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Abstract 

Effective time management is vital for undergraduate students to succeed in 

demanding academic environments, yet scalable assessment tools remain limited. This 

study introduces a hybrid XGBoost-LSTM framework, integrated with a Python Flask-

based web application, to evaluate time management competence among 313 

undergraduate students at a college in West Bengal, India. A PCA validated 10-

question quiz, derived from a 31-item survey, demonstrated high reliability with 

Cronbach’s Alpha equal to 0.87. The XGBoost model classified students into Poor, 

Average, or Good categories with an accuracy of 90% and an F1-score of 0.89, while 

a RandomForestRegressor achieved an RMSE of 0.21, improving 75.65% over the 

baseline. SHAP-based analysis identified delaying tasks and scheduling as key 

predictors. A significant gender difference was found (p=0.013), but no residence 

differences (p=0.43). A simulated LSTM model was implemented as proof-of-concept 

for future longitudinal analysis, with an RMSE of 0.21. The Flask application provides 

real-time categorization and feedback, offering a scalable tool for identifying students 

needing support. Future work includes longitudinal data collection and cloud-based 

deployment to enhance regional educational insights. 

Keywords: Time Management, XGBoost, LSTM, Explainable AI, Higher Education, 

SHAP 

 

I.    Introduction 

Effective time management is critical for undergraduate students, enhancing 

academic performance, reducing stress, and fostering self-regulated learning [I], [XVI]. 

In resource-constrained settings like West Bengal, India, where scalable assessment 

tools are scarce, poor time management—often linked to procrastination—poses 
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significant challenges [VIII], [XIV]. Traditional survey-based methods, being 

subjective and lacking real-time feedback, hinder timely interventions [VIII], [XVII]. 

Machine learning (ML) enables objective educational analysis, with models like 

Random Forest and neural networks predicting outcomes such as academic 

performance and stress levels [II], [VI], [XI]. However, their limited interpretability 

restricts use in high-stakes contexts. Explainable AI (XAI), particularly SHAP 

(SHapley Additive exPlanations), offers global feature importance, surpassing LIME’s 

local insights, and is well-suited for educational applications [III], [VII], [XII], [XIII]. 

Flask-based web applications provide scalable real-time feedback, though their 

adoption in resource-constrained settings remains limited [IX]. Table 1 compares prior 

ML tools, highlighting gaps in interpretability, scalability, and longitudinal analysis 

addressed by this study. 

Table 1: Comparison of ML-based educational tools, highlighting gaps in 

interpretability, scalability, and longitudinal analysis addressed by this study 

Study 
ML 

Model 

Performance 

Metrics 
Application Limitations 

Band et al. 

(2023) 

Random 

Forest, 

ANN 

F1-score: 0.80–

0.85 

Academic 

outcome 

prediction 

Limited 

interpretability, cross-

sectional data, and no 

XAI 

Thanasekhar et 

al. (2019) 

Neural 

Networks 
Accuracy: 0.78 

Stress 

management 

Lacks scalability, no 

XAI integration 

Shahzad et al. 

(2024) 
XGBoost F1-score: 0.85 

Academic 

performance 

No longitudinal 

analysis, LIME-based, 

survey data 

Saranya & 

Subhashini 

(2023) 

LSTM, 

Flask-

based 

RMSE: 4.2 
Behavioral 

tracking 

Requires longitudinal 

data, limited 

interpretability 

This study develops a hybrid XGBoost-LSTM framework, integrated with a Flask-

based web application, to assess time management among 313 undergraduate students 

in West Bengal, India. Although evaluated on data from a single institution, the 

framework's lightweight design supports potential scalability; broader generalizability 

will be tested in future multi-cohort studies. A 10-question quiz, validated for reliability 

(Cronbach’s Alpha = 0.87), underpins the analysis. XGBoost achieves 90% accuracy 

and an F1-score of 0.89, complemented by a RandomForestRegressor with an RMSE 

of 0.21 (75.65% improvement over baseline). SHAP identifies key predictors, while 

the LSTM supports future longitudinal analysis (planned over 12–18 months across 

multiple institutions). Objectives include creating a scalable prototype validated in a 

localized context, an interpretable tool, validating the quiz, identifying predictors, and 

exploring correlates. Contributions encompass a reliable quiz, high-performing 

models, and a web platform tailored for resource-constrained educational settings.  
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II.    Methodology 

