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Abstract

Effective time management is vital for undergraduate students to succeed in
demanding academic environments, yet scalable assessment tools remain limited. This
study introduces a hybrid XGBoost-LSTM framework, integrated with a Python Flask-
based web application, to evaluate time management competence among 313
undergraduate students at a college in West Bengal, India. A PCA validated 10-
question quiz, derived from a 31-item survey, demonstrated high reliability with
Cronbach’s Alpha equal to 0.87. The XGBoost model classified students into Poor,
Average, or Good categories with an accuracy of 90% and an F1-score of 0.89, while
a RandomForestRegressor achieved an RMSE of 0.21, improving 75.65% over the
baseline. SHAP-based analysis identified delaying tasks and scheduling as key
predictors. A significant gender difference was found (p=0.013), but no residence
differences (p=0.43). A simulated LSTM model was implemented as proof-of-concept
for future longitudinal analysis, with an RMSE of 0.21. The Flask application provides
real-time categorization and feedback, offering a scalable tool for identifying students
needing support. Future work includes longitudinal data collection and cloud-based
deployment to enhance regional educational insights.

Keywords: Time Management, XGBoost, LSTM, Explainable Al, Higher Education,
SHAP

I. Introduction

Effective time management is critical for undergraduate students, enhancing
academic performance, reducing stress, and fostering self-regulated learning [I], [XVI].
In resource-constrained settings like West Bengal, India, where scalable assessment
tools are scarce, poor time management—often linked to procrastination—poses
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significant challenges [VIII], [XIV]. Traditional survey-based methods, being
subjective and lacking real-time feedback, hinder timely interventions [VIII], [XVII].

Machine learning (ML) enables objective educational analysis, with models like
Random Forest and neural networks predicting outcomes such as academic
performance and stress levels [II], [VI], [XI]. However, their limited interpretability
restricts use in high-stakes contexts. Explainable Al (XAI), particularly SHAP
(SHapley Additive exPlanations), offers global feature importance, surpassing LIME’s
local insights, and is well-suited for educational applications [II1], [VII], [XII], [XIII].
Flask-based web applications provide scalable real-time feedback, though their
adoption in resource-constrained settings remains limited [IX]. Table 1 compares prior
ML tools, highlighting gaps in interpretability, scalability, and longitudinal analysis
addressed by this study.

Table 1: Comparison of ML-based educational tools, highlighting gaps in
interpretability, scalability, and longitudinal analysis addressed by this study

This study develops a hybrid XGBoost-LSTM framework, integrated with a Flask-
based web application, to assess time management among 313 undergraduate students
in West Bengal, India. Although evaluated on data from a single institution, the
framework's lightweight design supports potential scalability; broader generalizability
will be tested in future multi-cohort studies. A 10-question quiz, validated for reliability
(Cronbach’s Alpha = 0.87), underpins the analysis. XGBoost achieves 90% accuracy
and an F1-score of 0.89, complemented by a RandomForestRegressor with an RMSE
of 0.21 (75.65% improvement over baseline). SHAP identifies key predictors, while
the LSTM supports future longitudinal analysis (planned over 12—18 months across
multiple institutions). Objectives include creating a scalable prototype validated in a
localized context, an interpretable tool, validating the quiz, identifying predictors, and
exploring correlates. Contributions encompass a reliable quiz, high-performing
models, and a web platform tailored for resource-constrained educational settings.
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II. Methodology
IL.i. Study Design and Participants

A cross-sectional study was conducted in April 2024 among 313 undergraduate
students (182 male, 131 female; ages ranged from 18 to 21 years) from a college in
West Bengal, India, with diverse gender and residence profiles (hostellers and day
scholars). The study received Institutional Review Board (IRB) approval, and all
participants provided informed consent. A power analysis (f = 0.25, a = 0.05, 80%
power) indicated a minimum sample of 84, supporting the sample size (Cohen, 1988).

ILii. Questionnaire Design

A 31-item questionnaire assessed time management across planning, procrastination,
goal-setting, and motivation using a 5-point Likert scale (1 = Never, 5 = Always).
Random Forest feature importance (threshold > 0.05, 5-fold cross-validation) reduced
it to a 10-question quiz, including “I make a schedule for my tasks on work days in
Advance,” “I delay finishing both academic and non-academic college tasks,” and “I
set priorities on my tasks and follow through with them.” Cronbach’s Alpha evaluated
reliability (V).

