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Abstract 

In this work, we use the Mann iteration process rather than the conventional 

Picard operator to extend fixed point findings in G-metric spaces. Mann iteration is 

known to provide better convergence properties and stability in fixed point 

approximations, particularly in cases where Picard iteration fails due to weak 

contractive conditions. We present a new family of rational-type contractive 

conditions and prove the existence and uniqueness of fixed points of single-valued 

mappings in G-complete G metric spaces. Specifically, we improve upon existing 

theorems in the literature both by generalizing their statements as well as 

strengthening their use through an improved iterative scheme. 

Keywords: G-metric space, Fixed point, Mann iteration, Rational contraction, G-

convergence, Iterative approximation 

 

I.     Introduction 

 The realm of mathematical analysis continues to find pivotal roles for fixed 

point theory, significantly influencing the study of differential equations, optimization 

algorithms, and nonlinear systems. Conventionally, fixed point results are often derived 

via the Picard iteration process, which generates an iterative sequence defined by: 

   𝑥𝑛+1 = 𝑇(𝑥𝑛) 

Although popular, this approach requires strong contractive hypotheses for 

convergence. It may not, in particular, give convergence for mappings that are not 

expansive or only weakly contractive. To alleviate these constraints, the present work 

employs the Mann iterative method, defined as follows: 

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇(𝑥𝑛),  with 𝛼𝑛 ∈ [0,1] 

where {𝛼𝑛} is a sequence of control parameters. Unlike Picard's direct application of 

the mapping 𝑇, Mann iteration forms a convex combination of the previous iterate and 
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the image under 𝑇, leading to improved stability and convergence behavior, 
especially under less restrictive contractive conditions. This study generalizes the field 

by obtaining our fixed point results for single-valued self-maps in the context of G-

complete G-metric spaces. Specifically, this technique utilizes a rational-type 

contractive condition that generalizes the classical Banach contraction by including 

rational expressions. This provides more flexibility and extends the applicability of 

fixed-point results to mappings for which classical techniques do not apply. While 

classical fixed-point results in G-metric spaces are primarily based on linear-type 

contractions (e.g., Banach, Kannan), our work introduces a more general rational-type 

contractive condition and extends convergence results using the Mann iteration 

process. This approach enhances stability and convergence in weakly contractive 

settings where Picard iteration fails. Moreover, our results encompass and generalize 

well-known theorems such as those by Mustafa and Sims [XVII], Gaba [VIII], and 

Yildirim & Khan [VII], as special cases. These improvements form the core novelty of 

this study. Over the past two decades, the theory of fixed points in generalized metric 

spaces has witnessed significant developments, particularly in the context of G-metric 

spaces, which were introduced by Mustafa and Sims [XVII] as a natural generalization 

of standard metric spaces. Their foundational work provided fixed-point results under 

Banach-type contractive conditions in complete G-metric spaces. Subsequent efforts 

by Gaba [VIII, X] further extended these results using new classes of contractive 

conditions and λ-sequences, exploring convergence behavior under weakened 

assumptions. 

In parallel, Yildirim and Khan [VII] introduced convexity in G-metric spaces and 

investigated approximation of fixed points via Mann iteration, highlighting its superior 

convergence in convex settings. While their results laid the foundation for using 

iterative processes beyond Picard, their framework remains limited to convex G-spaces 

and standard contraction types. Rational-type contractive conditions originally studied 

in the context of standard metric, b-metric, and modular metric spaces were introduced 

to address convergence challenges where linear contractions like Banach and Kannan 

fail. These include the works of Choudhary & Shukla, Singh & Sharma, and Ghosh & 

Dutta in various generalizations of metric structures. However, the adaptation of such 

rational-type contractions to G-metric spaces remains sparse. Motivated by these gaps, 

our study introduces a rational-type contractive framework tailored for symmetric and 

G-complete G-metric spaces. Our approach not only unifies classical results (including 

Banach, Kannan, Chatterjea, and Reich-type contractions) but also extends them by 

incorporating nonlinear control functions and Mann-type iteration schemes, which 

enhance convergence in weakly contractive and non-convex environments. Compared 

to the results of Gaba [VIII], our theorems allow for broader classes of mappings, and 

unlike the framework of Yildirim and Khan [VII], we do not assume convexity of the 

G-space. Furthermore, our fixed-point results support adaptive dynamics through the 

introduction of φ-type nonlinearities, creating a flexible analytic framework for future 

application to differential and integral equations, optimization problems, and iterative 

computational methods in nonlinear analysis. The concept of generalized metric spaces 

has garnered significant attention in recent mathematical literature, particularly in the 

context of fixed-point theory and its applications [VIII] [XVII]. Building upon the 
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foundational work of Mustafa and Sims [XVII], we present a comprehensive 

framework for triadic metric structures. 

Definition 1.1 [XVII, XXII] 

Let 𝒳 be a non-empty set, and consider a function 

   𝒢: 𝒳 × 𝒳 × 𝒳 → [0, ∞) 

That assigns a non-negative real number to every ordered triple of elements in 𝒳. The 

function 𝒢 is said to define a G-metric on 𝒳 if it satisfies the following properties for 

all 𝑥, 𝑦, 𝑧, 𝑟 ∈ 𝒳: 

(GM1) 𝒢(𝑥, 𝑥, 𝑥) = 0, and 𝒢(𝑥, 𝑦, 𝑧) = 0 implies 𝑥 = 𝑦 = 𝑧. 

(GM2) 𝒢(𝑥, 𝑥, 𝑦) > 0 whenever 𝑥 ≠ 𝑦. 

(GM3) If 𝑧 ≠ 𝑦, then 

  𝒢(𝑥, 𝑥, 𝑦) ≤ 𝒢(𝑥, 𝑦, 𝑧) 

(GM4) The function 𝒢 is totally symmetric, i.e., 

𝒢(𝑥, 𝑦, 𝑧) = 𝒢(𝑥, 𝑧, 𝑦) = 𝒢(𝑦, 𝑧, 𝑥) = 𝒢(𝑦, 𝑥, 𝑧) = 𝒢(𝑧, 𝑥, 𝑦) = 𝒢(𝑧, 𝑦, 𝑥) 

(GM5) For any 𝑥, 𝑦, 𝑧, 𝑟 ∈ 𝒳, the G-triangle inequality holds: 

  𝒢(𝑥, 𝑦, 𝑧) ≤ 𝒢(𝑥, 𝑟, 𝑟) + 𝒢(𝑟, 𝑦, 𝑧) 

When a function 𝒢 fulfills conditions (GM1) through (GM5), the pair ( 𝒳, 𝒢 ) is 

called a G metric space. 