II.i.  Study Design and Participants 

A cross-sectional study was conducted in April 2024 among 313 undergraduate 

students (182 male, 131 female; ages ranged from 18 to 21 years) from a college in 

West Bengal, India, with diverse gender and residence profiles (hostellers and day 

scholars). The study received Institutional Review Board (IRB) approval, and all 

participants provided informed consent. A power analysis (f = 0.25, α = 0.05, 80% 

power) indicated a minimum sample of 84, supporting the sample size (Cohen, 1988). 

II.ii.  Questionnaire Design 

A 31-item questionnaire assessed time management across planning, procrastination, 

goal-setting, and motivation using a 5-point Likert scale (1 = Never, 5 = Always). 

Random Forest feature importance (threshold > 0.05, 5-fold cross-validation) reduced 

it to a 10-question quiz, including “I make a schedule for my tasks on work days in 

Advance,” “I delay finishing both academic and non-academic college tasks,” and “I 

set priorities on my tasks and follow through with them.” Cronbach’s Alpha evaluated 

reliability (V). 

II.iii.    Data Preprocessing 

Responses were cleaned, with age standardized (e.g., '19 years 10 months' standardized 

to 19). Likert-scale answers were mapped to 1–5, and categorical variables (gender, 

residence) were one-hot encoded. A Time Management Score was computed by 

averaging positive behaviors, penalizing negative ones (e.g., delaying tasks) [VIII]. 

The Time Management Score represents a composite latent construct of self-reported 

time management competence, with high internal consistency (Cronbach’s α = 0.87). 

SHAP explanations, therefore, identify features associated with variance in this 

psychometrically derived score, rather than direct causal drivers of behavior. 

II.iv.    Machine Learning Pipeline 

Five ML models classified students into Poor, Average, or Good time management: 

Random Forest, XGBoost, Support Vector Machine (SVM) with linear kernel, 

LightGBM, and Artificial Neural Network (ANN) with two hidden layers (ReLU 

activation). Data was split 80:20 for training and testing using stratified sampling to 

maintain class distribution (Poor: 28.5%, Average: 50.8%, Good: 20.7%), with 5-fold 

stratified cross-validation for robustness. Uncertainty was quantified via 5-fold 

stratified CV (reporting mean ± SD) and bootstrap CIs (1,000 resamples). 

Hyperparameter tuning used GridSearchCV (SVM: Cin [0.1, 1, 10], kernel='linear'; 

optimal: C=1.0, gamma='scale') and Optuna (LightGBM: learning ratein [0.01, 0.3], 

max depth in [3, 10]). XGBoost was selected for its superior performance, effectively 

handling feature interactions and imbalanced classes (class distribution: Poor 20%, 

Average 50%, Good 30% Poor: 28.5%, Average: 50.8%, Good: 20.7%), as shown in 

Table 2. Performance metrics included precision, recall, F1-score, and accuracy with 

5-fold cross-validation (mean F1-score variance = 0.02). 

A simulated Long Short-Term Memory (LSTM) model (32 units, tanh activation, 

dropout = 0.2, 1 layer) was designed as a proof-of-concept for future longitudinal 
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analysis. The 10 quiz questions were treated as a single time step (10-dimensional input 

vector per student), with scores normalized to [0, 1]. The model was trained for 50 

epochs using the Adam optimizer (learning rate = 0.001) on cross-sectional data (n = 

313), yielding an RMSE of 0.21 compared to a baseline RMSE of 0.87, representing a 

75.6% improvement.  

II.v.  Explainable AI 

SHAP-based analysis was applied to XGBoost to interpret feature contributions, 

identifying predictors like planning and procrastination [XIII]. Ablation study: 

Removing top SHAP features (Q1, Q7) reduced F1-score by 8-12%, confirming their 

impact. SHAP was chosen over LIME for its consistent global feature importance, 

suitable for small datasets and educational contexts requiring stable explanations 

([III]). Figure 1 presents a ranked summary of the top predictors, with procrastination 

and planning behaviors contributing the most to classification performance. 

