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Abstract:

Modern Industrial Control Systems (ICS) and Supervisory Control and Data
Acquisition (SCADA) networks face a growing class of logic-layer attacks in which
adversaries silently manipulate configuration or project files instead of deploying tra-
ditional malware. Existing defences, such as network intrusion detection systems and
machine-learning-based anomaly detectors, struggle to observe these pre-deployment
logic changes and often incur high operational complexity. This paper presents a light-
weight, host-based framework that uses YARA, a rule-based pattern-matching engine,
to perform static inspection of XML configuration files generated by SCADA engineer-
ing tools. The proposed system is implemented on a Windows 10 engineering work-
station using ModbusPal as a Modbus TCP simulator, Python for file monitoring and
GUI development, and YARA CLI/Python bindings for rule execution. Custom YARA
rules are crafted to detect unauthorized Modbus function code 5 (Write Single Coil)
operations targeting critical coil addresses, modelling malicious logic injections such
as covert actuator activations. In a controlled lab environment, using a variety of Mod-
busPal project files, a combination of benign (no infiltration) and tampered project
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files, as well as our detection framework, achieved less than 200 milliseconds of latency
for detecting true positives (and 0 false positives and 0 false negatives) for the defined
ruleset and under a negligible resource overhead.

These findings indicate that static logic validation at the host-level would fulfil an ef-
fective integrity pre-deployment check for PLC logic in addition to current network-
based and behaviour-based ICS security mechanisms, without requiring modification
of the installed PLC hardware and network protocol.

Keywords: SCADA Security, Industrial Control Systems (ICS), YARA, Logic, Mod-
bus, TCP, Host-Based Intrusion Detection, Static Analysis, OT Cybersecurity

I. Introduction

Manufacturing, energy, and other infrastructures today require Industrial Con-
trol Systems (ICS). The core of an ICS is a Supervisory Control and Data Acquisition
(SCADA) system that enables people to see the processes happening in their manu-
facturing/utility environment, gather data on it, and remotely control various devices
(pumps, valves, actuators, etc.) involved in the industrial processes. Historically,
SCADA systems were built on proprietary protocols and hardware and were therefore
isolated from cyberattacks due to being air-gapped (not connected to the Internet). In-
dustry 4.0 has brought about the connection of IT and OT industries, allowing SCADA
systems to become more vulnerable to cyber threats (from within the OT environment
and external attackers).

Logic manipulation attacks are not like typical IT attacks, where someone seeks to gain
access to or control over hardware or software by attacking either system binaries or
network traffic. Instead, logic manipulation attacks alter the control layer of a system -
i.e., the configuration layer (modification of the program or project files used to control
a PLC and the control logic used by the PLC), and/or XML-based descriptors associ-
ated with that logic, causing them to function as desired by the attacker and not as
intended by the designer. Recent threat intelligence reports (e.g., Dragos's assessment
[IV] of the INCONTROLLER (PIPEDREAM) toolkit and FrostyGoop malware) pro-
vide evidence demonstrating that malicious actors can embed logic-layer payloads di-
rectly into engineering project files to evade traditional cyber defences, such as fire-
walls and network intrusion detection systems.

Although much of the initial work, including the rule sets published by ICS-CERT for
BlackEnergy, focuses on detecting executable code, limited effort has been put forth to
develop signature-based tools to verify the integrity and authenticity of static logic in
configuration files for industrial control systems (ICS). Our work expands upon
existing research to provide new uses for YARA beyond signatures for executables by
extending its applicability to the logic layer of configuration files within the ICS world.
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Fig. 1. Architectural Diagram

This study provides a means to use YARA as a lightweight detection mechanism to
statically analyze the logic within XML files created by SCADA engineering tools and
simulators, such as ModbusPal. We validate the proposed approach by constructing
specific attack scenarios in a laboratory setting using ModbusPal to emulate control of
PLCs, writing custom YARA rules to identify malicious payloads, and validating
detection results through the use of both benign and malicious configuration files.
Overall, the final project that resulted from this research has produced a system that is
fast, effective, and easily incorporated into an organization’s normal operating
procedures; this product will significantly enhance organizations' overall cybersecurity
posture in ICS/SCADA environments.

