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Abstract

In this work, we use the Mann iteration process rather than the conventional
Picard operator to extend fixed point findings in G-metric spaces. Mann iteration is
known to provide better convergence properties and stability in fixed point
approximations, particularly in cases where Picard iteration fails due to weak
contractive conditions. We present a new family of rational-type contractive
conditions and prove the existence and uniqueness of fixed points of single-valued
mappings in G-complete G metric spaces. Specifically, we improve upon existing
theorems in the literature both by generalizing their statements as well as
strengthening their use through an improved iterative scheme.

Keywords: G-metric space, Fixed point, Mann iteration, Rational contraction, G-
convergence, Iterative approximation

I. Introduction

The realm of mathematical analysis continues to find pivotal roles for fixed
point theory, significantly influencing the study of differential equations, optimization
algorithms, and nonlinear systems. Conventionally, fixed point results are often derived
via the Picard iteration process, which generates an iterative sequence defined by:

Xns1 = T (xy)
Although popular, this approach requires strong contractive hypotheses for
convergence. It may not, in particular, give convergence for mappings that are not
expansive or only weakly contractive. To alleviate these constraints, the present work
employs the Mann iterative method, defined as follows:

Xnse1 = (1 —ap)x, + a,T(x,), with a, € [0,1]

where {a,} is a sequence of control parameters. Unlike Picard's direct application of
the mapping T, Mann iteration forms a convex combination of the previous iterate and
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the image under T, leading to improved stability and convergence behavior,
especially under less restrictive contractive conditions. This study generalizes the field
by obtaining our fixed point results for single-valued self-maps in the context of G-
complete G-metric spaces. Specifically, this technique utilizes a rational-type
contractive condition that generalizes the classical Banach contraction by including
rational expressions. This provides more flexibility and extends the applicability of
fixed-point results to mappings for which classical techniques do not apply. While
classical fixed-point results in G-metric spaces are primarily based on linear-type
contractions (e.g., Banach, Kannan), our work introduces a more general rational-type
contractive condition and extends convergence results using the Mann iteration
process. This approach enhances stability and convergence in weakly contractive
settings where Picard iteration fails. Moreover, our results encompass and generalize
well-known theorems such as those by Mustafa and Sims [XVII], Gaba [VIII], and
Yildirim & Khan [VII], as special cases. These improvements form the core novelty of
this study. Over the past two decades, the theory of fixed points in generalized metric
spaces has witnessed significant developments, particularly in the context of G-metric
spaces, which were introduced by Mustafa and Sims [XVII] as a natural generalization
of standard metric spaces. Their foundational work provided fixed-point results under
Banach-type contractive conditions in complete G-metric spaces. Subsequent efforts
by Gaba [VIII, X] further extended these results using new classes of contractive
conditions and A-sequences, exploring convergence behavior under weakened
assumptions.

In parallel, Yildirim and Khan [VII] introduced convexity in G-metric spaces and
investigated approximation of fixed points via Mann iteration, highlighting its superior
convergence in convex settings. While their results laid the foundation for using
iterative processes beyond Picard, their framework remains limited to convex G-spaces
and standard contraction types. Rational-type contractive conditions originally studied
in the context of standard metric, b-metric, and modular metric spaces were introduced
to address convergence challenges where linear contractions like Banach and Kannan
fail. These include the works of Choudhary & Shukla, Singh & Sharma, and Ghosh &
Dutta in various generalizations of metric structures. However, the adaptation of such
rational-type contractions to G-metric spaces remains sparse. Motivated by these gaps,
our study introduces a rational-type contractive framework tailored for symmetric and
G-complete G-metric spaces. Our approach not only unifies classical results (including
Banach, Kannan, Chatterjea, and Reich-type contractions) but also extends them by
incorporating nonlinear control functions and Mann-type iteration schemes, which
enhance convergence in weakly contractive and non-convex environments. Compared
to the results of Gaba [VIII], our theorems allow for broader classes of mappings, and
unlike the framework of Yildirim and Khan [VII], we do not assume convexity of the
G-space. Furthermore, our fixed-point results support adaptive dynamics through the
introduction of @-type nonlinearities, creating a flexible analytic framework for future
application to differential and integral equations, optimization problems, and iterative
computational methods in nonlinear analysis. The concept of generalized metric spaces
has garnered significant attention in recent mathematical literature, particularly in the
context of fixed-point theory and its applications [VIII] [XVII]. Building upon the
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foundational work of Mustafa and Sims [XVII], we present a comprehensive
framework for triadic metric structures.