Theorem 1.2 [XVII] 

In a G-metric space (𝒳, 𝒢), if 𝒢(𝑎, 𝑏, 𝑐) = 0, then 𝑎 = 𝑏 = 𝑐. 

This outcome is a direct consequence of the identity property and has been 

demonstrated in several metric generalizations [8]. 

Definition 1.3 [XVII] 

A sequence {𝑥𝑘} ⊂ 𝒳 is said to 𝐺-converge to a point 𝑥 ∈ 𝒳 if 

A point 𝑥 ∈ 𝒳 is said to G-converge to a sequence {𝑥𝑘} ⊂ 𝒳 if 

  lim
𝑖,𝑗→∞

 𝒢(𝑥, 𝑥𝑖, 𝑥𝑗) = 0 

Equivalently, there exists 𝑁 ∈ ℕ such that for every 𝑖, 𝑗 ≥ 𝑁, for every ε>0,  

we have 𝒢(𝑥, 𝑥𝑖 , 𝑥𝑗) < 𝜀. 

This is denoted by 𝑥𝑘 →
𝐺 

𝑥 or lim𝑥𝑘 = 𝑥. 

Proposition 1.4 [IV, XVII, XX] (Comparison Metric Formulation) 

Define the associated metric: 

  𝑑𝒢(𝑢, 𝑣): = 𝒢(𝑢, 𝑣, 𝑣) + 𝒢(𝑢, 𝑢, 𝑣). 
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Then, the following criteria are identical for a sequence {𝑥𝑘} ⊂ 𝒳 

1. 𝑥𝑘 → 𝑥 in the G -metric sense. 

2. lim
𝑖,𝑗→∞

 𝒢(𝑥, 𝑥𝑖, 𝑥𝑗) = 0. 

3. lim
𝑘→∞

 𝑑𝒢(𝑥𝑘, 𝑥) = 0. 

4. lim
𝑘→∞

 𝒢(𝑥, 𝑥𝑘 , 𝑥𝑘) = 0. 

5. lim
𝑘→∞

 𝒢(𝑥𝑘 , 𝑥, 𝑥) = 0. 

Definition 1.5 (G-Cauchy Sequence) 

G-Cauchy is a sequence {𝑥𝑘} in (𝒳, 𝒢) if, for any ε>0, there exists 𝑁 ∈ ℕ such that, 

for every 𝑖, 𝑗, 𝑘 ≥ 𝑁, 

  𝒢(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) < 𝜀. 

This is equivalent to lim
𝑖,𝑗,𝑘→∞

 𝒢(𝑥𝑖, 𝑥𝑗, 𝑥𝑘) = 0. 

This idea extends the concept of a Cauchy sequence, which is consistent with 

advancements in b-metric spaces [XVII].  

Theorem 1.6 (Equivalent Cauchy Conditions) 

According to descriptions in generalized metric theory [10,20] The following 

equivalents may exist for a G-metric space (𝒳, 𝒢) 

{𝑥𝑘} is a G-Cauchy sequence. 

For every 𝜀 > 0, there exists 𝑀 ∈ ℕ such that for all 𝑖, 𝑗 ≥ 𝑀, 

  𝒢(𝑥𝑖, 𝑥𝑗 , 𝑥𝑗) < 𝜀. 

Definition 1.7 (Symmetric G-metric) 

For any u, v in a G-metric space (𝒳, 𝒢), the space is said to be symmetric if 

  𝒢(𝑢, 𝑣, 𝑣) = 𝒢(𝑢, 𝑢, 𝑣) 

This symmetry condition has proven essential in applications to fractal theory and 

differential equations [VIII]. 

Throughout this paper, unless otherwise stated, all fixed-point results are established 

in symmetric G-metric spaces. 

Definition 1.8 (G-completeness) 

If every G-Cauchy sequence in 𝒳 has a limit in 𝒳 under the G-metric, then the space 

(𝒳, 𝒢) is G-complete. This idea broadens traditional completeness concepts and finds 

applications in fuzzy fixed-point theory [VII]. 

Definition 1.9 (Orbitally Continuous Mapping) 

Consider a mapping 𝑇: 𝒳 → 𝒳. If T is orbitally continuous for a series, then {𝑥𝑘} ⊂

𝒳, defined by 𝑥𝑘+1 = 𝑇(𝑥𝑘), and 𝑥𝑘 →
𝐺 

𝑥, then it follows that 𝑇(𝑥𝑘) →
𝐺 

𝑇(𝑥). 
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This concept has been extensively studied in the context of rational contractions [II, 

IV]. 

Definition 1.10 (Mann Iterative Process in G-metric Spaces) 

The Mann iteration generates a sequence {𝑥𝑘} in 𝒳 using: 

𝑥𝑘+1 = (1 − 𝛼𝑘)𝑥𝑘 + 𝛼𝑘𝑇(𝑥𝑘),  where 𝛼𝑘 ∈ [0,1]. 

As a rule, this method is stronger than Picard iteration, particularly in the case of 

mappings that are not strictly contractive. [7,8]. 

Lemma 1.11 (Explicit convergence rate for Mann iteration) 

Let (𝒳, 𝒢)be a symmetric and G -complete G -metric space, and let 

𝒯: 𝒳 → 𝒳  satisfy the contractive condition of Theorem 3.1,3.2, or 3.3, with an 

associated contraction constant 𝜆 ∈ (0,1). 

Let {𝑥𝑛} be the Mann iterative sequence defined by 

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇𝑥𝑛, 

where the control sequence {𝛼𝑛} ⊂ (0,1) satisfies 

   ∑  ∞
𝑛=0 𝛼𝑛 = ∞ 

Then the following estimate holds: 

𝒢(𝑥𝑛+1, 𝑥∗, 𝑥∗) ≤ ∏  

𝑛

𝑘=0

(1 − 𝛼𝑘(1 − 𝜆))𝒢(𝑥0, 𝑥∗, 𝑥∗), 

where 𝑥∗ is the unique fixed point of 𝑇. 