II. Literature Review

As a result of the increased threats of external cyberattacks on Industrial Con-
trol Systems (ICS) and Supervisory Control and Data Acquisition (SCADA) systems
in recent years, there has been increased interest in the security of these systems. Tra-
ditional security measures rely heavily on network-layer security tools (Zeek, Snort,
Suricata) for detecting anomalies in network traffic based on a signature-based method
of deep packet inspection with a few known limitations. The reliance on these types of
tools has resulted in significant blind spots caused by encryption, lack of visibility into
host-level events, and segmentation of networks [ VIII], [V]. Researchers have recently
started to use machine learning (ML) techniques as a way to address these blind spots.
For example, convolutional neural networks (CNNs) have been applied to detect anom-
alous patterns of Modbus TCP traffic [XIV], and researchers have developed the
SCAPHY framework to correlate physical traces of malicious activity with significant
improvements in the accuracy of detecting anomalies. However, most ML-based solu-
tions still suffer from high false-positive rates and require frequent retraining, making
them impractical for most ICS systems in continuously changing environments [XI],
[XIV].

ICS malware is on the rise. Some recent examples include INCONTROLLER (or
PIPEDREAM) and FrostyGoop. These types of malware do not just infect computers;
they are embedded into engineering project files (or con-figuration file) and therefore
will bypass traditional network security systems [VI] [VII]. In addition, a recent study
performed by Forescout Labs showed how an attacker could use an unauthorized coil
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write operation over Modbus to gain access to critical physical assets without alerting
a traditional network intrusion detection system [X]. The integrity of the developed
PLC (Programmable Logic Controller) logic should be ensured. However, although
static host-level analysis may provide some level of coverage, the full capabilities that
these PLC development environments (for example, Velocio's vBuilder or Rockwell's
Studio 5000) can offer are still being missed. The project files that are generated from
PLC development environments (i.e., vlp, 15x, .xml) contain comprehensive executable
logic, and if altered by an insider or corrupted PC, these files could allow stealthy mal-
ware, like LogicLocker [ XXI], to be installed.

In recent years, many organizations have developed tools that make use of YARA to
identify and analyse the malware associated with known ICS malware families: For
example, ICS-CERT has produced YARA rules that identify the malware associated
with BlackEnergy and Havex. However, these tools were not intended for application
to PLC project logic files and only provided a foundation for subsequent efforts to make
use of YARA Rules for Static Logic Verification of XML-Based Configuration Files
[XII], [XII]. These new efforts have built upon the initial work done by the authors
from Nguyen et al. [XX], who proposed the use of a lightweight hash tree for verifying
the integrity of PLC Files. Furthermore, although both ICS-Rank and SCADAhunt pro-
vide a system-wide scoring system for ICS risk, as well as the identification of anom-
alies, neither framework has produced a lightweight, pre-deployment static logic vali-
dation tool [I1], [1].

III. Threat Model (SCADA Logic Injection)

This paper adopts a SCADA-specific adversarial threat model to clearly define
attacker capability, injection scope, and the class of malicious logic injection events
targeted by the proposed hybrid YARA signatures. The objective of the adversary is to
introduce unauthorized logic into engineering configuration artifacts such that critical
Modbus coil activation is executed without satisfying expected authorization condi-
tions, resulting in unsafe actuator behaviour prior to field deployment.

A. Attacker Access Vectors.

We assume the attacker can reach the SCADA project files through one or more realis-
tic access paths: (i) compromise of the engineering workstation (e.g., malware or re-
mote access) enabling unauthorized edits to ModbusPal XML project files, (ii) insider
modification where a trusted user directly inserts malicious FC05 write-coil instruc-
tions, (iii) supply-chain tampering where the delivered project file is modified before
reaching the site, and (iv) file delivery mechanisms such as USB drop or email attach-
ment where a compromised XML file is placed into the monitored watch directory.
B. Injection Phase.

The scope of this work focuses on offline (pre-deployment) logic injection, where ma-
licious coil-write directives are embedded into stored configuration artifacts before be-
ing uploaded to operational PLCs. Online runtime modification (e.g., altering PLC
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execution during live operations) is considered out of scope for this framework because
the proposed scanner performs static inspection of files at rest.

C. Targeted Logic Types.

SCADA logic injection can target multiple layers. In this work, the detection focus is
on the engineering tool project XML, specifically ModbusPal XML configuration files
used during simulation and pre-deployment workflows. Attacks targeting PLC program
logic (ladder logic, Structured Text, Function Block Diagrams) are considered a future
extension, while HMI scripts and supervisory logic are treated as out-of-scope or future
scope due to differing artifact formats and execution semantics.

