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Abstract: 

Modern Industrial Control Systems (ICS) and Supervisory Control and Data 

Acquisition (SCADA) networks face a growing class of logic-layer attacks in which 

adversaries silently manipulate configuration or project files instead of deploying tra-

ditional malware. Existing defences, such as network intrusion detection systems and 

machine-learning-based anomaly detectors, struggle to observe these pre-deployment 

logic changes and often incur high operational complexity. This paper presents a light-

weight, host-based framework that uses YARA, a rule-based pattern-matching engine, 

to perform static inspection of XML configuration files generated by SCADA engineer-

ing tools. The proposed system is implemented on a Windows 10 engineering work-

station using ModbusPal as a Modbus TCP simulator, Python for file monitoring and 

GUI development, and YARA CLI/Python bindings for rule execution. Custom YARA 

rules are crafted to detect unauthorized Modbus function code 5 (Write Single Coil) 

operations targeting critical coil addresses, modelling malicious logic injections such 

as covert actuator activations. In a controlled lab environment, using a variety of Mod-

busPal project files, a combination of benign (no infiltration) and tampered project 
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files, as well as our detection framework, achieved less than 200 milliseconds of latency 

for detecting true positives (and 0 false positives and 0 false negatives) for the defined 

ruleset and under a negligible resource overhead. 
 

These findings indicate that static logic validation at the host-level would fulfil an ef-

fective integrity pre-deployment check for PLC logic in addition to current network-

based and behaviour-based ICS security mechanisms, without requiring modification 

of the installed PLC hardware and network protocol. 

Keywords: SCADA Security, Industrial Control Systems (ICS), YARA, Logic, Mod-

bus, TCP, Host-Based Intrusion Detection, Static Analysis, OT Cybersecurity 

I.    Introduction 

Manufacturing, energy, and other infrastructures today require Industrial Con-

trol Systems (ICS). The core of an ICS is a Supervisory Control and Data Acquisition 

(SCADA) system that  enables people to see the processes happening in their manu-

facturing/utility environment, gather data on it, and remotely control various devices 

(pumps, valves, actuators, etc.) involved in the industrial processes. Historically, 

SCADA systems were built on proprietary protocols and hardware and were therefore 

isolated from cyberattacks due to being air-gapped (not connected to the Internet). In-

dustry 4.0 has brought about the connection of IT and OT industries, allowing SCADA 

systems to become more vulnerable to cyber threats (from within the OT environment 

and external attackers). 

Logic manipulation attacks are not like typical IT attacks, where someone seeks to gain 

access to or control over hardware or software by attacking either system binaries or 

network traffic. Instead, logic manipulation attacks alter the control layer of a system - 

i.e., the configuration layer (modification of the program or project files used to control 

a PLC and the control logic used by the PLC), and/or XML-based descriptors associ-

ated with that logic, causing them to function as desired by the attacker and not as 

intended by the designer. Recent threat intelligence reports (e.g., Dragos's assessment 

[IV] of the INCONTROLLER (PIPEDREAM) toolkit and FrostyGoop malware) pro-

vide evidence demonstrating that malicious actors can embed logic-layer payloads di-

rectly into engineering project files to evade traditional cyber defences, such as fire-

walls and network intrusion detection systems. 

Although much of the initial work, including the rule sets published by ICS-CERT for 

BlackEnergy, focuses on detecting executable code, limited effort has been put forth to 

develop signature-based tools to verify the integrity and authenticity of static logic in 

configuration files for industrial control systems (ICS). Our work expands upon 

existing research to provide new uses for YARA beyond signatures for executables by 

extending its applicability to the logic layer of configuration files within the ICS world. 
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Fig. 1. Architectural Diagram 
 

This study provides a means to use YARA as a lightweight detection mechanism to 

statically analyze the logic within XML files created by SCADA engineering tools and 

simulators, such as ModbusPal. We validate the proposed approach by constructing 

specific attack scenarios in a laboratory setting using ModbusPal to emulate control of 

PLCs, writing custom YARA rules to identify malicious payloads, and validating 

detection results through the use of both benign and malicious configuration files. 

Overall, the final project that resulted from this research has produced a system that is 

fast, effective, and easily incorporated into an organization’s normal operating 

procedures; this product will significantly enhance organizations' overall cybersecurity 

posture in ICS/SCADA environments. 