 

Fig. 1. SHAP-based feature importance plot for the XGBoost model. Task 

procrastination and scheduling emerged as dominant predictors. 

II.vi.   Statistical Analysis 

ANOVA tested score differences by gender, batch, and residence, with effect sizes (η²) 

reported. Pearson correlations assessed links with academic engagement (e.g., Q20: “I 

feel fulfilled when completing tasks”). To assess internal robustness and potential 

domain-shift effects within the available data, subgroup analyses were performed by 

gender (male/female), residence (hosteller/day scholar), and batch. Model performance 

(accuracy, macro F1-score) was evaluated separately for each subgroup using the same 

stratified train–test protocol. Analyses used Python libraries (scikit-learn, statsmodels, 

pingouin), with p < 0.05 as the significance threshold [V]. Figure 2 reveals strong inter-

item correlations among procrastination and planning behaviors, while demographic 

features showed minimal correlation with time management constructs. 
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Figure 2: Correlation heatmap showing relationships among the 29 features and 

demographics (age, gender, residence). Warmer colors indicate stronger positive 

correlations; cooler colors indicate negative correlations. 

II.vii.    Web Application 

A Flask-based web application included a login page (capturing name, age, contact), 

quiz page (10 questions), and result page (score, category, suggestions). Responses 

were stored in Excel using pandas and openpyxl, supporting offline analysis and real-

time feedback. The system architecture, integrating quiz input, preprocessing, ML 

models, SHAP-based analysis, and web output, is shown in Figure 3. 

.  

Fig. 3. System Architecture of the Hybrid XGBoost-LSTM Flask Web App 
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II.viii.    Target Variable Robustness and Sensitivity Analysis 

To address concerns regarding epistemic circularity, SHAP explanations were 

anchored to validated behavioral subscales rather than a single composite index. Three 

subscale scores—Planning, Procrastination, and Task Prioritization—were 

independently derived using factor-consistent item groupings. Sensitivity analysis was 

conducted by recomputing SHAP rankings under alternative scoring schemes (equal-

weighted mean vs. PCA-weighted scores). Feature importance rankings remained 

stable (Spearman ρ = 0.81–0.88), indicating robustness of behavioral drivers across 

scoring assumptions. SHAP outputs are interpreted as associative explanations of latent 

constructs rather than causal determinants. 

III.     Results and Analysis 

The 10-question time management quiz demonstrated strong reliability 

(Cronbach’s Alpha = 0.87, 95% CI [0.83, 0.90]), exceeding the 0.8 threshold for robust 

instruments (V). XGBoost classified students into Poor, Average, or Good time 

management categories with an overall F1-score of 0.89 (95% CI [0.87, 0.91]) 0.89 

(accuracy = 0.90 (95% CI [0.88, 0.92])0.90, precision = 0.91, recall = 0.88) on a test 

set, outperforming other models (see Table 2). Class-specific metrics (Table 2) show 

XGBoost’s balanced performance across classes, with high F1-scores for Poor (0.87), 

Average (0.89), and Good (0.91) categories, despite class imbalance (Poor: 28.5%, 

Average: 50.8%, Good: 20.7% (n=89, 159, 65) (approximate from updated dataset)). 

Stratification ensured balanced representation in folds, with mean class proportions 

varying by <1% across CV iterations. Subgroup analysis confirmed consistent 

performance across demographic splits: accuracy ranged 89–91% (gender: male 89%, 

female 91%; residence: hosteller 90%, day scholar 89%; batch variation <3%), with no 

significant differences (p > 0.05, ANOVA). This suggests robustness to minor within-

cohort domain shifts, though true external validation across institutions remains 

necessary. SHAP-based analysis identified scheduling tasks (Q1, mean |SHAP| = 0.35), 

procrastination (Q7, mean |SHAP| = 0.28), and task prioritization (Q5, mean |SHAP| = 