D. Trigger Mechanisms.

The adversarial payload may be designed to activate under different triggering condi-
tions, including time-triggered, sensor-triggered, manual-triggered, or rare-event-trig-
gered conditions. While the proposed method does not execute or simulate runtime
state transitions, the presence of an embedded unauthorized coil-write directive to crit-
ical coil addresses is treated as a high-risk pre-deployment integrity violation independ-
ent of its intended trigger condition.

E. Mapping to Detection Coverage.

Accordingly, the hybrid YARA engine is designed to detect offline XML-based coil
write injection patterns, particularly unauthorized Modbus FCO5 write-single-coil op-
erations targeting critical coil addresses (e.g., 40010/40011 in the evaluation setup).
The approach does not fully detect runtime stealth logic that may be encoded inside
PLC binaries or executed through live network-triggered manipulation without file
modification. Therefore, the framework is positioned as a deterministic pre-deploy-
ment integrity gate for engineering configuration artifacts, complementing existing
runtime monitoring approaches.

IV. Operational Methodology
A. Environment & Simulation Setup

ENVIRONMENT SIMULATOR ACTIVE
STACK [ config [ FUNCTION
(WS Emulation) (ICS Emulation) CODES
(Control Ops)
1. Windows 10 0S 1. ModbusPal v1.6c 1. FCO1 - Read Coils
2. Java Runtime (JRE) (Java) (Binary States)
3. Python Interpreter 2. Modbus TCP Slave 2. FCO5 - Write Single
4. YARA CLI & 3. XML Config File Coil (Actuator Cmds)
Bindings (Project)
XML INJECTION PROCESS
THREAT 1. Generate Clean Baseline (Via ModbusPal GUI)
SIMULATION 2. Inject Malicious Logic (Text Editor)
PREP <function id="5"...>
3. Store in Monitored Dir (For YARA Detection)

Fig. 2. Environment & Simulation Setup
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The Environment and Simulation Setup consists of Modbus Coil Data Acquisition
and a simulated industrial control system (ICS) environment configured to evaluate
the proposed YARA-based static detection approach for Supervisory Control and
Data Acquisition (SCADA) logic manipulation. The laboratory environment was
designed to closely emulate a typical engineering workstation used by control en-
gineers during pre-deployment interactions with field Programmable Logic Con-
trollers (PLCs). To ensure setup repeatability and mitigate compatibility issues, the
test environment was established on a Windows 10 operating system with a stable
and widely adopted ICS software stack, including the Java Runtime Environment
(JRE) and a Python interpreter configured with YARA Command Line Interface
(CLI) tools and Python bindings. PLC behaviour was simulated using ModbusPal
version 1.6c, a Java-based Modbus TCP slave emulator capable of performing
read/write operations on key memory elements such as coils, discrete inputs, input
registers, and holding registers. Coil reading and single-coil write operations can
be simulated using function codes FC05 and FCO1. By providing realistic control
functionality (including reading binary coil states and sending commands to turn
on motors/valves to the PLC), ModbusPal allows users to create XML project files
and simulate attack scenarios. To do this, malicious programming instructions (i.e.,
logic instructions) were added to the XML project file (e.g., <function id = "5"
address = "40010" value ="1"/> and <function id = "5" address = "40011" value =
"1"/>). These malicious programming instructions indicate which coils to activate
when a PLC program is running. To simulate a threat, a standard XML project file
was created with ModbusPal's graphical user interface (GUI). A threat was simu-
lated by inserting malicious programming instructions (to represent an insider at-
tack or malware) using a text editor and then storing modified XML project files
in a monitored project directory for comparison to the original XML project file to
assess the ability of a static detection mechanism to identify pre-deployment pro-
gramming changes.