Definition 1.1 [XVII, XXII]
Let X be a non-empty set, and consider a function

GX XX XX —>[0,0)

That assigns a non-negative real number to every ordered triple of elements in X'. The
function G is said to define a G-metric on X if it satisfies the following properties for
all x,y,z,7r € X:

(GM1) G(x,x,x) =0,and G(x,y,z) = 0 implies x =y = z.
(GM2) G(x,x,y) > 0 whenever x # .
(GM3) If z # y, then
G,x,y) < G(x,y,2)
(GM4) The function § is totally symmetric, i.e.,
G§xy,2)=6(x2y)=602x)=6G0x2) =§(zxYy) =G5y x)
(GMS) For any x,y, z,r € X, the G-triangle inequality holds:
Gy, z) <Gxrr)+G(r.y z)

When a function G fulfills conditions (GM1) through (GMY), the pair ( X, G ) is
called a G metric space.

Theorem 1.2 [XVII]
In a G-metric space (X, G),ifG(a,b,c) = 0,thena = b = c.

This outcome is a direct consequence of the identity property and has been
demonstrated in several metric generalizations [8].

Definition 1.3 [XVII]
A sequence {x;} € X is said to G-converge to a point x € X if

A point x € X is said to G-converge to a sequence {x;} € X if

i‘lji_rpoog(x, x;, %) =0

Equivalently, there exists N € N such that for every i,j = N, for every €0,

we have G(x, x;, %) < .

G
This is denoted by x;, — x or limx;, = x.

Proposition 1.4 [IV, XVII, XX] (Comparison Metric Formulation)
Define the associated metric:

dg(w,v):=G(w,v,v) + G(w,u,v).
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Then, the following criteria are identical for a sequence {x;} € X

1. xj — x in the G -metric sense.

2. lim g(x, xi,x]-) =0.

i,j—00
3. Ill—l)lolodg(xk'x) = 0.
4. ’lim G(x,xp,x,) = 0.
3. ’lim Glxg,x,x) =0.

Definition 1.5 (G-Cauchy Sequence)

G-Cauchy is a sequence {x; } in (X, G) if, for any £>0, there exists N € N such that,
forevery i,j,k = N,

G(xi x5, %) < &
This is equivalent to  lim g(xi,xj, xk) =0.
i,j,k—0c0
This idea extends the concept of a Cauchy sequence, which is consistent with
advancements in b-metric spaces [ XVII].

Theorem 1.6 (Equivalent Cauchy Conditions)
According to descriptions in generalized metric theory [10,20] The following
equivalents may exist for a G-metric space (X, G)

{x;} is a G-Cauchy sequence.
For every € > 0, there exists M € N such that for all i, j > M,
G(xi, x5, x)) < e.

Definition 1.7 (Symmetric G-metric)
For any u, v in a G-metric space (X, G), the space is said to be symmetric if

G(u,v,v) = G(u,u,v)

This symmetry condition has proven essential in applications to fractal theory and
differential equations [VIII].

Throughout this paper, unless otherwise stated, all fixed-point results are established
in symmetric G-metric spaces.

Definition 1.8 (G-completeness)

If every G-Cauchy sequence in X has a limit in X under the G-metric, then the space
(X, G) is G-complete. This idea broadens traditional completeness concepts and finds
applications in fuzzy fixed-point theory [VII].

Definition 1.9 (Orbitally Continuous Mapping)

Consider a mapping T: X — X. If T is orbitally continuous for a series, then {x;}
G G
X, defined by x4 = T(xy), and x;, = x, then it follows that T'(x) = T(x).
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This concept has been extensively studied in the context of rational contractions [II,
IV].