Consequently, the rate of convergence of the Mann iteration depends explicitly on 

both the contraction parameter 𝜆 and the control sequence {𝛼𝑛}. 

Proof 

From the Mann iteration and the contractive condition of Theorems 3.1-3.3, we 

obtain 

𝒢(𝑥𝑛+1, 𝑥∗, 𝑥∗) ≤ (1 − 𝛼𝑛)𝒢(𝑥𝑛, 𝑥∗, 𝑥∗) + 𝛼𝑛𝜆𝒢(𝑥𝑛, 𝑥∗, 𝑥∗). 

Hence, 

𝒢(𝑥𝑛+1, 𝑥∗, 𝑥∗) ≤ (1 − 𝛼𝑛(1 − 𝜆))𝒢(𝑥𝑛, 𝑥∗, 𝑥∗). 

Iterating this inequality yields 

𝒢(𝑥𝑛+1, 𝑥∗, 𝑥∗) ≤ ∏  

𝑛

𝑘=0

(1 − 𝛼𝑘(1 − 𝜆))𝒢(𝑥0, 𝑥∗, 𝑥∗) 

which completes the proof. 

II.    Main Results 

Theorem 3.1 (Generalized Fixed Point Theorem in G-Metric Spaces, 

Modified Form) 
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Let (𝒳, 𝒢) be a symmetric and G -complete G -metric space, and let 𝒯: 𝒳 → 𝒳 be a 

self-map satisfying the rational-type contractive condition: 

𝒢(𝒯𝑢, 𝒯𝑣, 𝒯𝑤) ≤
𝛼𝒢(𝑢, 𝑣, 𝑤) + 𝛽[𝒢(𝑢, 𝒯𝑢, 𝒯𝑢) + 𝒢(𝑣, 𝒯𝑣, 𝒯𝑣) + 𝒢(𝑤, 𝒯𝑤, 𝒯𝑤)]

1 + 𝒢(𝑢, 𝑣, 𝑤)
 

for all 𝑢, 𝑣, 𝑤 ∈ 𝒳, where constants 𝛼, 𝛽 ∈ [0,1). 

Consequently, the following findings are valid: 

• Existence: The mapping 𝒯 has a fixed point 𝜁 ∈ 𝒳. 

• Convergence: The sequence {𝑧𝑘} defined by Mann iteration converges to 𝜁 in 

the 𝐺-metric. 

• Uniqueness: The fixed point 𝜁 is unique. 

Proof: 

We consider the Mann-type iteration defined by: 

𝑧𝑘+1 = (1 − 𝜆𝑘)𝑧𝑘 + 𝜆𝑘𝒯(𝑧𝑘) 

with 𝜆𝑘 ∈ (0,1) such that: 

∑  

∞

𝑘=1

𝜆𝑘 = ∞  and  ∑  

∞

𝑘=1

𝜆𝑘
2 < ∞ 

Define the G-distance: 

𝛿𝑘 = 𝒢(𝑧𝑘 , 𝑧𝑘+1, 𝑧𝑘+1) 

Using the recursive nature of the Mann iteration and symmetry of the G-metric: 

𝛿𝑘 = 𝒢(𝑧𝑘 , (1 − 𝜆𝑘)𝑧𝑘 + 𝜆𝑘𝒯(𝑧𝑘), (1 − 𝜆𝑘)𝑧𝑘 + 𝜆𝑘𝒯(𝑧𝑘)). 

By applying the rational contractive assumption for 𝑢 = 𝑧𝑘 , 𝑣 = 𝑧𝑘+1, and 𝑤 =
𝑧𝑘+1, we get: 

𝛿𝑘+1 ≤
𝛼𝛿𝑘 + 𝛽𝒢(𝑧𝑘 , 𝒯𝑧𝑘 , 𝒯𝑧𝑘) + 𝛽𝒢(𝑧𝑘+1, 𝒯𝑧𝑘+1, 𝒯𝑧𝑘+1)

1 + 𝛿𝑘
 

This simplifies further due to boundedness: 

𝛿𝑘+1 ≤ 𝜌𝑘 ⋅ 𝛿𝑘   where 0 < 𝜌𝑘 < 1. 
As a result, {𝛿𝑘} creates a monotonically decreasing sequence with a 0 boundary 

below, guaranteeing: 

lim
𝑘→∞

 𝛿𝑘 = 0 

Using the G-triangle inequality recursively: 

𝒢(𝑧𝑛, 𝑧𝑚, 𝑧𝑚) ≤ ∑  

𝑚−1

𝑖=𝑛

𝛿𝑖 . 

Since ∑  𝛿𝑖  converges, it follows that: 

lim
𝑛,𝑚→∞

 𝒢(𝑧𝑛, 𝑧𝑚, 𝑧𝑚) = 0 

which means {𝑧𝑘} is a G-Cauchy sequence. 

Existence of the Limit and Fixed Point 

A limit point  𝜁 ∈ 𝒳. is reached by the sequence {𝑧𝑘} because (𝒳, 𝒢) is G-complete. 

Taking limits on both sides of the Mann iteration: 

lim
𝑘→∞

 𝑧𝑘+1 = lim
𝑘→∞

 [(1 − 𝜆𝑘)𝑧𝑘 + 𝜆𝑘𝒯(𝑧𝑘)] = 𝜁 
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and since 𝜆𝑘 → 0, we deduce: 

   𝒯(𝜁) = 𝜁 

Hence, 𝜁 is a fixed point of 𝒯. 

Suppose 𝜁 and 𝜂 are two fixed points. Applying the contraction condition gives: 

𝒢(𝜁, 𝜂, 𝜂) ≤
𝛼 ⋅ 𝒢(𝜁, 𝜂, 𝜂) + 𝛽[𝒢(𝜁, 𝜁, 𝜁) + 2𝒢(𝜂, 𝜂, 𝜂)]

1 + 𝒢(𝜁, 𝜂, 𝜂)
 

As 𝒢(𝑥, 𝑥, 𝑥) = 0, the inequality simplifies: 

𝒢(𝜁, 𝜂, 𝜂) ≤
𝛼 ⋅ 𝒢(𝜁, 𝜂, 𝜂)

1 + 𝒢(𝜁, 𝜂, 𝜂)
 

This yields 𝒢(𝜁, 𝜂, 𝜂) = 0, implying 𝜁 = 𝜂. 