BOOLEAN LOGIC MODEL

. Oi: Output State (Coil ON/OFF)
. W(Ci): Write Operation Target
. Ai: Authorization Variable (e.g., Tank Level Sensor)

e

ATTACK SCENARIO PATH

WN R

[Normal] [Threat]
Oi = W(Ci) AND Ai Oi = W(Ci) AND NOT Ai
(Authorized) (Bypasses Validation)

DETECTION & CONSEQUENCE

1. Physical Risk: Tank Overflow / EQuipment Damage
2. Detection Logic (Alert Condition):

IF W(Ci)=1 AND Ai=0 THEN Alert
3. Solution: YARA Static Rule-Based Scanner

Fig. 3. Logic-Layer Threat Modelling
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B. Logic-Layer Threat Modelling

Using an established threat model for Modbus-based control systems, we create a log-
ical representation of how an unauthorized write on a Modbus coil would violate the
established logical controls and energize a Modbus coil. For example, if there is an
unauthorized write to coil i of W(C;), then the output state of the coil O;, which indicates
its current state (ON or OFF), will be: O; = W(C;) A —A;, which implies that A; is false.
This means that the coil was energized when W(C;) was received, but since A; is false,
W(Ci) was not a valid authorized write according to the logical controls prescribed. In
a properly authorized configuration, an authorized write must exist before the coil can
be energized; therefore, we represent an authorized write as O; = W(C;) » A;. Con-
versely, when a bad actor injects malicious logic that modifies the Modbus configura-
tion (for example, by including ModbusPal-generated XMLs that include coil write
requests), the bad actor can write to coil i directly without going through the controls
and checks associated with the predefined logic used to validate the write. Therefore,
W(Ci) =1 will be equal to one, but A; will be equal to zero, and the state of the coil will
be O;j=12—0 = 1, and thus, the coil may be energized.

This behaviour can be interpreted in operational terms by considering, for example,
coil 40010 controlling a chemical injection pump, which under normal circumstances
should only be activated when a low-tank-level condition is true, such that A; reflects
the state of the Tank Low_Level Sensor. If an injected XML directive, such as a write-
single-coil instruction targeting address 40010 with value 1, is embedded into the con-
figuration file prior to deployment, the authorization logic A; is effectively bypassed,
and the pump becomes unconditionally energized, increasing the risk of tank overflow,
equipment damage, or process disruption. Such pre-deployment manipulations may
evade traditional intrusion detection systems that monitor network traffic, because the
malicious behaviour is encoded at the engineering configuration layer rather than in
live communications. Within this Boolean threat model, any configuration path satis-
fying W(C;) = 1~ A; = 0 constitutes a logic violation and is treated as an alert condition,
providing a formal basis for identifying malicious logic paths in PLC projects and mo-
tivating the use of static rule-based scanners, such as YARA, to detect unauthorized
instructions prior to deployment. The Boolean abstraction is amenable to extension into
more expressive representations, including graph-based state models and integration
with formal verification frameworks for large-scale PLC programs, and can be system-
atically translated into rule-matching patterns (for example, string or regular-expres-
sion signatures) that encode conditions equivalent to W(C;) = 1 in the absence of cor-
responding contextual logic A;, thereby operationalizing logic-violation detection
within static analysis pipelines.
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Logic Detection using YARA

( Start: YARA-based logic-layer detection)

YARA engine inspects XML/JSON/binary
configuration artifacts (e.g., Modbus files)

v

Rule set loaded from open-source
repository (production-tested rules)

v

Objective: detect static logic modifications
introducing unauthorized coil activations in
PLC configuration files

Potential impact: unintended
relay/pumplvalve operations bypassing
legitimate automation logic

v

Define detection primitives:

a = payload marker present (e.g., XML comment)
b = write to coil address 40010

¢ = write to coil address 40011

Y
Evaluate YARA condition:

Match detected: high-confidence
indication of unauthorized  coil activation

logic

Match=aAbAc

v

Log detection event and flag configuration
for review/remediation

Area, b,and call

v

present in the same
configuration artifact?

Run detection pre-deployment on
configuration files (offline scanning)

v

Match detected: high-confidence
indication of unauthorized coil
activation logic

Integrate YARA scan into ICS code review
and CI/CD pipelines for PLC/SCADA
projects

v

y

Log detection event and flag
configuration for review/remediation

End: reduced risk of logic-layer
backdoors that evade network-only IDS

Fig. 4. Architectural Diagram

YARA is a powerful pattern-matching engine widely adopted in malware detection,
enabling structured inspection of file content, including XML, JSON, and binary arti-
facts. In this research, YARA is adapted to detect logic-layer threats in SCADA envi-
ronments, with a focus on unauthorized write operations within Modbus configuration
files that define PLC and field device behaviour. To ensure clarity and responsible dis-
closure, full production rule source code is not included in this paper; instead, the com-
plete, evaluated rule set is made available via an open-source repository for qualified
practitioners and researchers.