II.      Literature Review 

As a result of the increased threats of external cyberattacks on Industrial Con-

trol Systems (ICS) and Supervisory Control and Data Acquisition (SCADA) systems 

in recent years, there has been increased interest in the security of these systems. Tra-

ditional security measures rely heavily on network-layer security tools (Zeek, Snort, 

Suricata) for detecting anomalies in network traffic based on a signature-based method 

of deep packet inspection with a few known limitations. The reliance on these types of 

tools has resulted in significant blind spots caused by encryption, lack of visibility into 

host-level events, and segmentation of networks [VIII], [V]. Researchers have recently 

started to use machine learning (ML) techniques as a way to address these blind spots. 

For example, convolutional neural networks (CNNs) have been applied to detect anom-

alous patterns of Modbus TCP traffic [XIV], and researchers have developed the 

SCAPHY framework to correlate physical traces of malicious activity with significant 

improvements in the accuracy of detecting anomalies. However, most ML-based solu-

tions still suffer from high false-positive rates and require frequent retraining, making 

them impractical for most ICS systems in continuously changing environments [XI], 

[XIV]. 

ICS malware is on the rise. Some recent examples include INCONTROLLER (or 

PIPEDREAM) and FrostyGoop. These types of malware do not just infect computers; 

they are embedded into engineering project files (or con-figuration file) and therefore 

will bypass traditional network security systems [VI] [VII]. In addition, a recent study 

performed by Forescout Labs showed how an attacker could use an unauthorized coil 
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write operation over Modbus to gain access to critical physical assets without alerting 

a traditional network intrusion detection system [X]. The integrity of the developed 

PLC (Programmable Logic Controller) logic should be ensured. However, although 

static host-level analysis may provide some level of coverage, the full capabilities that 

these PLC development environments (for example, Velocio's vBuilder or Rockwell's 

Studio 5000) can offer are still being missed. The project files that are generated from 

PLC development environments (i.e., vlp, l5x, .xml) contain comprehensive executable 

logic, and if altered by an insider or corrupted PC, these files could allow stealthy mal-

ware, like LogicLocker [XXI], to be installed. 
 

In recent years, many organizations have developed tools that make use of YARA to 

identify and analyse the malware associated with known ICS malware families: For 

example, ICS-CERT has produced YARA rules that identify the malware associated 

with BlackEnergy and Havex. However, these tools were not intended for application 

to PLC project logic files and only provided a foundation for subsequent efforts to make 

use of YARA Rules for Static Logic Verification of XML-Based Configuration Files 

[XII], [XIII]. These new efforts have built upon the initial work done by the authors 

from Nguyen et al. [XX], who proposed the use of a lightweight hash tree for verifying 

the integrity of PLC Files. Furthermore, although both ICS-Rank and SCADAhunt pro-

vide a system-wide scoring system for ICS risk, as well as the identification of anom-

alies, neither framework has produced a lightweight, pre-deployment static logic vali-

dation tool [II], [I]. 

III.     Threat Model (SCADA Logic Injection) 
 

This paper adopts a SCADA-specific adversarial threat model to clearly define 

attacker capability, injection scope, and the class of malicious logic injection events 

targeted by the proposed hybrid YARA signatures. The objective of the adversary is to 

introduce unauthorized logic into engineering configuration artifacts such that critical 

Modbus coil activation is executed without satisfying expected authorization condi-

tions, resulting in unsafe actuator behaviour prior to field deployment. 
 

A. Attacker Access Vectors. 
 

We assume the attacker can reach the SCADA project files through one or more realis-

tic access paths: (i) compromise of the engineering workstation (e.g., malware or re-

mote access) enabling unauthorized edits to ModbusPal XML project files, (ii) insider 

modification where a trusted user directly inserts malicious FC05 write-coil instruc-

tions, (iii) supply-chain tampering where the delivered project file is modified before 

reaching the site, and (iv) file delivery mechanisms such as USB drop or email attach-

ment where a compromised XML file is placed into the monitored watch directory. 

B. Injection Phase. 
 

The scope of this work focuses on offline (pre-deployment) logic injection, where ma-

licious coil-write directives are embedded into stored configuration artifacts before be-

ing uploaded to operational PLCs. Online runtime modification (e.g., altering PLC 
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execution during live operations) is considered out of scope for this framework because 

the proposed scanner performs static inspection of files at rest. 
 