Definition 1.10 (Mann Iterative Process in G-metric Spaces)
The Mann iteration generates a sequence {x;} in X using:

Xk+1 = (1 - ak)xk + akT(xk), where (047 € [0,1]

As a rule, this method is stronger than Picard iteration, particularly in the case of
mappings that are not strictly contractive. [7,8].

Lemma 1.11 (Explicit convergence rate for Mann iteration)

Let (X, G)be a symmetric and G -complete G -metric space, and let

T:X — X satisfy the contractive condition of Theorem 3.1,3.2, or 3.3, with an
associated contraction constant A € (0,1).

Let {x,,} be the Mann iterative sequence defined by

Xne1 = (1= an)xy + ayTxy,
where the control sequence {a,} © (0,1) satisfies
Y=o Qn = ©

Then the following estimate holds:

n

§Consnxx) < | | (- @@= )G, x", 27,

k=0
where x* is the unique fixed point of T'.

Consequently, the rate of convergence of the Mann iteration depends explicitly on
both the contraction parameter A and the control sequence {a,, }.

Proof
From the Mann iteration and the contractive condition of Theorems 3.1-3.3, we
obtain

g(xn+1'x*'x*) = (1 - an)g(xn!x*'x*) + anlg(xn'x*!x*)-

Hence,

G(n41, 2", x7) < (1 = an (1 = D))G (n, x7, x7).
Iterating this inequality yields

GG, x) < | | (= @ = G ro,xx)
k=0

which completes the proof.
II. Main Results

Theorem 3.1 (Generalized Fixed Point Theorem in G-Metric Spaces,
Modified Form)
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Let (X, §) be a symmetric and G -complete G -metric space, and let 7: X’ = X be a
self-map satisfying the rational-type contractive condition:
GOTw Tv, Tw) < aG(u,v,w) + BIGw, Tu,Tu) + G, Tv,Tv) + G(w,Tw,Tw)]

1+Gw,v,w)
for all u, v,w € X, where constants a, § € [0,1).
Consequently, the following findings are valid:

e Existence: The mapping T has a fixed point { € X.

e Convergence: The sequence {z;} defined by Mann iteration converges to { in

the G-metric.

e Uniqueness: The fixed point { is unique.
Proof:

We consider the Mann-type iteration defined by:

Zy1 = (1= )z + 2T (2x)
with 4, € (0,1) such that:

Zlkzooand Zaimo
k=1

k=1

Define the G-distance:
Ok = G(Zk) Zk+1) Zie+1)

Using the recursive nature of the Mann iteration and symmetry of the G-metric:

8k = G(z1, (1 — 4)zg + 4T (z), (1 — )z + 4T (21.)).
By applying the rational contractive assumption for u = z,v = zj,¢, and w =
Zy 41, WE get:
ady + BG(2k, Tz, T2) + BG(Zie+1, T Zie 41, T Zge 1)

This simplifies further due to boundedness:
Ors1 < Px - 0 where 0 < p, < 1.

As aresult, {6} creates a monotonically decreasing sequence with a 0 boundary
below, guaranteeing:

Ok+1 <

lim 6]( =0

k—oo

Using the G-triangle inequality recursively:

m-1
g(zn:zm: Zm) = Z 6i-
i=n
Since ), §; converges, it follows that:
lim G(z,, Zm,Zm) =0
n,m-co

which means {z; } is a G-Cauchy sequence.

Existence of the Limit and Fixed Point
A limit point { € X. is reached by the sequence {2z, } because (X, G) is G-complete.
Taking limits on both sides of the Mann iteration:

’llm Ziy1 = ’llm [(1 - Ak)Zk + AkT(Zk)] = (
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and since 4;, — 0, we deduce:
T =¢
Hence, ¢ is a fixed point of T'.