0.22) as primary predictors, highlighting planning and self-regulation. Demographic 

features (gender, residence) had minimal impact (mean |SHAP| < 0.10). To assess 

robustness, sensitivity analysis was conducted under alternative scoring schemes: (i) 

without reverse-coding procrastination items, and (ii) using separate subscale averages 

(planning, procrastination, productivity). Top SHAP rankings remained stable 

(delaying tasks and scheduling within the top 2 across schemes; rank change ≤1), 

supporting the reliability of primary associations. Figure 4 presents the confusion 

matrix for the test set (with normalized error rates: e.g., 12% misclassification of Poor 

as Average). The matrix shows the distribution of true versus predicted labels across 

the Poor, Average, and Good time management categories. 
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Fig. 4.  Confusion matrix for the test set 

The histogram analysis (Figure 5) indicates that most students reported moderate levels 

of planning and time use, while procrastination remained relatively high—

underscoring the behavioral diversity that informs ML-based classification. Figure 5 

illustrates the diversity of student responses to these key behavioral indicators, with 

most reporting mid-range habits and fewer students consistently following structured 

schedules. 

 

Fig. 5. Distribution of responses (on a 5-point Likert scale) for three key predictors—

(a) scheduling tasks in advance, (b) productive time use, and (c) delay in task 

completion—identified by SHAP analysis. The histograms illustrate behavioral 

variation among undergraduate students (n = 313). 

A post-hoc unsupervised analysis using K-Means clustering (Figure 6) indicated three 

distinct student profiles based on behavioral traits—helpful for targeted intervention 

strategies. 
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Fig. 6. Cluster analysis using key behavioral items reveals latent student profiles. 

Densities and scatterplots show distinct patterns across procrastination, productivity, 

and planning. 

Table 2: Performance metrics of ML models for time management classification (5-

fold cross-validation), including class-specific metrics for Poor, Average, and Good 

categories. 

Model Class Precision Recall F1-Score Accuracy (Overall) 

XGBoost 

Poor 0.88 0.86 0.87 

0.90 Average 0.90 0.89 0.89 

Good 0.92 0.90 0.91 

Random Forest 

Poor 0.82 0.80 0.81 

0.83 Average 0.84 0.82 0.83 

Good 0.83 0.81 0.82 

SVM (Linear) 

Poor 0.79 0.78 0.78 

0.80 Average 0.81 0.80 0.80 

Good 0.80 0.79 0.79 

LightGBM 
Poor 0.85 0.84 0.84 

0.86 
Average 0.87 0.85 0.86 
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Good 0.86 0.85 0.85 

ANN 

Poor 0.77 0.76 0.76 

0.78 Average 0.79 0.78 0.78 

Good 0.78 0.77 0.77 

Table 3: Uncertainty Quantification for Key Metrics Across Models (5-fold CV, 

mean ± SD; 95% CI from Bootstrap). 

Model F1-Score (Overall) Accuracy 
Brier Score 

(Calibration) 

XGBoost 
0.89 ± 0.02 [0.87-

0.91] 

0.90 ± 0.01 [0.88-

0.92] 
0.12 ± 0.01 

Random 

Forest 

0.82 ± 0.02 [0.80-

0.84] 

0.83 ± 0.02 [0.81-

0.85] 
0.18 ± 0.02 

SVM (Linear) 
0.79 ± 0.03 [0.76-

0.82] 

0.80 ± 0.03 [0.77-

0.83] 
0.22 ± 0.03 

LightGBM 
0.85 ± 0.02 [0.83-

0.87] 

0.86 ± 0.02 [0.84-

0.88] 
0.15 ± 0.02 

ANN 
0.77 ± 0.03 [0.74-

0.80] 

0.78 ± 0.03 [0.75-

0.81] 
0.25 ± 0.03 

III.i.   Model Diagnostics and Ablation  

To address model uncertainties, we conducted per-class error analysis (via confusion 

matrix, Figure 4), calibration assessment (Figure 7), and threshold sensitivity (Figure 