C. Targeted Logic Types. 
 

SCADA logic injection can target multiple layers. In this work, the detection focus is 

on the engineering tool project XML, specifically ModbusPal XML configuration files 

used during simulation and pre-deployment workflows. Attacks targeting PLC program 

logic (ladder logic, Structured Text, Function Block Diagrams) are considered a future 

extension, while HMI scripts and supervisory logic are treated as out-of-scope or future 

scope due to differing artifact formats and execution semantics. 
 

D. Trigger Mechanisms. 
 

The adversarial payload may be designed to activate under different triggering condi-

tions, including time-triggered, sensor-triggered, manual-triggered, or rare-event-trig-

gered conditions. While the proposed method does not execute or simulate runtime 

state transitions, the presence of an embedded unauthorized coil-write directive to crit-

ical coil addresses is treated as a high-risk pre-deployment integrity violation independ-

ent of its intended trigger condition. 
 

E. Mapping to Detection Coverage. 
 

Accordingly, the hybrid YARA engine is designed to detect offline XML-based coil 

write injection patterns, particularly unauthorized Modbus FC05 write-single-coil op-

erations targeting critical coil addresses (e.g., 40010/40011 in the evaluation setup). 

The approach does not fully detect runtime stealth logic that may be encoded inside 

PLC binaries or executed through live network-triggered manipulation without file 

modification. Therefore, the framework is positioned as a deterministic pre-deploy-

ment integrity gate for engineering configuration artifacts, complementing existing 

runtime monitoring approaches. 
 

IV.    Operational Methodology 

A. Environment & Simulation Setup 

Fig. 2. Environment & Simulation Setup 
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The Environment and Simulation Setup consists of Modbus Coil Data Acquisition 

and a simulated industrial control system (ICS) environment configured to evaluate 

the proposed YARA-based static detection approach for Supervisory Control and 

Data Acquisition (SCADA) logic manipulation. The laboratory environment was 

designed to closely emulate a typical engineering workstation used by control en-

gineers during pre-deployment interactions with field Programmable Logic Con-

trollers (PLCs). To ensure setup repeatability and mitigate compatibility issues, the 

test environment was established on a Windows 10 operating system with a stable 

and widely adopted ICS software stack, including the Java Runtime Environment 

(JRE) and a Python interpreter configured with YARA Command Line Interface 

(CLI) tools and Python bindings. PLC behaviour was simulated using ModbusPal 

version 1.6c, a Java-based Modbus TCP slave emulator capable of performing 

read/write operations on key memory elements such as coils, discrete inputs, input 

registers, and holding registers. Coil reading and single-coil write operations can 

be simulated using function codes FC05 and FC01. By providing realistic control 

functionality (including reading binary coil states and sending commands to turn 

on motors/valves to the PLC), ModbusPal allows users to create XML project files 

and simulate attack scenarios. To do this, malicious programming instructions (i.e., 

logic instructions) were added to the XML project file (e.g., <function id = "5" 

address = "40010" value = "1"/> and <function id = "5" address = "40011" value = 

"1"/>). These malicious programming instructions indicate which coils to activate 

when a PLC program is running. To simulate a threat, a standard XML project file 

was created with ModbusPal's graphical user interface (GUI). A threat was simu-

lated by inserting malicious programming instructions (to represent an insider at-

tack or malware) using a text editor and then storing modified XML project files 

in a monitored project directory for comparison to the original XML project file to 

assess the ability of a static detection mechanism to identify pre-deployment pro-

gramming changes. 

Fig. 3. Logic-Layer Threat Modelling 
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B. Logic-Layer Threat Modelling 

Using an established threat model for Modbus-based control systems, we create a log-

ical representation of how an unauthorized write on a Modbus coil would violate the 

established logical controls and energize a Modbus coil. For example, if there is an 

unauthorized write to coil i of W(Ci), then the output state of the coil Oi, which indicates 

its current state (ON or OFF), will be: Oi = W(Ci) ∧ ¬Ai, which implies that Ai is false. 