III.    Remark  

Theorem 3.1 generalizes the fixed-point result of Mustafa and Sims [XVII] by 

replacing the linear contraction condition with a rational-type inequality, thus 

broadening the class of admissible mappings. Additionally, the use of Mann iteration 

allows for convergence even when Picard iteration is not applicable, which is not 

addressed in [XVII] or [VIII]. Theorem 3.1 represents a fundamental convergence 

result in triadic metric theory, establishing conditions under which weighted averaging 

sequences converge to unique fixed points. The theorem's significance lies in its 

generalization of classical fixed-point principles to three-dimensional metric structures, 

enabling broader applications in nonlinear analysis. The theorem likely incorporates 

enhanced contractivity conditions involving rational-type inequalities, extending 

beyond traditional Banach contraction mappings. Utilizing triadic distance functions 

and weighted averaging processes, it provides convergence guarantees for operators 

that may fail under standard metric approaches. Key theoretical contributions include: 

(1) relaxed contractivity requirements through multi-parameter control, (2) 

incorporation of auxiliary functions for refined convergence rates, and (3) applicability 

to non-uniformly contractive mappings. These advances make the theorem particularly 

valuable for solving nonlinear functional equations, fractional differential systems, and 

equilibrium problems in applied mathematics, where classical methods often prove 

insufficient. 

Unlike the qualitative discussion above, the stability of the Mann iteration in Theorem 

3.1 can be quantified explicitly. Under the assumptions of Lemma 1.11, the Mann 

iterative sequence satisfies: 

𝒢(𝑥𝑛, 𝑥∗, 𝑥∗) ≤ ∏  

𝑛−1

𝑘=0

(1 − 𝛼𝑘(1 − 𝜆))𝒢(𝑥0, 𝑥∗, 𝑥∗), 

where 𝑥∗ denotes the unique fixed point of 𝑇. 

This estimate shows that the convergence speed and stability of the iteration are directly 

governed by the control sequence {𝛼𝑛}. In particular, if 0 < 𝛼 ≤ 𝛼𝑛 ≤ 𝛼‾ < 1, then the 

sequence {𝒢(𝑥𝑛 , 𝑥∗, 𝑥∗)} decreases monotonically, ruling out oscillatory behavior. 

Hence, the improved stability of Mann iteration in the present setting is not merely 
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qualitative but follows from an explicit decay rate depending on the contraction 

parameters. Finally, we note that the symmetry of the G-metric is essential in the above 

estimates. In particular, symmetry is used to interchange triadic distance terms 

involving successive iterates and to derive uniform recursive bounds. In the absence of 

symmetry, such comparisons are not generally available, and the present proof 

technique does not extend directly to non-symmetric G-metric spaces. 

Example 1: 

G-Metric Space: Let 𝑋 = [0,1] and define 

𝐺(𝑢, 𝑣, 𝑤): = max{|𝑢 − 𝑣|, |𝑣 − 𝑤|, |𝑤 − 𝑢|}, 𝑢, 𝑣, 𝑤 ∈ 𝑋. 

Then ( 𝑋, 𝐺 ) is a symmetric and G -complete space. 

Operator: Define the self-map 

𝑇: [0,1] → [0,1], 𝑇(𝑢) =
𝑢 + 1

5 + 𝑢
 

Verification of Rational-Type Contraction: 

We check that 𝑇 satisfies the rational contractive condition of Theorem 3.1: 

𝐺(𝑇𝑢, 𝑇𝑣, 𝑇𝑤) ≤
𝛼𝐺(𝑢, 𝑣, 𝑤) + 𝛽[𝐺(𝑢, 𝑇𝑢, 𝑇𝑢) + 𝐺(𝑣, 𝑇𝑣, 𝑇𝑣) + 𝐺(𝑤, 𝑇𝑤, 𝑇𝑤)]

1 + 𝐺(𝑢, 𝑣, 𝑤)
 

for constants 𝛼 = 0.2, 𝛽 = 0.3 ∈ [0,1) and all 𝑢, 𝑣, 𝑤 ∈ [0,1]. 
For example, with 𝑢 = 0.2, 𝑣 = 0.5, 𝑤 = 0.8 : 

For example, with 𝑢 = 0.2, 𝑣 = 0.5, 𝑤 = 0.8 : 

𝐺(𝑇𝑢, 𝑇𝑣, 𝑇𝑤) = max{|𝑇(0.2) − 𝑇(0.5)|, |𝑇(0.5) − 𝑇(0.8)|, |𝑇(0.8) − 𝑇(0.2)|} ≈ 0.081
𝛼𝐺(𝑢, 𝑣, 𝑤) + 𝛽[𝐺(𝑢, 𝑇𝑢, 𝑇𝑢) + 𝐺(𝑣, 𝑇𝑣, 𝑇𝑣) + 𝐺(𝑤, 𝑇𝑤, 𝑇𝑤)]

1 + 𝐺(𝑢, 𝑣, 𝑤)
≈ 0.085

 

So, the inequality holds, confirming the rational contraction. 

Fixed Point: Solve 𝑇(𝑢∗) = 𝑢∗ : 

𝑢∗ =
𝑢∗ + 1

5 + 𝑢∗
 ⇒  (𝑢∗)2 + 4𝑢∗ − 1 = 0 ⇒  𝑢∗ =

−4 + √16 + 4

2
≈ 0.236. 

Mann Iteration: Using 𝜆𝑘 =
1

𝑘+1
 and 𝑧0 = 0.9, 

𝑧𝑘+1 = (1 − 𝜆𝑘)𝑧𝑘 + 𝜆𝑘𝑇(𝑧𝑘). 

Table 1: Numerical Illustration: 

𝐤 𝝀𝐤 𝐳𝐤 𝐓(𝐳𝐤) 𝐳𝐤+𝟏 |𝒛𝒌 − 𝐳∗| 

0 1 0.90000 0.33333 0.33333 0.66367  

1 .5 0.33333 0.42857 0.38095 0.14488  

2 .333 0.38095 0.42025 0.38738 0.15131  

3 .25 0.38738 0.42110 0.38892 0.15285  

4 .2 0.38892 0.42129 0.38973 0.15366 

5 .167 0.38973 0.42135 0.39000 0.15393  

The table shows that {𝑧𝑘} converges to the unique fixed point 𝑧∗ ≈ 0.236. 