A. Detection Objective

The main goal of the detection system is to identify static logic changes made to PLC
projects or configuration files that result in unauthorized activation of coils. In a prac-
tical attack scenario, these types of changes can be used to activate relays, pumps, or
valves at times when they are not supposed to be activated and circumvent the normal
operation sequence of the process being controlled, which leads to unsafe physical con-
ditions. This method is designed to verify the integrity of static logic before uploading
it to the field devices; therefore, it focuses on analysing the configuration files before
any modification.

B. Logical Semantics

The planned structure of this rule is based on three detection principles set out in the
configuration file. They are:

. The presence of a payload marker that has been determined to be relevant (for
example, the specific XML comment that indicates the possibility of the presence of a
malicious block).
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" The writing of a coil to address 40010.

= The writing of a coil to address 40011.

The detection conditions correspond to: Match = a A b A c. This Boolean structure re-
quires the presence of both a contextual marker and two critical coil writes to be present
in order for the rule to be satisfied, which provides a greater level of precision in that
it limits the number of false positives (innocent) engineering logic matches.

C. Security Implications

The ability to identify malicious code before deploying it onto the engineering work-
station/target system provides a powerful security benefit to any industrial control sys-
tem operator. Unlike network intrusion detection systems that wait until malicious traf-
fic has already been inserted into the target network through an attack vector such as
packet inspection, this method of examining stored files before they are installed allows
you to quickly determine if a malicious change to a file exists in the engineering work-
station, perform an offline code review, and validate CI/CD pipelines in your industrial
control system environment for correctness. You can also use this solution in scenarios
where your network is air gapped or where access to runtime telemetry is limited or
unavailable.

D. Rule Generalization Techniques

The framework uses a set of generalized rule-design methods that will enable flexible
and resilient rule sets while removing most of the reliance on strictly string-related
matches as initial rules. In the previous system, the use of strict matching made it quite
easy for attackers to make small changes in the format of the data that could cause the
model to fail to effectively detect or match against those patterns. This revision will
employ flexible, structure-aware pattern constructions to identify malicious behaviour
through the use of XML document structure, regardless of how the document has been
configured. Specifically, the patterns are created to allow for varying levels of white
space and tags in the data. In this way, write-coil operations may still be detected and
matched against even if the formatting of the data has been altered.

The rules utilized to achieve the syntactic flexibility of Modbus write operations allow
for common semantic abstractions to be made based upon commonly used patterns,
such as Function Code 5, Coil Address Range in the 40xxx range, and Forced Assign-
ment of Values, rather than requiring literal text. These semantic abstractions allow for
the identification of unauthorised write operations to be performed on devices imple-
menting Modbus regardless of the Vendor(s) who are supplying the devices via Vendor-
Specific Schemas, Encoding Options, and/or Project File Template(s). Furthermore,
principles of fuzzy matching have been included in order to provide the static detection
engine with added resilience to common obfuscation techniques used to conceal mali-
cious intent, including embedded comments, attribute shuffling, redundant metadata,
and non-standard spacing. By using the generalisation techniques of fuzzy matching,
the static detection engine becomes vastly more resistant to evasion attempts and
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maintains the same level of detection accuracy, regardless of the platform used by the
vendor who sold the SCADA project file.

The complete, production-tested rule set is available at our open-source repository:
https://github.com/GulabMondal/YARA-ICS-Logic-Scanner

VI. Results and Discussion

The proposed static detection framework was evaluated using a real-time test
environment that was developed using Python, PyQt5, and the Watchdog library to
create a graphical YARA dashboard. This YARA Dashboard continuously monitors a
directory that has SCADA configuration XML files stored in it for the detection of
malicious logic being injected into those files. Once a match is detected with YARA
rules, a log of that detection is shown in the GUI immediately.

A. Live Detection Behaviour and System Stability

Status: Monitoring...