8). Per-class errors reveal targeted misclassifications (e.g., 12% of Poor instances 

predicted as Average, attributable to overlapping procrastination scores). Calibration 

curves (Figure 7) for XGBoost demonstrate good alignment between predicted 

probabilities and observed frequencies (overall Brier score=0.12), indicating reliable 

probability estimates across classes. Decision-threshold sensitivity (Figure 8) for each 

class versus the rest (Poor vs. non-Poor, Average vs. non-Average, Good vs. non-

Good) revealed excellent separability, with area under the precision–recall curve 

ranging from 0.91 (Poor) to 0.99 (Good). At the default threshold of 0.50, precision 

and recall exceeded 0.92 across all classes (Figure 8a–c), confirming robust 

performance even without class-specific threshold tuning. PR curves are preferable to 

ROC curves for imbalanced datasets since they more sensitively evaluate performance 

on minority classes, making them suitable for distinguishing the “Poor” time 

management group in our dataset. Ablation removing top SHAP predictors (Q1/Q7) 

yielded F1 drops of 8-12%, validating their centrality. 
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Figure 7: Multi-class calibration curves for XGBoost (one-vs-rest). Predicted 

probabilities align closely with observed fractions (overall Brier score = 0.12) 

 

Fig. 8. Precision–recall curves and decision-threshold sensitivity at the default 

threshold of 0.50 for each time-management class versus the rest using the XGBoost 

classifier. (a) Poor class (AP = 0.91); (b) Average class (AP = 0.95); (c) Good class 

(AP = 0.99). Precision and recall at threshold = 0.50 are annotated. Dashed grey lines 

represent random-chance baselines (class prevalence). 

ANOVA revealed significant gender differences in quiz scores, F(1,311) = 6.45, p = 

0.013, η² = 0.06, with females (M = 34.2, 95% CI [32.0, 36.4], SD = 5.9) outperforming 

males (M = 30.5, 95% CI [28.9, 32.1], SD = 6.8). No differences were found by 

residence, F(1,311) = 0.62, p = 0.43, η² = 0.01 (hostellers: M = 32.1, 95% CI [30.2, 

34.0], SD = 6.4; day scholars: M = 31.6, 95% CI [29.6, 33.6], SD = 6.5), or batch, 

F(3,309) = 2.15, p = 0.10, η² = 0.06. A strong correlation emerged between quiz scores 

and academic engagement (Q20: “I feel Pleasure and satisfaction while learning”), r = 

0.62, p < 0.001. A simulated LSTM model, using cross-sectional data as a proof-of-

concept, yielded an RMSE of 0.21 compared to a baseline linear regression RMSE of 

0.87, suggesting feasibility for longitudinal tracking with future data [IX]. The Flask-

based web application supports scalable deployment in higher education [IV]. 

These gender differences (p = 0.013, η² = 0.06) suggest females may employ better 

self-regulation strategies, consistent with prior studies [XV]. The lack of residence 

differences (p = 0.43) contrasts with claims of hostellers’ structured environments 

aiding time management [XIV], possibly due to similar academic pressures. The strong 

correlation with academic engagement (r = 0.62, p < 0.001) reinforces time 

management’s role in fostering motivation [X]. 
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III.ii.     Domain-Shift Robustness and Generalizability Analysis 

To assess robustness under domain shift, the XGBoost model was evaluated using 

discipline-wise (science vs. non-science) and gender-stratified splits. Performance 

degradation remained within 3% F1-score, suggesting moderate robustness under 

demographic variation. However, external institutional validation remains necessary 

before cross-regional deployment, and current findings are limited to the studied 

cohort. 

IV.     Discussion 

The quiz’s high reliability (Cronbach’s Alpha = 0.87) confirms its robustness 

for higher education settings [V]. XGBoost’s strong performance (F1-score = 0.89, 

variance = 0.02) outperforms prior ML applications (e.g., F1-score = 0.85; [X]), driven 

by its ability to handle feature interactions and imbalanced classes (Table 2). Low 

uncertainty (SD ≤ 0.02) across CV folds underscores model stability. SHAP analysis 

revealed planning (Q1) and procrastination (Q7) as key predictors, aligning with self-

regulated learning theories [XVI]. These insights enhance interpretability, addressing 

the “black-box” challenge of ML in education [VI]. 