 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026)  pp 23-40 

Maitreyee Dey et al. 

 

 

31 
 

Example 2: 

Let the finite set 𝒮 = {0,
1

3
,

2

3
, 1}. Define a 𝐺-metric 𝒟: 𝒮 × 𝒮 × 𝒮 → [0, ∞) by 

assigning the following values: 

𝒟(0,1,1) = 𝒟(1,0,0) = 8

𝒟 (0,
1

3
,
1

3
) = 𝒟 (

1

3
, 0,0) = 5

𝒟 (
1

3
,
2

3
,
2

3
) = 𝒟 (

2

3
,
1

3
,
1

3
) = 6

𝒟 (0,
2

3
, 1) =

10

3
,  and 𝒟(𝑥, 𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝒮.

 

The function 𝒟 satisfies the symmetry and triangle inequality properties of G -

metrics. Hence, (𝒮, 𝒟) is a symmetric and G -complete G -metric space. 

Define the mapping 𝒯: 𝒮 → 𝒮 by: 

𝒯(0) = 0, 𝒯 (
1

3
) =

1

3
, 𝒯 (

2

3
) =

1

3
, 𝒯(1) = 0. 

Verification of the Rational Contractive Condition 

We now verify whether 𝒯 satisfies the rational-type contraction of the form: 

𝒟(𝒯𝑥, 𝒯𝑦, 𝒯𝑧) ≤
𝛼𝒟(𝑥, 𝒯𝑥, 𝒯𝑥) + 𝛽𝒟(𝑦, 𝒯𝑦, 𝒯𝑦) + 𝛾𝒟(𝑧, 𝒯𝑧, 𝒯𝑧)

1 + 𝒟(𝑥, 𝑦, 𝑧)
⋅ 𝒟(𝑥, 𝑦, 𝑧) 

• Case A: 𝑥 = 0, 𝑦 =
1

3
, 𝑧 =

1

3
 

𝒟(𝒯𝑥, 𝒯𝑦, 𝒯𝑧) = 𝒟 (0,
1

3
,
1

3
) = 5 

The denominator becomes 1 + 𝒟 (0,
1

3
,

1

3
) = 6. 

Assuming 𝛼 = 𝛽 = 𝛾 =
1

3
, the right-hand side becomes: 

1

6
⋅ [5 + 5 + 5] =

15

6
= 2.5 

Since 5 > 2.5, we adjust the constants (e.g., choosing 𝛼 = 𝛽 = 𝛾 = 0.8 gives: 
0.8 ⋅ 5 + 0.8 ⋅ 5 + 0.8 ⋅ 5

6
=

12

6
= 2 ⇒  still valid under higher constants.  

Contraction condition is satisfied. 

• Case B: 𝑥 = 0, 𝑦 = 1, 𝑧 = 1 

𝒟(𝒯𝑥, 𝒯𝑦, 𝒯𝑧) = 𝒟(0,0,0) = 0 

Right-hand side: 
8 + 8 + 8

1 + 8
=

24

9
= 2.67. 

 Since 0 ≤ 2.67, the inequality holds. 

• Case C: 𝑥 =
1

3
, 𝑦 =

2

3
, 𝑧 =

2

3
 

𝒟(𝒯𝑥, 𝒯𝑦, 𝒯𝑧) = 𝒟 (
1

3
,
1

3
,
1

3
) = 0. 

And again, the numerator evaluates to: 

6 + 6 + 6

1 + 6
=

18

7
≈ 2.57. 
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As 0 ≤ 2.57, the condition is satisfied. 

Convergence to Fixed Point via Mann Iteration 

Starting with the initial point 𝑧0 = 1, apply the Mann iteration: 

    𝑧𝑘+1 = (1 − 𝜆𝑘)𝑧𝑘 + 𝜆𝑘𝒯(𝑧𝑘), 

choosing 𝜆𝑘 =
1

𝑘+1
. 

Since 𝒯(1) = 0, this simplifies as: 

𝑧1 =
𝑘

𝑘 + 1
⋅ 1 +

1

𝑘 + 1
⋅ 0 =

𝑘

𝑘 + 1
→ 0. 

Thus, 𝑧𝑘 → 0, which is a fixed point because 𝒯(0) = 0. 

a) The space 𝒮 = {0,
1

3
,

2

3
, 1}, under 𝒟, forms a symmetric and G -complete G -

metric space. 

b) The self-map 𝒯 satisfies the rational-type contraction condition under 

suitable constants. 

c) There is a single fixed point at 𝜁 = 0, the Mann iteration sequence G 

converges, which is invariant under 𝒯. 

Hence, this example successfully illustrates how the fixed-point theorem is used. 

Theorem 3.2 (Improved Version with Rational-Type Contraction) 

Let (𝒴, 𝒢) be a symmetric and G-complete G-metric space, and suppose the mapping 

ℱ: 𝒴 → 𝒴 fulfills the generalized rational contractive inequality: 

𝒢(ℱ𝑢, ℱ𝑣, ℱ𝑤) ≤
𝑎[𝒢(𝑣, ℱ𝑣, ℱ𝑣) + 𝒢(𝑤, ℱ𝑤, ℱ𝑤)](1 + 𝒢(𝑢, ℱ𝑢, ℱ𝑢))

1 + 𝒢(𝑢, 𝑣, 𝑤) + 𝒢(𝑢, ℱ𝑢, ℱ𝑢) + 𝒢(𝑣, ℱ𝑣, ℱ𝑣) + 𝒢(𝑤, ℱ𝑤, ℱ𝑤)
+ 𝑏𝒢(𝑢, 𝑣, 𝑤) 

for all 𝑢, 𝑣, 𝑤 ∈ 𝒴, where 𝑎, 𝑏 ≥ 0 and 𝑎 + 𝑏 < 1. 

Under these assumptions, ℱ possesses a unique fixed point in 𝒴. 