This means that the coil was energized when W(Ci) was received, but since Ai is false, 

W(Ci) was not a valid authorized write according to the logical controls prescribed. In 

a properly authorized configuration, an authorized write must exist before the coil can 

be energized; therefore, we represent an authorized write as Oi = W(Ci) ∧ Ai. Con-

versely, when a bad actor injects malicious logic that modifies the Modbus configura-

tion (for example, by including ModbusPal-generated XMLs that include coil write 

requests), the bad actor can write to coil i directly without going through the controls 

and checks associated with the predefined logic used to validate the write. Therefore, 

W(Ci) = 1 will be equal to one, but Ai will be equal to zero, and the state of the coil will 

be Oi = 1 ∧ ¬0 = 1, and thus, the coil may be energized. 
 

This behaviour can be interpreted in operational terms by considering, for example, 

coil 40010 controlling a chemical injection pump, which under normal circumstances 

should only be activated when a low-tank-level condition is true, such that Ai reflects 

the state of the Tank_Low_Level_Sensor. If an injected XML directive, such as a write-

single-coil instruction targeting address 40010 with value 1, is embedded into the con-

figuration file prior to deployment, the authorization logic Ai is effectively bypassed, 

and the pump becomes unconditionally energized, increasing the risk of tank overflow, 

equipment damage, or process disruption. Such pre-deployment manipulations may 

evade traditional intrusion detection systems that monitor network traffic, because the 

malicious behaviour is encoded at the engineering configuration layer rather than in 

live communications. Within this Boolean threat model, any configuration path satis-

fying W(Ci) = 1 ∧ Ai = 0 constitutes a logic violation and is treated as an alert condition, 

providing a formal basis for identifying malicious logic paths in PLC projects and mo-

tivating the use of static rule-based scanners, such as YARA, to detect unauthorized 

instructions prior to deployment. The Boolean abstraction is amenable to extension into 

more expressive representations, including graph-based state models and integration 

with formal verification frameworks for large-scale PLC programs, and can be system-

atically translated into rule-matching patterns (for example, string or regular-expres-

sion signatures) that encode conditions equivalent to W(Ci) = 1 in the absence of cor-

responding contextual logic Ai, thereby operationalizing logic-violation detection 

within static analysis pipelines. 
 



 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026)  pp 41-58 

Gulab Kumar Mondal et al. 

 

 

48 

 

V.      Logic Detection using YARA 

Fig. 4. Architectural Diagram 

YARA is a powerful pattern-matching engine widely adopted in malware detection, 

enabling structured inspection of file content, including XML, JSON, and binary arti-

facts. In this research, YARA is adapted to detect logic-layer threats in SCADA envi-

ronments, with a focus on unauthorized write operations within Modbus configuration 

files that define PLC and field device behaviour. To ensure clarity and responsible dis-

closure, full production rule source code is not included in this paper; instead, the com-

plete, evaluated rule set is made available via an open-source repository for qualified 

practitioners and researchers.  
 

A. Detection Objective 
 

The main goal of the detection system is to identify static logic changes made to PLC 

projects or configuration files that result in unauthorized activation of coils. In a prac-

tical attack scenario, these types of changes can be used to activate relays, pumps, or 

valves at times when they are not supposed to be activated and circumvent the normal 

operation sequence of the process being controlled, which leads to unsafe physical con-

ditions. This method is designed to verify the integrity of static logic before uploading 

it to the field devices; therefore, it focuses on analysing the configuration files before 

any modification. 
 

B. Logical Semantics 
 

The planned structure of this rule is based on three detection principles set out in the 

configuration file. They are: 

▪ The presence of a payload marker that has been determined to be relevant (for 

example, the specific XML comment that indicates the possibility of the presence of a 

malicious block). 
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▪ The writing of a coil to address 40010. 

▪ The writing of a coil to address 40011. 

The detection conditions correspond to: Match = 𝑎 ∧ 𝑏 ∧ 𝑐. This Boolean structure re-

quires the presence of both a contextual marker and two critical coil writes to be present 

in order for the rule to be satisfied, which provides a greater level of precision in that 

it limits the number of false positives (innocent) engineering logic matches. 
 