[v/] THREAT DETECTED: C: Users/student/Desktop/ICS_Lab/projects/plc_project.xml - [ModbusWriteCoilBackdoor]
[v/] THREAT DETECTED: C: Users/student/Desktop/ICS_Lab/projects/plc_project2.xml - [ModbusWriteCoilBackdoor]

Fig. 5. YARA Detection Engine

First, the proposed framework was evaluated in real time using the graphical YARA
dashboard in an evaluation environment. The monitoring engine observed a project
directory containing SCADA configuration files in XML format and triggered scans
when any such file was created or modified. Tests performed with a deliberately tam-
pered configuration file, plc project.xml, that contained unauthorized Modbus
write_coil instructions included immediate detection upon save and a corresponding
alert entry for each, identifying the file path and matched rule label.

This proves that the host-based engine will correctly trigger on logic-layer changes
once they are implemented, well before deployment to field devices. From a system
stability perspective, the GUI continued to report an active monitoring status ("'Status:
Monitoring...") during extensive test sessions, indicating both the watchdog and YARA
scanning threads remained responsive. Detection events were logged persistently and
could be exported for forensic review, supporting post-incident analysis independent
of runtime operation. There were no crashes, thread deadlocks, or interface freezes en-
countered during continuous monitoring and repeated file manipulations, suggesting
the implementation is sufficiently stable for engineering workstation use.
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B. Quantitative Detection Metrics

The quantitative focus was on latency, accuracy, and overhead for detection. Latency
from when a configuration file is modified to when a matching alert is created is
consistently less than 200 ms, even after multiple modifications have been made to the
configuration file. The framework's evaluation data set included both benign XML
Project Files as well as many different types of altered files (single coil injected, multi-
coil injected, address manipulated, and obfuscated logic). The framework produced
zero (0) false-positives and zero (0) false-negatives over the coverage of specified
rules.

Table 1: YARA Threat Detection Result Table

This result indicates the high degree of specificity in the design process for
creating the Boolean rules, as well as the successful use of structure-aware
pattern matching to minimise the chances of producing a false positive from a
benign match.

C. Visual Performance Analysis

Detection Accuracy Results Detection Latency Distribution Across 50 Events
50 200

clion Latency Lims)

Sin 1

False Fositves Folsa hegaiivas Twe Detactons Evert Index

Fig. 6a. Detection Accuracy  Fig. 6b. Detection Latency Distribution

Figures 6a and 6b illustrate the runtime behaviour through a variety of means.
Figure 6a shows that all XML project file unauthorised write coil events acti-
vated rules immediately, and the timestamps of alerts were nearly matched to
the events in the underlying file system. Figure 6b shows that the latency dis-
tribution over several identified API calls revealed a tight cluster of detected
times, with very little variation. The low latency variance indicates a very ro-
bust performance in the environment, even in the presence of other background
operations and GUI redrawing.
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Bar plots comparing classification outcomes were used to demonstrate a
perfect separation of benign from malicious samples within the data set, and
that misclassifications did not occur using the current set of rules. Charting a
usage of CPU and Memory demonstrated the resource requirements for
continuous intensive monitoring runs and showed minimal, consistent resource
usage; therefore, any workstation meeting the specifications for information
technology and operational technology will be able to utilize this framework
without being dedicated to utilizing a hardware acceleration unit for
monitoring purposes.

Memory Utilization During Manitoring CPU Utilization During Manitoring
| [ |
| | f
1 I
| A i -4 \
| ! |
I | , i PRYINI
|/ | N \ | 10 ‘ | | J‘ v / |
| 1A \

| I

Moty Usage (M)
g
P lsage (%)

0 E]
Time (samples) Time Famples)

Fig. 7a. Memory Utilization Fig. 7b. CPU Utilization

D. Comparative Evaluation with Other Detection Approaches

To contextualize the proposed method, results were compared against common
ICS/SCADA detection approaches.

Table 2: YARA Comparison with different detection Framework

NIDS provide protocol-aware, real-time packet inspection, but inherently lack visibil-
ity into offline configuration files and pre-deployment logic changes. The comparison
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underscores that YARA excels at the logic-layer, at-rest configuration inspection with
negligible runtime overhead.