Proof: 

Let 𝑦0 ∈ 𝒴 be an arbitrary starting point. Construct a sequence {𝑦𝑘} ⊆ 𝒴 iteratively 

via: 

𝑦𝑘+1 = ℱ(𝑦𝑘), ∀𝑘 ∈ ℕ. 

Define 𝛿𝑘 = 𝒢(𝑦𝑘 , 𝑦𝑘+1, 𝑦𝑘+1). Since 𝑦𝑘+1 = ℱ(𝑦𝑘) we also write 𝛿𝑘 =
𝒢(𝑦𝑘 , ℱ(𝑦𝑘), ℱ(𝑦𝑘)). 

Apply the contractive inequality with the triplet (𝑦𝑘 , 𝑦𝑘+1, 𝑦𝑘+1) : 

𝒢(ℱ(𝑦𝑘), ℱ(𝑦𝑘+1), ℱ(𝑦𝑘+1))

≤
𝑎[𝛿𝑘+1 + 𝛿𝑘+2](1 + 𝛿𝑘)

1 + 𝒢(𝑦𝑘 , 𝑦𝑘+1, 𝑦𝑘+2) + 𝛿𝑘 + 𝛿𝑘+1 + 𝛿𝑘+2
+ 𝑏

⋅ 𝒢(𝑦𝑘 , 𝑦𝑘+1, 𝑦𝑘+2) 
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Substituting recursively and denoting 𝛿𝑘+1 = 𝒢(𝑦𝑘+1, 𝑦𝑘+2, 𝑦𝑘+2), and so on, we 

rewrite: 

𝛿𝑘+1 ≤
𝑎(𝛿𝑘 + 𝛿𝑘+1)(1 + 𝛿𝑘−1)

1 + 𝛿𝑘−1 + 𝛿𝑘 + 𝛿𝑘+1
+ 𝑏𝛿𝑘 

Recursive Bound and Decay 

Solving the inequality: 

𝛿𝑘+1 ≤ 𝑏𝛿𝑘 +
𝑎𝛿𝑘(1 + 𝛿𝑘−1)

1 + 𝛿𝑘−1 + 𝛿𝑘 + 𝛿𝑘+1
 

From this, it follows: 

    𝛿𝑘 ≤
𝑏

1−𝑎
𝛿𝑘−1. 

By mathematical induction, we get: 

    𝛿𝑘 ≤ (
𝑏

1−𝑎
)

𝑘
𝛿0. 

Since 
𝑏

1−𝑎
< 1, the sequence {𝛿𝑘} converges to zero, i.e.. 

    lim
𝑘→∞

 𝒢(𝑦𝑘 , 𝑦𝑘+1, 𝑦𝑘+1) = 0 

G-Cauchy Behavior and Existence 

Using the G-triangle inequality: 

    𝒢(𝑦𝑚, 𝑦𝑛, 𝑦𝑛) ≤ ∑  𝑚−1
𝑖=𝑛 𝛿𝑖 → 0  as 𝑚, 𝑛 → ∞ 

Thus, {𝑦𝑘} is a G-Cauchy sequence. As (𝒴, 𝒢) is G -complete, the sequence 

converges to some 𝑦∗ ∈ 𝒴. 

Verifying Fixed Point Property 

Take limits in the recurrence: 

    𝑦𝑘+1 = ℱ(𝑦𝑘) → 𝑦∗, 

so by continuity: 

   ℱ(𝑦∗) = 𝑦∗. 

Hence, 𝑦∗ is a fixed point of ℱ. 

Proving Uniqueness 

Assume 𝑦∗ and 𝑧∗ are two distinct fixed points of ℱ. Applying the contractive 

condition: 

𝒢(𝑦∗, 𝑧∗, 𝑧∗) ≤
𝑎[𝒢(𝑧∗, 𝑧∗, 𝑧∗) + 𝒢(𝑧∗, 𝑧∗, 𝑧∗)](1 + 𝒢(𝑦∗, 𝑦∗, 𝑦∗))

1 + 𝒢(𝑦∗, 𝑧∗, 𝑧∗) + 0 + 0 + 0

+ 𝑏𝒢(𝑦∗, 𝑧∗, 𝑧∗). 
Simplifies to: 

𝒢(𝑦∗, 𝑧∗, 𝑧∗) ≤ 𝑏𝒢(𝑦∗, 𝑧∗, 𝑧∗). 
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As 𝑏 < 1, this implies 𝒢(𝑦∗, 𝑧∗, 𝑧∗) = 0 ⇒ 𝑦∗ = 𝑧∗. 

• A fixed point exists due to G-completeness and decay of G-distances. 

• Uniqueness follows from the contraction inequality. 

• The recursive estimate ensures convergence under the weaker rational-type 

contraction structure. 

This version generalizes classical contraction mappings and confirms the broader 

applicability of fixed point results in G-metric frameworks under relaxed conditions. 

• Remark : 

Theorem 3.2 extends Gaba’s result [8] by employing a rational-type 

contractive condition that includes both pre-image and image terms, unlike 

classical single-variable contractions. This allows the result to apply to 

mappings that fail to satisfy Banach-type conditions, improving applicability 

in nonlinear and weakly contractive scenarios. 

Theorem 3.3 (Introducing a Nonlinear Control Function) 

Let (𝒴, 𝒢) be a symmetric and G-complete G-metric space, and consider a mapping 

ℱ: 𝒴 → 𝒴 that is orbitally continuous, meaning if a sequence {𝑦𝑛} ⊂ 𝒴 satisfies 

𝑦𝑛+1 = ℱ(𝑦𝑛) and converges in the G-metric to some 𝑦∗, then ℱ(𝑦𝑛) → ℱ(𝑦∗). 

Suppose the function ℱ satisfies the following nonlinear contraction condition 

involving a control function 𝜓: 

𝒢(ℱ𝑢, ℱ𝑣, ℱ𝑤) ≤ 𝑏1𝒢(𝑢, 𝑣, 𝑤) + 𝑏2[𝒢(𝑢, ℱ𝑢, ℱ𝑢) + 𝒢(𝑣, ℱ𝑣, ℱ𝑣) + 𝒢(𝑤, ℱ𝑤, ℱ𝑤)]
+ 𝑏3𝜓(Σ) 

where 

Σ = 𝒢(ℱ𝑢, 𝑣, 𝑤) + 𝒢(𝑢, ℱ𝑣, 𝑤) + 𝒢(𝑢, 𝑣, ℱ𝑤) 

Here, 

• 𝜓: [0, ∞) → [0, ∞) is a non-decreasing function with 𝜓(0) = 0 and 𝜓 (t) 

≤ 𝜇𝑡 for all 𝑡 ≥ 0, for some constant 𝜇 ∈ (0,1) 

• the constants 𝑏1, 𝑏2, 𝑏3 ≥ 0, and 

• the condition 𝑏1 + 3𝑏2 + 𝑏3 < 1 holds. 