C. Security Implications 
 

The ability to identify malicious code before deploying it onto the engineering work-

station/target system provides a powerful security benefit to any industrial control sys-

tem operator. Unlike network intrusion detection systems that wait until malicious traf-

fic has already been inserted into the target network through an attack vector such as 

packet inspection, this method of examining stored files before they are installed allows 

you to quickly determine if a malicious change to a file exists in the engineering work-

station, perform an offline code review, and validate CI/CD pipelines in your industrial 

control system environment for correctness. You can also use this solution in scenarios 

where your network is air gapped or where access to runtime telemetry is limited or 

unavailable. 
 

D. Rule Generalization Techniques 
 

The framework uses a set of generalized rule-design methods that will enable flexible 

and resilient rule sets while removing most of the reliance on strictly string-related 

matches as initial rules. In the previous system, the use of strict matching made it quite 

easy for attackers to make small changes in the format of the data that could cause the 

model to fail to effectively detect or match against those patterns. This revision will 

employ flexible, structure-aware pattern constructions to identify malicious behaviour 

through the use of XML document structure, regardless of how the document has been 

configured. Specifically, the patterns are created to allow for varying levels of white 

space and tags in the data. In this way, write-coil operations may still be detected and 

matched against even if the formatting of the data has been altered. 
 

The rules utilized to achieve the syntactic flexibility of Modbus write operations allow 

for common semantic abstractions to be made based upon commonly used patterns, 

such as Function Code 5, Coil Address Range in the 40xxx range, and Forced Assign-

ment of Values, rather than requiring literal text. These semantic abstractions allow for 

the identification of unauthorised write operations to be performed on devices imple-

menting Modbus regardless of the Vendor(s) who are supplying the devices via Vendor-

Specific Schemas, Encoding Options, and/or Project File Template(s). Furthermore, 

principles of fuzzy matching have been included in order to provide the static detection 

engine with added resilience to common obfuscation techniques used to conceal mali-

cious intent, including embedded comments, attribute shuffling, redundant metadata, 

and non-standard spacing. By using the generalisation techniques of fuzzy matching, 

the static detection engine becomes vastly more resistant to evasion attempts and 
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maintains the same level of detection accuracy, regardless of the platform used by the 

vendor who sold the SCADA project file. 

The complete, production-tested rule set is available at our open-source repository: 

https://github.com/GulabMondal/YARA-ICS-Logic-Scanner 

VI.    Results and Discussion 
 

The proposed static detection framework was evaluated using a real-time test 

environment that was developed using Python, PyQt5, and the Watchdog library to 

create a graphical YARA dashboard. This YARA Dashboard continuously monitors a 

directory that has SCADA configuration XML files stored in it for the detection of 

malicious logic being injected into those files. Once a match is detected with YARA 

rules, a log of that detection is shown in the GUI immediately. 
 

A. Live Detection Behaviour and System Stability 
 

 

Fig. 5. YARA Detection Engine 
 

First, the proposed framework was evaluated in real time using the graphical YARA 

dashboard in an evaluation environment. The monitoring engine observed a project 

directory containing SCADA configuration files in XML format and triggered scans 

when any such file was created or modified. Tests performed with a deliberately tam-

pered configuration file, plc_project.xml, that contained unauthorized Modbus 

write_coil instructions included immediate detection upon save and a corresponding 

alert entry for each, identifying the file path and matched rule label. 
 

This proves that the host-based engine will correctly trigger on logic-layer changes 

once they are implemented, well before deployment to field devices. From a system 

stability perspective, the GUI continued to report an active monitoring status ("Status: 

Monitoring…") during extensive test sessions, indicating both the watchdog and YARA 

scanning threads remained responsive. Detection events were logged persistently and 

could be exported for forensic review, supporting post-incident analysis independent 

of runtime operation. There were no crashes, thread deadlocks, or interface freezes en-

countered during continuous monitoring and repeated file manipulations, suggesting 

the implementation is sufficiently stable for engineering workstation use. 

 

 

 

https://github.com/GulabMondal/YARA-ICS-Logic-Scanner


 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026)  pp 41-58 

Gulab Kumar Mondal et al. 

 

 

51 

 

B. Quantitative Detection Metrics 
 

The quantitative focus was on latency, accuracy, and overhead for detection. Latency 

from when a configuration file is modified to when a matching alert is created is 

consistently less than 200 ms, even after multiple modifications have been made to the 

configuration file. The framework's evaluation data set included both benign XML 

Project Files as well as many different types of altered files (single coil injected, multi-

coil injected, address manipulated, and obfuscated logic). The framework produced 

zero (0) false-positives and zero (0) false-negatives over the coverage of specified 

rules. 