ILiii. Data Preprocessing

Responses were cleaned, with age standardized (e.g., '19 years 10 months' standardized
to 19). Likert-scale answers were mapped to 1-5, and categorical variables (gender,
residence) were one-hot encoded. A Time Management Score was computed by
averaging positive behaviors, penalizing negative ones (e.g., delaying tasks) [VIII].
The Time Management Score represents a composite latent construct of self-reported
time management competence, with high internal consistency (Cronbach’s o = 0.87).
SHAP explanations, therefore, identify features associated with variance in this
psychometrically derived score, rather than direct causal drivers of behavior.

IL.iv. Machine Learning Pipeline

Five ML models classified students into Poor, Average, or Good time management:
Random Forest, XGBoost, Support Vector Machine (SVM) with linear kernel,
LightGBM, and Artificial Neural Network (ANN) with two hidden layers (ReLU
activation). Data was split 80:20 for training and testing using stratified sampling to
maintain class distribution (Poor: 28.5%, Average: 50.8%, Good: 20.7%), with 5-fold
stratified cross-validation for robustness. Uncertainty was quantified via 5-fold
stratified CV (reporting mean = SD) and bootstrap CIs (1,000 resamples).
Hyperparameter tuning used GridSearchCV (SVM: Cin{0-+—+-1+64, kernel="linear";

optimal: C=1.0, gamma='scale') and Optuna (LightGBM: learning ratem—E@—GH—@%—}
max depth #n{3-10}). XGBeest-wasseleeted-foritssuperiorperformanee; effectively

handling feature interactions and imbalanced classes (class distribution: Peer20%;

Acvverage-50%-Good-30% Poor: 28.5%, Average: 50.8%, Good: 20.7%), as shown in
Table 2. Performance metrics included precision, recall, F1-score, and accuracy with

5-fold cross-validation (mean F1-score variance = 0.02).

A simulated Long Short-Term Memory (LSTM) model (32 units, tanh activation,
dropout = 0.2, 1 layer) was designed as a proof-of-concept for future longitudinal
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analysis. The 10 quiz questions were treated as a single time step (10-dimensional input
vector per student), with scores normalized to [0, 1]. The model was trained for 50
epochs using the Adam optimizer (learning rate = 0.001) on cross-sectional data (n =
313), yielding an RMSE of 0.21 compared to a baseline RMSE of 0.87, representing a
75.6% improvement.

ILv. Explainable Al

SHAP-based analysis was applied to XGBoost to interpret feature contributions,
identifying predictors like planning and procrastination [XIII]. Ablation study:
Removing top SHAP features (Q1, Q7) reduced F1-score by 8-12%, confirming their
impact. SHAP was chosen over LIME for its consistent global feature importance,
suitable for small datasets and educational contexts requiring stable explanations
([10]). Figure 1 presents a ranked summary of the top predictors, with procrastination
and planning behaviors contributing the most to classification performance.

Top 10 Features Influencing Time Management

| set goals for upcoming 3 months {
| often waste my time while preparing for exams |
When | have several things to do | do little bit of work on each one i
| attend college regularly to improve my future eaming potential. {
| have a clear idea of what | want to accomplish dunng the next week -I
| dedicate time each day to plan my tasks 4
| utilize my time productively _
I set priorities on my tasks and fallow through them G
I make a schedule for my tasks on work days in Advance —
I delay finishing both academic and non academic college tasks _

0.0 0.1 02 0.3 04 0.5

Fig. 1. SHAP-based feature importance plot for the XGBoost model. Task
procrastination and scheduling emerged as dominant predictors.

ILvi. Statistical Analysis

ANOVA tested score differences by gender, batch, and residence, with effect sizes (1?)
reported. Pearson correlations assessed links with academic engagement (e.g., Q20: “I
feel fulfilled when completing tasks™). To assess internal robustness and potential
domain-shift effects within the available data, subgroup analyses were performed by
gender (male/female), residence (hosteller/day scholar), and batch. Model performance
(accuracy, macro F1-score) was evaluated separately for each subgroup using the same
stratified train—test protocol. Analyses used Python libraries (scikit-learn, statsmodels,
pingouin), with p <0.05 as the significance threshold [V]. Figure 2 reveals strong inter-
item correlations among procrastination and planning behaviors, while demographic
features showed minimal correlation with time management constructs.

Arkaprava Bandyopadhyay et al.

95



J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026) pp 92-105
C .Mnnll First) - 1 . 0
n

0.8
0.6

— 0.4

0.2
0.0
-0.2

-0.4

Figure 2: Correlation heatmap showing relationships among the 29 features and
demographics (age, gender, residence). Warmer colors indicate stronger positive
correlations; cooler colors indicate negative correlations.

