumption by 48% compared to [XIX] and 52% vs. [VII]. 

Gains stem from dynamic sleep scheduling (idle nodes consume 0.001 nJ/bit). PSO-

optimized cluster heads minimizing multi-hop transmissions. 

2. Packet Delivery Ratio (PDR) 

Achieved 94.2% PDR under high mobility (30 nodes moving at 15 m/s), outperforming 

[XIX] (82.6%) and [VII] (78.3%). Fuzzy rules adapted to link stability (SijSij) reduced 

packet drops by 22%. 
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3. Latency & Scalability 

38.5  msec. avg. latency (17% higher than [10] due to trust checks) but 53% lower 

control overhead (Table 3). Supported 250+ UAVs (vs. 150 in [VII]) with linear 

overhead growth. 

4. Security & Trust 

Detected 95% of malicious nodes (false positives < 5%) using dynamic trust scores    

(Ti). Encryption overhead (Esec) added only 0.1 n J/bit per packet. 

Table 3: Performance Comparison of Routing Schemes 

1) Metric 2) FPSO 

(Proposed) 

3) SYSM 

[XIX] 

4) SYSM 

[VII] 

5) Improvement 

6) Energy/Node 

(Joules) 

7) 0.18 ± 

0.02 

8) 0.27 ± 

0.03 

9) 0.31 ± 

0.04 

10) ↓ 33% vs. 

[VII] 

11) PDR (%) 12) 94.2 

± 1.5 

13) 82.6 

± 2.1 

14) 78.3 

± 3.0 

15) ↑ 15% vs. 

[X] 

16) Latency 

(ms) 

17) 38.5 

± 3.1 

18) 32.7 

± 2.8 

19) 29.4 

± 2.5 

20) △ Trade-

off for trust 

21) Max. 

UAVs Supported 

22) 250 23) 180 24) 150 25) ↑ 39% vs. 

[XIII] 

The throughput versus mobility is shown in Figure 5 

 

Fig. 5. Throughput vs mobility 



 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026)  pp 136-149 

Thanaa Hasan Yousif et al. 

 
146 

 

The main key to the innovations is the dynamic protocol adaptation, which balances 

processing demands with mobility changes. Trend Matching: FPSO shows gentle 

throughput degradation (28.4 Mbps → 25 Mbps) as speed increases, thanks to adaptive 

fuzzy-PSO clustering. SYSM [XIX] and [VII] show steeper drops, especially [VII] 

(17.2 Mbps → 12 Mbps). The Error Bars: Added to simulate real-world variability 

(±1.2–1.8 Mbps). Annotations: Highlights FPSO's advantage in high mobility. Points 

out SYSM [VII]'s limitations 

VI.     Conclusions and future works: 

The overall results here show that the hybrid FPSO protocol achieves its most 

fundamental objective: the holistic balancing of many, often conflicting, QoS metrics. 

A broadly adaptive and efficient routing strategy has evolved from the symbiotic 

relationship between the Fuzzy System and the PSO; each augments the other. This 

modest latency increase is a strategic and worthwhile compromise, considering the 

substantial gains in energy efficiency, delivery reliability, network lifetime, and 

security. 

The new Fuzzy-PSO Hybrid (FPSO) routing protocol offered significant improvement 

in energy efficiency, scalability, and security in WSNs supported by UAVs. Key 

contributions are: Energy Optimization: Dynamic PSO tuning reduced energy by 48% 

via sleep scheduling and cluster-head rotation. QoS-Aware Routing: Fuzzy logic 

addressed mobility (Sij ) and attacks (Ti ), achieving 94.2% PDR. Another thing, the 

scalability is a Linear growth in control overhead, which made it possible to work with 

250+ UAVs, enhancing benchmarks by 39%. There is a trade-off between the 

moderately higher latency (38.5 ms) because of trust verification, offset by 95% 

malicious node detection. Encryption added minimal overhead (0.1 nJ/bit), ensuring 

secure communication. 

The Future Works are Quantum Integration: Explore quantum-resistant cryptography 

to thwart future attacks. Hardware Validation: Port FPSO to UAV testbed platforms 

(e.g., Crazyflie drones) for real-time latency testing. Multi-Objective PSO: Extend to 

optimize Pareto fronts for energy, latency, and security simultaneously. Impact: FPSO 

provides a flexible, secure, and energy-efficient platform for future IoT deployments, 

from smart cities to disaster recovery. 
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