E. Evaluation under Representative Attack Scenarios
= Direct Injection / Baseline Attacks

The evaluation of the detection framework also involved testing by using three types
of realistic attack scenarios to assess how well it functions under different attack meth-
ods. First was an attack in which an authenticated engineer account made unauthorized
modifications to an XML project file by adding coil write operations to some signifi-
cant addresses. The YARA rule set immediately identified this activity and flagged it
as a possible malicious action. The next scenario involved maliciously dropping a USB
device onto an unsuspecting user’s computer and copying a compromised configura-
tion file from the device to the suspected user's monitored directory. The time of copy-
ing the file into the user's directory caused the detection engine to execute a scan.
Thirdly, there was an attack where a malicious project was emailed to the target user
and was stored in the watch folder. The detection engine identified the creation of this
file upon creation. Overall, the detection framework effectively detected attempted
modifications to the project's logic before execution across each of the three attack

types.
= Adversarial Evasion Testing (Stealthy Logic Injection)

The initial evaluation focused on detecting direct and observable malicious coil-write
injections in the ModbusPal XML project files. However, real-world adversaries may
attempt to evade signature-based scanners by inserting minimal payloads, hiding the
malicious logic inside rare-event conditions, or mutating the XML structure to avoid
strict literal matching. Therefore, we extended the dataset with adaptive and stealthy
attack variants to assess the robustness of the hybrid YARA rules against evasion at-
tempts.
o Attack A (Low-footprint injection): The adversary injects only a single FC05
coil-write instruction targeting a critical actuator address (e.g., coil 40010) with
minimal file modification, such as <function id="5" address="40010" value="1"/>.
This represents a stealthy “one-shot” forced activation attempt designed to blend
into normal engineering edits.
e  Attack B (Rare-event trigger simulation): The malicious coil-write logic is pre-
sent in the XML configuration but designed to activate only under unusual condi-
tions (e.g., rare operational triggers or delayed execution blocks). This was simu-
lated by inserting the write instruction in a rarely used logical block or marking it
as an inactive/disabled test step, reflecting realistic attacker behaviour aimed at by-
passing routine engineering review.
o  Attack C (Obfuscation/mutation): To emulate evasion through minor syntactic
modifications, we generated adversarial XML mutations such as attribute reorder-
ing, insertion of harmless metadata/tags, addition of comments, and formatting
noise (variable spacing and tag rearrangement). These manipulations preserve the

Gulab Kumar Mondal et al.

53



J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026) pp 41-58

malicious coil-write behaviour while attempting to defeat strict string-based match-
ing.

“We evaluated adversarial modified project files, including attribute shuffling,
added benign metadata, formatting noise, and reduced payload footprint. The gen-
eralized structure-aware rules-maintained detection under common mutation pat-
terns, while purely literal signatures were more fragile.”

False-Negative Discussion. Signature-based approaches can be evaded if the in-
jected logic does not contain detectable coil-write patterns or if the payload uses
alternative function codes or indirect activation chains. Therefore, the framework is
best positioned as a deterministic integrity gate rather than a complete substitute for
anomaly-based detection.

F. Deployment and Integration Considerations

According to the experimental results, the framework can be utilized during multiple
phases of the ICS life cycle. The framework can be used as a monitoring service in the
background of engineering workstations that run ModbusPal (a tool commonly used
for testing and prototyping) and vBuilder and/or vendor-specific Integrated Develop-
ment Environments (IDEs). Additionally, within CI/CD pipelines that support indus-
trial automation, the engine can be called on during an automated build, testing, or
signing phase in a CI/CD process. Lastly, for digital forensics and incident response
labs, the rule set allows for rapid assessment of collected project files by allowing the
same rule set to be utilised when triaging collected project files.

G. Rule Expansion and Threat Coverage

After evaluating a set of original string-based signatures, we discovered there was an
increased risk for evasion through simple changes to the syntax of the string. At the
same time, we have found that the use of Generalized Rules (in contrast to the original
string-based signatures) to detect the malicious use of Modbus instructions results in
better performance due primarily to the ability to define core semantic characteristics
and use them in conjunction with regular expressions and syntax-aware patterns. The
core semantic characteristics (including the function code (FC5), coil addresses located
in the critical range, and value assignation) helped us create a set of rules that correctly
detected unauthorized execution of Modbus instructions regardless of the vendor's for-
mat used.