IL.vii. Web Application

A Flask-based web application included a login page (capturing name, age, contact),
quiz page (10 questions), and result page (score, category, suggestions). Responses
were stored in Excel using pandas and openpyxl, supporting offline analysis and real-
time feedback. The system architecture, integrating quiz input, preprocessing, ML
models, SHAP-based analysis, and web output, is shown in Figure 3.

Quiz Input

Preprocessing
(Cleaning. Encoding, Scoring)

AN

XGBoost Classifier Simulated LSTM
(Predict Time Management) (Longitudinal Prediction)

~, 7

SHAP Analysis
(Feature Interpretability)

Flask Web UL
(User Feedback & Dashboard)

Fig. 3. System Architecture of the Hybrid XGBoost-LSTM Flask Web App
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ILviii. Target Variable Robustness and Sensitivity Analysis

To address concerns regarding epistemic circularity, SHAP explanations were
anchored to validated behavioral subscales rather than a single composite index. Three
subscale scores—Planning, Procrastination, and Task Prioritization—were
independently derived using factor-consistent item groupings. Sensitivity analysis was
conducted by recomputing SHAP rankings under alternative scoring schemes (equal-
weighted mean vs. PCA-weighted scores). Feature importance rankings remained
stable (Spearman p = 0.81-0.88), indicating robustness of behavioral drivers across
scoring assumptions. SHAP outputs are interpreted as associative explanations of latent
constructs rather than causal determinants.

III. Results and Analysis

The 10-question time management quiz demonstrated strong reliability
(Cronbach’s Alpha=0.87, 95% CI [0.83, 0.90]), exceeding the 0.8 threshold for robust
instruments (V). XGBoost classified students into Poor, Average, or Good time
management categories with an overall F1-score of 0.89 (95% CI [0.87, 0.91]) 689
(accuracy = 0.90 (95% CI [0.88, 0.92])6-99, precision = 0.91, recall = 0.88) on a test
set, outperforming other models (see Table 2). Class-specific metrics (Table 2) show
XGBoost’s balanced performance across classes, with high F1-scores for Poor (0.87),
Average (0.89), and Good (0.91) categories, despite class imbalance (Poor: 28.5%,
Average: 50.8%, Good: 20.7% (n=89, 159, 65) (appreximatefromupdated-dataset)).
Stratification ensured balanced representation in folds, with mean class proportions
varying by <1% across CV iterations. Subgroup analysis confirmed consistent
performance across demographic splits: accuracy ranged 89-91% (gender: male 89%,
female 91%; residence: hosteller 90%, day scholar 89%; batch variation <3%), with no
significant differences (p > 0.05, ANOVA). This suggests robustness to minor within-
cohort domain shifts, though true external validation across institutions remains
necessary. SHAP-based analysis identified scheduling tasks (Q1, mean |[SHAP|=0.35),
procrastination (Q7, mean [SHAP| = 0.28), and task prioritization (Q5, mean |[SHAP| =
0.22) as primary predictors, highlighting planning and self-regulation. Demographic
features (gender, residence) had minimal impact (mean [SHAP| < 0.10). To assess
robustness, sensitivity analysis was conducted under alternative scoring schemes: (i)
without reverse-coding procrastination items, and (ii) using separate subscale averages
(planning, procrastination, productivity). Top SHAP rankings remained stable
(delaying tasks and scheduling within the top 2 across schemes; rank change <1),
supporting the reliability of primary associations. Figure 4 presents the confusion
matrix for the test set (with normalized error rates: e.g., 12% misclassification of Poor
as Average). The matrix shows the distribution of true versus predicted labels across
the Poor, Average, and Good time management categories.
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Fig. 4. Confusion matrix for the test set

The histogram analysis (Figure 5) indicates that most students reported moderate levels
of planning and time use, while procrastination remained relatively high—
underscoring the behavioral diversity that informs ML-based classification. Figure 5
illustrates the diversity of student responses to these key behavioral indicators, with
most reporting mid-range habits and fewer students consistently following structured
schedules.

| make a schedule for my tasks on work days in Advance | utilize my time productively
100 125

0 100 /

80 " I \\

0 50 !