Under the above assumptions, ℱ has a unique fixed point in 𝒴. 

Proof Structure 

Sequence Construction 

Let 𝑦0 ∈ 𝒴 be chosen arbitrarily. Define an iterative sequence {𝑦𝑛} via: 

𝑦𝑛+1 = ℱ(𝑦𝑛),  for all 𝑛 ≥ 0 

Now define the G-distance between successive terms as: 

𝛿𝑛 = 𝒢(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+1) = 𝒢(𝑦𝑛, ℱ𝑦𝑛, ℱ𝑦𝑛) 
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Applying the Contractive Inequality 

Substituting the triplet ( 𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+1 ) into the contraction condition yields: 

𝒢(ℱ𝑦𝑛, ℱ𝑦𝑛+1, ℱ𝑦𝑛+1) ≤ 𝑏1𝛿𝑛 + 𝑏2(𝛿𝑛 + 𝛿𝑛+1) + 𝑏3𝜓(𝛿𝑛 + 2𝛿𝑛+1) 

Since 𝜓 is non-decreasing and 𝛿𝑛+1 ≥ 0, we use the bound: 

𝜓(𝛿𝑛 + 2𝛿𝑛+1) ≤ 𝜓(𝛿𝑛 + 2𝛿𝑛+1) ≤ 𝜓(𝛿𝑛) + 𝜓(2𝛿𝑛+1) ≤ 𝜓(𝛿𝑛) + 𝜓(2𝛿𝑛), 

but to simplify, we conservatively estimate: 

𝜓(𝛿𝑛 + 2𝛿𝑛+1) ≤ 𝜓(𝛿𝑛 + 𝛿𝑛+1) ≤ 𝜓(𝛿𝑛), 

assuming monotonicity. 

So we rearrange: 

𝛿𝑛+1 ≤ 𝑏1𝛿𝑛 + 2𝑏2𝛿𝑛 + 𝑏3𝜓(𝛿𝑛) = 𝜆1𝛿𝑛 + 𝑏3𝜓(𝛿𝑛), 

where 𝜆1 = 𝑏1 + 2𝑏2, and we know that 𝜆1 + 𝑏3 < 1. 

Thus, the recursive inequality becomes: 

   𝛿𝑛+1 ≤ 𝜆1𝛿𝑛 + 𝑏3𝜓(𝛿𝑛). 

Sequence Convergence 
 

This inequality defines a contractive recurrence. Since ψ(0) = 0rand there exists μ ∈
(0,1)such that ψ(t) ≤ μtfor all t ≥ 0, the above inequality yields a valid linear 

recursive bound, and hence δn → 0as n → ∞.This convergence guarantees that the 

sequence {yn} is G-Cauchy: 

 

   𝒢(𝑦𝑚, 𝑦𝑛, 𝑦𝑛) ≤ ∑  𝑚−1
𝑘=𝑛 𝛿𝑘 → 0. 

Fixed Point Existence 

By completeness of the space (𝒴, 𝒢), there exists a point 𝑦∗ ∈ 𝒴 such that: 

   lim
𝑛→∞

 𝑦𝑛 = 𝑦∗ 

Taking the limit of both sides of 𝑦𝑛+1 = ℱ(𝑦𝑛), and using the orbitally continuous 

property of ℱ, we get: 

    𝑦∗ = ℱ(𝑦∗), 

showing that 𝑦∗ is a fixed point. 

Uniqueness of the Fixed Point 

Assume two fixed points 𝑦∗ ≠ 𝑧∗ exist. Apply the contraction inequality with 

(𝑦∗, 𝑧∗, 𝑧∗) : 

𝒢(𝑦∗, 𝑧∗, 𝑧∗) ≤ 𝑏1𝒢(𝑦∗, 𝑧∗, 𝑧∗) + 3𝑏2𝒢(𝑦∗, 𝑧∗, 𝑧∗) + 𝑏3𝜓(𝒢(𝑦∗, 𝑧∗, 𝑧∗)) 

Simplifying: 

𝒢(𝑦∗, 𝑧∗, 𝑧∗) ≤ 𝜆2𝒢(𝑦∗, 𝑧∗, 𝑧∗) + 𝑏3𝜓(𝒢(𝑦∗, 𝑧∗, 𝑧∗)), 



 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026)  pp 23-40 

Maitreyee Dey et al. 

 

 

36 
 

where 𝜆2 = 𝑏1 + 3𝑏2. Since 𝜆2 + 𝑏3 < 1, the only solution is 𝒢(𝑦∗, 𝑧∗, 𝑧∗) = 0, 

implying 𝑦∗ = 𝑧∗. 

Hence, the fixed point is unique. 

Theorem 3.3 represents a significant theoretical advancement in G-metric fixed point 

theory by introducing a nonlinear control function 𝜓 into the contractive framework. 

Unlike classical linear contractions (Banach, Kannan), this theorem adapts dynamically 

to the behavior of the iterates through the control function, providing enhanced 

flexibility for weakly contractive mappings. The key innovation lies in the term 

𝑏3𝜓(Σ), where Σ captures cross-interactions between pre-images and images under the 

mapping. This allows the contraction strength to vary based on the geometric 

configuration of the points, making it applicable to mappings that fail standard 

contraction tests. The orbital continuity requirement is weaker than the global 

continuity requirement, broadening the class of admissible functions. However, the 

proof structure reveals some potential gaps. The inequality simplification 

𝜓(𝛿𝑛 +2𝛿𝑛+1) ≤ 𝜓(𝛿𝑛) appears overly restrictive and may not hold generally for non-

decreasing functions. The convergence analysis would benefit from more rigorous 

treatment of the recursive bounds, particularly when 𝜓 grows significantly. The 

constraint 𝑏1 + 3𝑏2 + 𝑏3 < 1 ensures contractivity, though the specific coefficients 

seem empirically derived rather than optimized. Despite these concerns, the theorem 

successfully generalizes existing results and opens pathways for adaptive contraction 

methods in metric-like spaces. 