Suppose ¢ and n are two fixed points. Applying the contraction condition gives:

G, mm) < — G&,nm +PIG(E.¢, )+ 2G(m,n,n)]

1+6¢nm)
As G(x,x,x) = 0, the inequality simplifies:

G&nm =7 +G(¢,nm)

This yields G(¢,n,n) = 0, implying { = 1.
III. Remark

Theorem 3.1 generalizes the fixed-point result of Mustafa and Sims [XVII] by
replacing the linear contraction condition with a rational-type inequality, thus
broadening the class of admissible mappings. Additionally, the use of Mann iteration
allows for convergence even when Picard iteration is not applicable, which is not
addressed in [XVII] or [VII]. Theorem 3.1 represents a fundamental convergence
result in triadic metric theory, establishing conditions under which weighted averaging
sequences converge to unique fixed points. The theorem's significance lies in its
generalization of classical fixed-point principles to three-dimensional metric structures,
enabling broader applications in nonlinear analysis. The theorem likely incorporates
enhanced contractivity conditions involving rational-type inequalities, extending
beyond traditional Banach contraction mappings. Utilizing triadic distance functions
and weighted averaging processes, it provides convergence guarantees for operators
that may fail under standard metric approaches. Key theoretical contributions include:
(1) relaxed contractivity requirements through multi-parameter control, (2)
incorporation of auxiliary functions for refined convergence rates, and (3) applicability
to non-uniformly contractive mappings. These advances make the theorem particularly
valuable for solving nonlinear functional equations, fractional differential systems, and
equilibrium problems in applied mathematics, where classical methods often prove
insufficient.

Unlike the qualitative discussion above, the stability of the Mann iteration in Theorem
3.1 can be quantified explicitly. Under the assumptions of Lemma 1.11, the Mann
iterative sequence satisfies:

n-1
g(xn'x*'x*) =< 1_[ (1 - ak(l - A))g(xO'x*'x*)'
k=0
where x* denotes the unique fixed point of T.

This estimate shows that the convergence speed and stability of the iteration are directly
governed by the control sequence {a,, }. In particular, if 0 < @ < a, < @ < 1, then the

sequence {G(x,,x*,x*)} decreases monotonically, ruling out oscillatory behavior.
Hence, the improved stability of Mann iteration in the present setting is not merely
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qualitative but follows from an explicit decay rate depending on the contraction
parameters. Finally, we note that the symmetry of the G-metric is essential in the above
estimates. In particular, symmetry is used to interchange triadic distance terms
involving successive iterates and to derive uniform recursive bounds. In the absence of
symmetry, such comparisons are not generally available, and the present proof
technique does not extend directly to non-symmetric G-metric spaces.

Example 1:
G-Metric Space: Let X = [0,1] and define
G(u,v,w):=max{|lu —v|,|[v—-w| |w—-ul},uv,wEX.

Then ( X, G ) is a symmetric and G -complete space.
Operator: Define the self-map

T:[0,1] = [0,1],T(w) =

Verification of Rational-Type Contraction:
We check that T satisfies the rational contractive condition of Theorem 3.1:

aGu,v,w) + B[G(u,Tu,Tu) + G(v,Tv,Tv) + G(w, Tw, Tw)]
1+G6Gu,v,w)

for constants « = 0.2, = 0.3 € [0,1) and all u, v,w € [0,1].
For example, withu = 0.2, v = 0.5,w = 0.8 :

u+1
54+u

G(Tu, Tv,Tw) <

For example, withu = 0.2,v = 0.5,w = 0.8 :

G(Tu,Tv,Tw) = max{|T(0.2) — T(0.5)|,|T(0.5) — T(0.8)|,|T(0.8) — T(0.2)|} = 0.081
aGu,v,w) + B[G(u, Tu,Tu) + G(v, Tv,Tv) + G(w, Tw, Tw)]

~ 0.085
1+Gu,v,w)
So, the inequality holds, confirming the rational contraction.
Fixed Point: Solve T (u*) = u* :
w41 _4+VT6F4
u*=5+u*=>(u*)2+4u*—1=0=>u*=—2 ~ 0.236.

Mann Iteration: Using A, = ﬁ and zy = 0.9,

Ziyr = (1 = L) zg + AT (2).