H. Threat Taxonomy, Limitations, and Compliance Implications

The experimental campaign confirms the detection of logic bombs, back-doors, unau-
thorized state triggers, and hard-coded command injections. Limitations include XML
obfuscation risks, which have been addressed with proposed countermeasures such as
XML normalization and tree-based hashing. The demonstrated pre-deployment integ-
rity checks align with the IEC 62443-4-1 and NIST SP 800-82 guidance for secure
development life cycles.
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I. False-Positive Risk Under Legitimate Logic Changes

SCADA engineering configuration files are routinely modified during normal plant op-
erations due to maintenance, seasonal tuning, sensor upgrades, and emergency re-
sponse actions. Therefore, not every Modbus Function Code 5 (FC05: Write Single
Coil) occurrence should be automatically interpreted as malicious logic injection. To
validate that the proposed hybrid YARA-based scanner does not introduce alarm fa-
tigue in real deployments, we evaluated the framework against a controlled “benign
change” dataset representing legitimate logic evolution in ModbusPal XML project
files. These benign updates included parameter tuning, coil remapping due to mainte-
nance, addition of new write operations for upgraded field sensors, formatting-only
edits (whitespace and XML tag reordering), and temporary override-type logic edits
performed under controlled conditions.

“We simulated legitimate engineering updates by modifying ModbusPal XML project
files under maintenance-like conditions such as parameter tuning, coil remapping, and
adding additional coil write instructions in a controlled manner.”

Table 3: Observed false-positive behaviour for the benign dataset.

These results indicate that routine engineering changes such as formatting edits,
maintenance-driven address updates, and non-critical logic adjustments do not produce
alerts under the current hybrid YARA ruleset, supporting the operational feasibility of
the proposed approach in dynamic SCADA environments.

J. Operational Mitigation: Whitelisting + Authorized-Change Validation

To further prevent operational disruption in real deployments, the scanner can be de-
ployed with simple contextual controls. First, an approved coil-address whitelist can
be applied so that FCO5 operations are flagged only when they target critical coils (e.g.,
40010/40011 in the evaluation setup). Second, an authorized engineering change win-
dow policy can be used so that modifications during approved maintenance periods are
logged for review rather than generating high-severity alarms. Third, file integrity ap-
proval can be enforced by maintaining a hash-based baseline of approved XML project
files, ensuring that only expected and authorized modifications are accepted for de-
ployment. This strengthens the pre-deployment integrity validation goal of the frame-
work while keeping the implementation lightweight and practical for continuous
SCADA engineering workflows.
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VII. Conclusion

This paper describes a lightweight, host-based approach to using YARA for the
static identification of logic manipulation attacks that target SCADA configuration
files. This addresses one of the most important shortcomings of existing methods for
securing industrial control systems (ICS).

Using controlled experimentation with XML project files generated by ModbusPal on
a Windows-based engineering workstation, the proposed system was able to achieve a
detection time of less than 200ms, with no false positives or false negatives across the
15 tested scenarios and negligible resource consumption, demonstrating the potential
of the system to facilitate pre-execution integrity validation.

In contrast to traditional IDS solutions that require significant computer resources to
process, such as Snort/Suricata, or machine learning-based approaches that require
large datasets for model training, YARA is uniquely capable of providing deterministic
results with respect to already-admitted Modbus coil writing attacks, feedback on mod-
ified files, and the capacity for complete functionality in a disconnected (air-gapped)
environment. Therefore, the YARA-enabled proposal represents an innovative and
practical alternative to existing approaches to the development of engineering work-
stations for continuous integration/continuous delivery (CI/CD) DevOps-style pro-
cesses or for forensic investigation purposes.

By targeting the Logic Layer before it can underwrite the Execution Phase, the Frame-
work extends the capabilities of existing defence components (i.e., access control, anti-
virus/firewall) by preventing malicious threats like PIPEDREAM/INCONTROLLER
and FrostyGoop from reaching the operational PLCs. Although the framework contains
inherent limits associated with Static Analysis (SA) and Rule Maintenance, empirical
evidence has demonstrated its function as a vendor-neutral and accessible alert (or
"early warning") mechanism based on requirements derived from IEC 62443-4-1 and
NIST SP 800-82. Future work will include conducting R&D on hybrid enhancements
for the Framework, including the ability to validate semantic structures by parsing
XML documents, utilize machine learning (ML) to generate rules from Threat Intelli-
gence feeds (ICS-CERT), provide support for multiple formats (Siemens; Allen-Brad-
ley) and enhance the overall assurance of pre-runtime Logic while not changing the
existing technology stack, resulting in more practical implementations of Industrial
Control Systems (ICS).
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