Table 1: YARA Threat Detection Result Table                                        

Metric Observed Result 

Detection Speed < 200 ms 

False Positives 0 

False Negatives 0 (within defined rule coverage) 

Rule Match Specificity High 

Integration Overhead Minimal (pure Python + YARA API) 

GUI Responsiveness Real-time logging via PyQt5 

This result indicates the high degree of specificity in the design process for 

creating the Boolean rules, as well as the successful use of structure-aware 

pattern matching to minimise the chances of producing a false positive from a 

benign match. 

C. Visual Performance Analysis 

Figures 6a and 6b illustrate the runtime behaviour through a variety of means. 

Figure 6a shows that all XML project file unauthorised write_coil events acti-

vated rules immediately, and the timestamps of alerts were nearly matched to 

the events in the underlying file system. Figure 6b shows that the latency dis-

tribution over several identified API calls revealed a tight cluster of detected 

times, with very little variation. The low latency variance indicates a very ro-

bust performance in the environment, even in the presence of other background 

operations and GUI redrawing. 
 

Fig. 6a. Detection Accuracy Fig. 6b. Detection Latency Distribution 
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Bar plots comparing classification outcomes were used to demonstrate a 

perfect separation of benign from malicious samples within the data set, and 

that misclassifications did not occur using the current set of rules. Charting a 

usage of CPU and Memory demonstrated the resource requirements for 

continuous intensive monitoring runs and showed minimal, consistent resource 

usage; therefore, any workstation meeting the specifications for information 

technology and operational technology will be able to utilize this framework 

without being dedicated to utilizing a hardware acceleration unit for 

monitoring purposes. 

 

D. Comparative Evaluation with Other Detection Approaches 

To contextualize the proposed method, results were compared against common 

ICS/SCADA detection approaches. 

Table 2: YARA Comparison with different detection Framework 

Detection 

Method 
Pros Cons 

Applicability 

to ICS 

YARA 

(Static Scan) 

Lightweight, host-

level, pre-deploy-

ment, no runtime 

overhead 

Requires ongoing 

rule maintenance 

High (ideal for 

config file 

scanning) 

Snort/Suri-

cata (NIDS) 

Real-time packet 

monitoring, proto-

col-aware 

Cannot detect 

logic-level tam-

pering 

Medium (net-

work-limited) 

ML-Based 

Anomaly 

IDS 

Adaptive, zero-day 

detection potential 

Requires labelled 

data, prone to 

false positives 

Medium (com-

plex in OT) 

Signature-

based Anti-

virus 

Widely deployed, 

simple interface 

Ineffective for 

ICS file formats 

Low (designed 

for IT) 

 

NIDS provide protocol-aware, real-time packet inspection, but inherently lack visibil-

ity into offline configuration files and pre-deployment logic changes. The comparison 

Fig. 7a. Memory Utilization Fig. 7b. CPU Utilization 
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underscores that YARA excels at the logic-layer, at-rest configuration inspection with 

negligible runtime overhead. 
 

E. Evaluation under Representative Attack Scenarios 

▪ Direct Injection / Baseline Attacks 
 

The evaluation of the detection framework also involved testing by using three types 

of realistic attack scenarios to assess how well it functions under different attack meth-

ods. First was an attack in which an authenticated engineer account made unauthorized 

modifications to an XML project file by adding coil write operations to some signifi-

cant addresses. The YARA rule set immediately identified this activity and flagged it 

as a possible malicious action. The next scenario involved maliciously dropping a USB 

device onto an unsuspecting user’s computer and copying a compromised configura-

tion file from the device to the suspected user's monitored directory. The time of copy-

ing the file into the user's directory caused the detection engine to execute a scan. 

Thirdly, there was an attack where a malicious project was emailed to the target user 

and was stored in the watch folder. The detection engine identified the creation of this 

file upon creation. Overall, the detection framework effectively detected attempted 

modifications to the project's logic before execution across each of the three attack 

types. 