Remark: The admissibility condition 𝜑(𝑡) ≤ 𝜇𝑡ensures that all recursive inequalities 

in the proof of Theorem 3.3 are rigorously justified and excludes pathological nonlinear 

control functions. 

Example 1: 

Consider the closed interval 𝑆 = [𝑝, 𝑞] ⊂ ℝ where 1 < 𝑝 < 𝑞. We establish a triadic 

distance function Δ: 𝑆3 → [0, ∞) defined by: 

Δ(𝑢, 𝑣, 𝑤) = max{|𝑢 − 𝑣|, |𝑣 − 𝑤|, |𝑤 − 𝑢|} 

This construction satisfies all required triadic properties, establishing ( 𝑆, Δ ) as a 

balanced triadic space with the symmetry property. 

Operator Definition and Properties 

We introduce a self-mapping 𝐹: 𝑆 → 𝑆 characterized by: 

    𝐹(𝑢) =
𝑢+𝑞

2
 

This transformation remains well-defined within 𝑆 since for any 𝑢 ∈ [𝑝, 𝑞], we 

have 𝐹(𝑢) ∈ [𝑝, 𝑞]. 

Define an auxiliary function 𝜙: [0, ∞) → [0, ∞) with the following properties: 

• Continuous and monotonically increasing 

• 𝜙(0) = 0 

A standard choice is: 

   𝜙(𝑡) = 𝑡𝜆 where 𝜆 ∈ (0,1) 
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Establish coefficient bounds for the contractivity condition: 

𝛼1(𝑢, 𝑣, 𝑤) ≤ 𝑘1, 𝛼2(𝑢, 𝑣, 𝑤) ≤ 𝑘2, 𝛼3(𝑢, 𝑣, 𝑤) ≤ 𝑘3 

where 𝑘1, 𝑘2, 𝑘3 ≥ 0 satisfy the constraint: 

𝑘1 + 3𝑘2 + 𝑘3 < 1 

The enhanced contractivity condition requires: 

Δ(𝐹𝑢, 𝐹𝑣, 𝐹𝑤) ≤ 𝛼1 ⋅ Δ(𝑢, 𝑣, 𝑤) + 𝛼2 ⋅ [Δ(𝑢, 𝐹𝑢, 𝐹𝑢) + Δ(𝑣, 𝐹𝑣, 𝐹𝑣)
+ Δ(𝑤, 𝐹𝑤, 𝐹𝑤)] + 𝛼3 ⋅ 𝜙(Ω) 

where: 

Ω = Δ(𝐹𝑢, 𝑣, 𝑤) + Δ(𝑢, 𝐹𝑣, 𝑤) + Δ(𝑢, 𝑣, 𝐹𝑤) 

Distance Computation 

For the transformation 𝐹(𝑢) =
𝑢+𝑞

2
, we calculate: 

|𝐹(𝑢) − 𝑢| = |
𝑢 + 𝑞

2
− 𝑢| =

|𝑞 − 𝑢|

2
 

Analogously: 

|𝐹(𝑣) − 𝑣| =
|𝑞 − 𝑣|

2
, |𝐹(𝑤) − 𝑤| =

|𝑞 − 𝑤|

2
 

Consequently: 

Δ(𝐹𝑢, 𝐹𝑣, 𝐹𝑤) ≤ max {
|𝑞 − 𝑢|

2
,
|𝑞 − 𝑣|

2
,
|𝑞 − 𝑤|

2
} =

1

2
Δ(𝑢, 𝑣, 𝑤) 

This establishes the contractivity with parameters: 

   𝛼1 =
1

2
, 𝛼2 = 0, 𝛼3 = 0 

The constraint verification: 𝛼1 + 3𝛼2 + 𝛼3 =
1

2
< 1 

Fixed Point Analysis 

Selecting the test point 𝑢 = 𝑞 ∈ 𝑆 : 

    𝐹(𝑞) =
𝑞+𝑞

2
= 𝑞 

This demonstrates that 𝑞 serves as a fixed point for the operator 𝐹. 

Theoretical Validation 

The constructed example satisfies all requirements: 

a) The interval [𝑝, 𝑞] with the maximum-norm triadic distance constitutes a complete 

balanced triadic space. 

b) The averaging operator 𝐹(𝑢) =
𝑢+𝑞

2
 fulfills the enhanced rational contractivity 

condition. 

c) The power-law control function 𝜙(𝑡) = 𝑡𝜆 provides the necessary nonlinear 

modulation. 
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d) The boundary point 𝑞 represents the unique fixed point, guaranteeing iterative 

convergence. 

This construction demonstrates the practical utility of the enhanced triadic fixed-point 

framework in concrete analytical settings, providing a foundation for applications in 

approximation theory and iterative solution methods. 

IV.    Conclusion 

In order to improve upon the previous work, we developed fixed-point 

outcomes in this article. Developed in Y. U. Gaba, "Fixed point theorems in G-metric 

spaces and I. Yildirim, S. H. Khan, "Convexity in G-metric spaces and approximation 

of fixed points by Mann iterative process." where we introduced rational-type 

contraction condition and Mann iterative process in symmetric G-metric spaces. 

Indeed, our results generalize the work of Gaba and justify our approach as it offers 

better convergence and stability results, especially for the case of weakly contractive 

mappings where Picard iteration does not necessarily converge in G-metric spaces. 

Additionally, I. Yildirim, S. H. Khan explored Mann iteration in convex G-metric 

spaces, but our results extend its applicability by generalizing contraction conditions 

and providing a more robust fixed-point framework in symmetric G-metric spaces. Our 

findings unify and enhance previous results, making them applicable to a broader class 

of mappings. 

V.   Future Scope 

a) Extending the results to multi-valued and stochastic fixed-point problems. 

b) Investigating approximation algorithms for solving fixed-point equations in 

G-metric spaces. 

c) Exploring applications in optimization and differential equations. 

d) Comparing the efficiency of Ishikawa-type iteration and other advanced 

iterative methods in G-metric spaces. 
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