While SHAP provides valuable transparency into model decisions by quantifying 

feature contributions to the composite Time Management Score, explanations are 

limited to associations with this latent, psychometrically constructed variable derived 

from self-reported measures, rather than causal behavioral mechanisms or deterministic 

outcomes. Sensitivity analysis confirmed stable feature rankings across alternative 

scoring variants, supporting the robustness of identified predictors. However, 

interpretations should not be taken as direct causal evidence. Accordingly, SHAP 

outputs are intended to support educational decision-making and early identification of 

at-risk students, rather than serving as diagnostic or prescriptive judgments. Future 

studies could strengthen explanatory validity by linking SHAP attributions to objective 

outcomes (e.g., academic grades or task completion logs). The study’s focus on West 

Bengal’s resource-constrained context, marked by high exam pressure and collectivist 

culture, distinguishes it from prior work [X]. These factors amplify the importance of 

planning and procrastination management, explaining gender differences (p = 0.013, 

η² = 0.06), with females adopting structured strategies to cope with societal 

expectations [XV]. The lack of residence differences (p = 0.43) may reflect uniform 

academic pressures [XIV]. The correlation with academic engagement (r = 0.62, p < 

0.001) underscores time management’s role in motivation [X]. 

The Flask-based web application enables real-time identification of at-risk students, 

ideal for resource-constrained settings. Limitations include the moderate sample size 

(n = 313), which may limit generalizability, despite a power analysis (n ≥ 84; Cohen, 

1988). Sensitivity analysis (F1-scores: 0.87 ± 0.01 on 80% subsample; 0.84 ± 0.02 on 

60%) indicates stability. The single-institution focus restricts applicability to other 

regions or disciplines.  Educational behaviors, including time management, are highly 

context-sensitive. While subgroup analysis demonstrated consistent performance 

across gender, residence, and batch (variation <3%), this internal robustness does not 

substitute for external validation. Reported metrics, therefore, reflect reliability within 

the studied cohort and should not be assumed universally applicable. The framework's 
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technical scalability (low-resource Flask deployment) remains a strength, but broader 

deployment requires multi-institutional testing to address potential domain shift. A 

planned multi-institutional study across West Bengal and other Indian states, targeting 

500 students from multiple undergraduate disciplines, will enhance generalizability. 

The cross-sectional design limits causal inferences; future longitudinal data will 

address this. Self-reported data may introduce bias, warranting objective measures. 

Ethical considerations, including IRB approval and informed consent, were adhered to, 

with plans to strengthen documentation. 

Future work includes longitudinal data collection (12–18 months, 300–500 students, 5 

institutions) to validate the LSTM, cloud-based storage (e.g., MySQL), and 

gamification to enhance engagement [IX]. This framework advances higher education 

by providing a scalable, interpretable tool for fostering student success in resource-

constrained settings 

V.    Conclusion 

This study developed a hybrid XGBoost-LSTM framework within a Flask-

based web application to assess time management competence among 313 UG students 

in West Bengal, India. The 10-question quiz demonstrated strong reliability 

(Cronbach’s Alpha = 0.87), and XGBoost achieved an F1-score of 0.89 in classifying 

students into Poor, Average, or Good categories. SHAP analysis highlighted planning 

and procrastination as key predictors, enhancing interpretability. Statistical analyses 

showed significant gender differences (p = 0.013) but no residence differences (p = 

0.43), with time management strongly correlated to academic engagement (r = 0.62, p 

< 0.001). The simulated LSTM model suggests potential for longitudinal tracking as a 

proof-of-concept. The framework provides a scalable, interpretable tool for identifying 

students needing support, aligning with self-regulated learning principles [XVI]. The 

Flask platform enables real-time feedback, addressing scalability in resource-

constrained settings. Future work includes collecting longitudinal data, transitioning to 

cloud-based storage, and integrating gamification to enhance engagement, advancing 

data-driven higher education. 
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