▪ Adversarial Evasion Testing (Stealthy Logic Injection) 
 

The initial evaluation focused on detecting direct and observable malicious coil-write 

injections in the ModbusPal XML project files. However, real-world adversaries may 

attempt to evade signature-based scanners by inserting minimal payloads, hiding the 

malicious logic inside rare-event conditions, or mutating the XML structure to avoid 

strict literal matching. Therefore, we extended the dataset with adaptive and stealthy 

attack variants to assess the robustness of the hybrid YARA rules against evasion at-

tempts. 

• Attack A (Low-footprint injection): The adversary injects only a single FC05 

coil-write instruction targeting a critical actuator address (e.g., coil 40010) with 

minimal file modification, such as <function id="5" address="40010" value="1"/>. 

This represents a stealthy “one-shot” forced activation attempt designed to blend 

into normal engineering edits. 

• Attack B (Rare-event trigger simulation): The malicious coil-write logic is pre-

sent in the XML configuration but designed to activate only under unusual condi-

tions (e.g., rare operational triggers or delayed execution blocks). This was simu-

lated by inserting the write instruction in a rarely used logical block or marking it 

as an inactive/disabled test step, reflecting realistic attacker behaviour aimed at by-

passing routine engineering review. 

• Attack C (Obfuscation/mutation): To emulate evasion through minor syntactic 

modifications, we generated adversarial XML mutations such as attribute reorder-

ing, insertion of harmless metadata/tags, addition of comments, and formatting 

noise (variable spacing and tag rearrangement). These manipulations preserve the 
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malicious coil-write behaviour while attempting to defeat strict string-based match-

ing. 

“We evaluated adversarial modified project files, including attribute shuffling, 

added benign metadata, formatting noise, and reduced payload footprint. The gen-

eralized structure-aware rules-maintained detection under common mutation pat-

terns, while purely literal signatures were more fragile.” 

False-Negative Discussion. Signature-based approaches can be evaded if the in-

jected logic does not contain detectable coil-write patterns or if the payload uses 

alternative function codes or indirect activation chains. Therefore, the framework is 

best positioned as a deterministic integrity gate rather than a complete substitute for 

anomaly-based detection. 
 

F. Deployment and Integration Considerations 
 

According to the experimental results, the framework can be utilized during multiple 

phases of the ICS life cycle. The framework can be used as a monitoring service in the 

background of engineering workstations that run ModbusPal (a tool commonly used 

for testing and prototyping) and vBuilder and/or vendor-specific Integrated Develop-

ment Environments (IDEs). Additionally, within CI/CD pipelines that support indus-

trial automation, the engine can be called on during an automated build, testing, or 

signing phase in a CI/CD process. Lastly, for digital forensics and incident response 

labs, the rule set allows for rapid assessment of collected project files by allowing the 

same rule set to be utilised when triaging collected project files. 
 

G. Rule Expansion and Threat Coverage 
 

After evaluating a set of original string-based signatures, we discovered there was an 

increased risk for evasion through simple changes to the syntax of the string. At the 

same time, we have found that the use of Generalized Rules (in contrast to the original 

string-based signatures) to detect the malicious use of Modbus instructions results in 

better performance due primarily to the ability to define core semantic characteristics 

and use them in conjunction with regular expressions and syntax-aware patterns. The 

core semantic characteristics (including the function code (FC5), coil addresses located 

in the critical range, and value assignation) helped us create a set of rules that correctly 

detected unauthorized execution of Modbus instructions regardless of the vendor's for-

mat used. 
 

H. Threat Taxonomy, Limitations, and Compliance Implications 
 

The experimental campaign confirms the detection of logic bombs, back-doors, unau-

thorized state triggers, and hard-coded command injections. Limitations include XML 

obfuscation risks, which have been addressed with proposed countermeasures such as 

XML normalization and tree-based hashing. The demonstrated pre-deployment integ-

rity checks align with the IEC 62443-4-1 and NIST SP 800-82 guidance for secure 

development life cycles. 
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I. False-Positive Risk Under Legitimate Logic Changes 
 

SCADA engineering configuration files are routinely modified during normal plant op-

erations due to maintenance, seasonal tuning, sensor upgrades, and emergency re-

sponse actions. Therefore, not every Modbus Function Code 5 (FC05: Write Single 

Coil) occurrence should be automatically interpreted as malicious logic injection. To 

validate that the proposed hybrid YARA-based scanner does not introduce alarm fa-

tigue in real deployments, we evaluated the framework against a controlled “benign 

change” dataset representing legitimate logic evolution in ModbusPal XML project 

files. These benign updates included parameter tuning, coil remapping due to mainte-

nance, addition of new write operations for upgraded field sensors, formatting-only 

edits (whitespace and XML tag reordering), and temporary override-type logic edits 

performed under controlled conditions. 