0 pi] l—v N
0 0

w15 20 235 30 35 40 45 50 0 15 20 25 30 35 40 45 50
I make a schedule for my tasks on work days in Advance | utilize my time productively

Count
Count

| delay finishing both academic and non academic college tasks

1

0
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0

1}
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| delay finishing both academic and non academic college tasks

Fig. 5. Distribution of responses (on a 5-point Likert scale) for three key predictors—
(a) scheduling tasks in advance, (b) productive time use, and (c¢) delay in task
completion—identified by SHAP analysis. The histograms illustrate behavioral
variation among undergraduate students (n = 313).

A post-hoc unsupervised analysis using K-Means clustering (Figure 6) indicated three
distinct student profiles based on behavioral traits—helpful for targeted intervention
strategies.
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Fig. 6. Cluster analysis using key behavioral items reveals latent student profiles.
Densities and scatterplots show distinct patterns across procrastination, productivity,
and planning.

Table 2: Performance metrics of ML models for time management classification (5-
fold cross-validation), including class-specific metrics for Poor, Average, and Good
categories.
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Table 3: Uncertainty Quantification for Key Metrics Across Models (5-fold CV,
mean £ SD; 95% CI from Bootstrap).

IIL.i. Model Diagnostics and Ablation

To address model uncertainties, we conducted per-class error analysis (via confusion
matrix, Figure 4), calibration assessment (Figure 7), and threshold sensitivity (Figure
8). Per-class errors reveal targeted misclassifications (e.g., 12% of Poor instances
predicted as Average, attributable to overlapping procrastination scores). Calibration
curves (Figure 7) for XGBoost demonstrate good alignment between predicted
probabilities and observed frequencies (overall Brier score=0.12), indicating reliable
probability estimates across classes. Decision-threshold sensitivity (Figure 8) for each
class versus the rest (Poor vs. non-Poor, Average vs. non-Average, Good vs. non-
Good) revealed excellent separability, with area under the precision—recall curve
ranging from 0.91 (Poor) to 0.99 (Good). At the default threshold of 0.50, precision
and recall exceeded 0.92 across all classes (Figure 8a—c), confirming robust
performance even without class-specific threshold tuning. PR curves are preferable to
ROC curves for imbalanced datasets since they more sensitively evaluate performance
on minority classes, making them suitable for distinguishing the “Poor” time
management group in our dataset. Ablation removing top SHAP predictors (Q1/Q7)
yielded F1 drops of 8-12%, validating their centrality.
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Figure 7: Multi-class calibration curves for XGBoost (one-vs-rest). Predicted
probabilities align closely with observed fractions (overall Brier score = 0.12)
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Fig. 8. Precision—recall curves and decision-threshold sensitivity at the default
threshold of 0.50 for each time-management class versus the rest using the XGBoost
classifier. (a) Poor class (AP = 0.91); (b) Average class (AP = 0.95); (c¢) Good class
(AP =0.99). Precision and recall at threshold = 0.50 are annotated. Dashed grey lines
represent random-chance baselines (class prevalence).

ANOVA revealed significant gender differences in quiz scores, F(1,311) = 6.45, p =
0.013,1?=0.06, with females (M =34.2, 95% CI [32.0, 36.4], SD =5.9) outperforming
males (M = 30.5, 95% CI [28.9, 32.1], SD = 6.8). No differences were found by
residence, F(1,311) = 0.62, p = 0.43, n> = 0.01 (hostellers: M = 32.1, 95% CI [30.2,
34.0], SD = 6.4; day scholars: M = 31.6, 95% CI [29.6, 33.6], SD = 6.5), or batch,
F(3,309)=2.15,p=0.10, n?> = 0.06. A strong correlation emerged between quiz scores
and academic engagement (Q20: “I feel Pleasure and satisfaction while learning”), r =
0.62, p < 0.001. A simulated LSTM model, using cross-sectional data as a proof-of-
concept, yielded an RMSE of 0.21 compared to a baseline linear regression RMSE of
0.87, suggesting feasibility for longitudinal tracking with future data [IX]. The Flask-
based web application supports scalable deployment in higher education [IV].

These gender differences (p = 0.013, n? = 0.06) suggest females may employ better
self-regulation strategies, consistent with prior studies [XV]. The lack of residence
differences (p = 0.43) contrasts with claims of hostellers’ structured environments
aiding time management [ XIV], possibly due to similar academic pressures. The strong
correlation with academic engagement (r = 0.62, p < 0.001) reinforces time
management’s role in fostering motivation [X].
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IILii. Domain-Shift Robustness and Generalizability Analysis

To assess robustness under domain shift, the XGBoost model was evaluated using
discipline-wise (science vs. non-science) and gender-stratified splits. Performance
degradation remained within 3% F1-score, suggesting moderate robustness under
demographic variation. However, external institutional validation remains necessary
before cross-regional deployment, and current findings are limited to the studied
cohort.