“We simulated legitimate engineering updates by modifying ModbusPal XML project 

files under maintenance-like conditions such as parameter tuning, coil remapping, and 

adding additional coil write instructions in a controlled manner.” 

Table 3: Observed false-positive behaviour for the benign dataset. 

Scenario Type No. of Files 
Alerts 

Triggered 
FP Rate 

Normal tuning updates 10 0 0% 

Emergency bypass 5 0/1 0–20% 

Address remapping 8 0 0% 

Formatting-only 

changes 
8 0 0% 

 

These results indicate that routine engineering changes such as formatting edits, 

maintenance-driven address updates, and non-critical logic adjustments do not produce 

alerts under the current hybrid YARA ruleset, supporting the operational feasibility of 

the proposed approach in dynamic SCADA environments. 
 

J. Operational Mitigation: Whitelisting + Authorized-Change Validation 
 

To further prevent operational disruption in real deployments, the scanner can be de-

ployed with simple contextual controls. First, an approved coil-address whitelist can 

be applied so that FC05 operations are flagged only when they target critical coils (e.g., 

40010/40011 in the evaluation setup). Second, an authorized engineering change win-

dow policy can be used so that modifications during approved maintenance periods are 

logged for review rather than generating high-severity alarms. Third, file integrity ap-

proval can be enforced by maintaining a hash-based baseline of approved XML project 

files, ensuring that only expected and authorized modifications are accepted for de-

ployment. This strengthens the pre-deployment integrity validation goal of the frame-

work while keeping the implementation lightweight and practical for continuous 

SCADA engineering workflows. 
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VII.    Conclusion 
 

This paper describes a lightweight, host-based approach to using YARA for the 

static identification of logic manipulation attacks that target SCADA configuration 

files. This addresses one of the most important shortcomings of existing methods for 

securing industrial control systems (ICS). 
 

Using controlled experimentation with XML project files generated by ModbusPal on 

a Windows-based engineering workstation, the proposed system was able to achieve a 

detection time of less than 200ms, with no false positives or false negatives across the 

15 tested scenarios and negligible resource consumption, demonstrating the potential 

of the system to facilitate pre-execution integrity validation. 
 

In contrast to traditional IDS solutions that require significant computer resources to 

process, such as Snort/Suricata, or machine learning-based approaches that require 

large datasets for model training, YARA is uniquely capable of providing deterministic 

results with respect to already-admitted Modbus coil writing attacks, feedback on mod-

ified files, and the capacity for complete functionality in a disconnected (air-gapped) 

environment. Therefore, the YARA-enabled proposal represents an innovative and 

practical alternative to existing approaches to the development of engineering work-

stations for continuous integration/continuous delivery (CI/CD) DevOps-style pro-

cesses or for forensic investigation purposes. 
 

By targeting the Logic Layer before it can underwrite the Execution Phase, the Frame-

work extends the capabilities of existing defence components (i.e., access control, anti-

virus/firewall) by preventing malicious threats like PIPEDREAM/INCONTROLLER 

and FrostyGoop from reaching the operational PLCs. Although the framework contains 

inherent limits associated with Static Analysis (SA) and Rule Maintenance, empirical 

evidence has demonstrated its function as a vendor-neutral and accessible alert (or 

"early warning") mechanism based on requirements derived from IEC 62443-4-1 and 

NIST SP 800-82. Future work will include conducting R&D on hybrid enhancements 

for the Framework, including the ability to validate semantic structures by parsing 

XML documents, utilize machine learning (ML) to generate rules from Threat Intelli-

gence feeds (ICS-CERT), provide support for multiple formats (Siemens; Allen-Brad-

ley) and enhance the overall assurance of pre-runtime Logic while not changing the 

existing technology stack, resulting in more practical implementations of Industrial 

Control Systems (ICS). 
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