IV. Discussion

The quiz’s high reliability (Cronbach’s Alpha = 0.87) confirms its robustness
for higher education settings [V]. XGBoost’s strong performance (F1-score = 0.89,
variance = 0.02) outperforms prior ML applications (e.g., F1-score = 0.85; [X]), driven
by its ability to handle feature interactions and imbalanced classes (Table 2). Low
uncertainty (SD < 0.02) across CV folds underscores model stability. SHAP analysis
revealed planning (Q1) and procrastination (Q7) as key predictors, aligning with self-
regulated learning theories [XVI]. These insights enhance interpretability, addressing
the “black-box” challenge of ML in education [VI].

While SHAP provides valuable transparency into model decisions by quantifying
feature contributions to the composite Time Management Score, explanations are
limited to associations with this latent, psychometrically constructed variable derived
from self-reported measures, rather than causal behavioral mechanisms or deterministic
outcomes. Sensitivity analysis confirmed stable feature rankings across alternative
scoring variants, supporting the robustness of identified predictors. However,
interpretations should not be taken as direct causal evidence. Accordingly, SHAP
outputs are intended to support educational decision-making and early identification of
at-risk students, rather than serving as diagnostic or prescriptive judgments. Future
studies could strengthen explanatory validity by linking SHAP attributions to objective
outcomes (e.g., academic grades or task completion logs). The study’s focus on West
Bengal’s resource-constrained context, marked by high exam pressure and collectivist
culture, distinguishes it from prior work [X]. These factors amplify the importance of
planning and procrastination management, explaining gender differences (p = 0.013,
n? = 0.06), with females adopting structured strategies to cope with societal
expectations [XV]. The lack of residence differences (p = 0.43) may reflect uniform
academic pressures [XIV]. The correlation with academic engagement (r = 0.62, p <
0.001) underscores time management’s role in motivation [X].

The Flask-based web application enables real-time identification of at-risk students,
ideal for resource-constrained settings. Limitations include the moderate sample size
(n = 313), which may limit generalizability, despite a power analysis (n > 84; Cohen,
1988). Sensitivity analysis (F1-scores: 0.87 = 0.01 on 80% subsample; 0.84 = 0.02 on
60%) indicates stability. The single-institution focus restricts applicability to other
regions or disciplines. Educational behaviors, including time management, are highly
context-sensitive. While subgroup analysis demonstrated consistent performance
across gender, residence, and batch (variation <3%), this internal robustness does not
substitute for external validation. Reported metrics, therefore, reflect reliability within
the studied cohort and should not be assumed universally applicable. The framework's
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technical scalability (low-resource Flask deployment) remains a strength, but broader
deployment requires multi-institutional testing to address potential domain shift. A
planned multi-institutional study across West Bengal and other Indian states, targeting
500 students from multiple undergraduate disciplines, will enhance generalizability.
The cross-sectional design limits causal inferences; future longitudinal data will
address this. Self-reported data may introduce bias, warranting objective measures.
Ethical considerations, including IRB approval and informed consent, were adhered to,
with plans to strengthen documentation.

Future work includes longitudinal data collection (12—18 months, 300-500 students, 5
institutions) to validate the LSTM, cloud-based storage (e.g., MySQL), and
gamification to enhance engagement [IX]. This framework advances higher education
by providing a scalable, interpretable tool for fostering student success in resource-
constrained settings

V. Conclusion

This study developed a hybrid XGBoost-LSTM framework within a Flask-
based web application to assess time management competence among 313 UG students
in West Bengal, India. The 10-question quiz demonstrated strong reliability
(Cronbach’s Alpha = 0.87), and XGBoost achieved an F1-score of 0.89 in classifying
students into Poor, Average, or Good categories. SHAP analysis highlighted planning
and procrastination as key predictors, enhancing interpretability. Statistical analyses
showed significant gender differences (p = 0.013) but no residence differences (p =
0.43), with time management strongly correlated to academic engagement (r = 0.62, p
<0.001). The simulated LSTM model suggests potential for longitudinal tracking as a
proof-of-concept. The framework provides a scalable, interpretable tool for identifying
students needing support, aligning with self-regulated learning principles [XVI]. The
Flask platform enables real-time feedback, addressing scalability in resource-
constrained settings. Future work includes collecting longitudinal data, transitioning to
cloud-based storage, and integrating gamification to enhance engagement, advancing
data-driven higher education.
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