Table 1: Numerical Illustration:

The table shows that {7, } converges to the unique fixed point z* = 0.236.
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Example 2:
Let the finite set § = {0%,%, 1}. Define a G-metric D:§ X § X § — [0, ) by

assigning the following values:
D(0,1,1) =D(1,0,0) =8

D(O ! 1)—2)(1 00)—5
) 3 ) 3 - 3 Y -
D(1 2 2)_2)(2 1 1)_6
3’3’3/ T\3'3'3)
2 10
D (0,5, 1) = 3 and D(x,x,x) =0 forall x € §.
The function D satisfies the symmetry and triangle inequality properties of G -
metrics. Hence, (§,D) is a symmetric and G -complete G -metric space.
Define the mapping 7': S — S by:
70 —OT(1>—1 T(Z)—l T(1) =0
( ) - Y 3 - 3 ) 3 - 3 ) ( ) = V.
Verification of the Rational Contractive Condition

We now verify whether T satisfies the rational-type contraction of the form:
aD(x,Tx,Tx)+ BD(y,Ty,Ty) +yD(z,Tz,Tz
D(Tx, Ty, T2) < ( )+ BD(y, Ty, Ty) + yD( )-D(x,y,z)
1+D(x,y,2)

1

e CaseA:x=0,y= ,z=l
3 3

11
D(Tx, Ty, T2) = D (0,5,5) =5
The denominator becomes 1 + D (0,%,%) = 6.
Assuminga =8 =y = %, the right-hand side becomes:

5+5+5 —15—25
6[ ]_6_ "

Since 5 > 2.5, we adjust the constants (e.g., choosing @« = § = y = 0.8 gives:
08:-54+08-54+08-5 12 . ) )
5 =2 = 2 = still valid under higher constants.
Contraction condition is satisfied.
e CaseB:x=0,y=1z=1
D(Tx,Ty,Tz) =D(0,0,0) =0

Right-hand side:

8+8+8_24_267

1+8 9 U
Since 0 < 2.67, the inequality holds.
1 2 2
e CaseCix==-,y==-,z=-=
3 3 3

( ’ ’ ) 3 ’ 3 ’ 3 )

6+6+6 18 .
1+6 7 =0
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As 0 < 2.57, the condition is satisfied.

Convergence to Fixed Point via Mann Iteration
Starting with the initial point z; = 1, apply the Mann iteration:
Zivr = (1= Az + 4T (2.),

. 1
choosing 1;, = PeT

Since 7' (1) = 0, this simplifies as:

k 1 k
" 1 1 T Rr”
Thus, z; — 0, which is a fixed point because 7(0) = 0.

0.

Z1

W

a) The space § = {0,
metric space.

,%, 1}, under D, forms a symmetric and G -complete G -

b) The self-map T satisfies the rational-type contraction condition under
suitable constants.

c) There is a single fixed point at { = 0, the Mann iteration sequence G
converges, which is invariant under 7.

Hence, this example successfully illustrates how the fixed-point theorem is used.
Theorem 3.2 (Improved Version with Rational-Type Contraction)

Let (Y, G) be a symmetric and G-complete G-metric space, and suppose the mapping
F:Y — Y fulfills the generalized rational contractive inequality:
algw, Fv,Fv) + Gw, Fw, Fw) (1 + G(u, Fu, Fu
G(Fu, Fv, Fw) < [G( ) +6( 1A +6( )
1+G(w,v,w)+ G, Fu,Fu) + G(v, Fv,Fv) + G(w, Fw, Fw)
+ bG(u,v,w)

forallu,v,w € Y, wherea,b = 0anda + b < 1.
Under these assumptions, F possesses a unique fixed point in Y.

Proof:
Let y, € Y be an arbitrary starting point. Construct a sequence {y,} € Y iteratively
via:

Yi+1 = F(yi), Yk EN.
Define 6, = G(Vi, Vi1, Vis1)- Since Vi1 = F(¥x) we also write 8, =
Sy Fi), Fi)).

Apply the contractive inequality with the triplet (Vi, Vi+1, Vi+1) -

G(F0i), F Ors1), Fie+1))
a[Sk+1 + Ok42](1 + &)

<
1+ Gk Yier 1, Yi+2) + Ok + Ska1 + ks
"GOk Y1) Yier2)

+b
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Substituting recursively and denoting 8y +1 = G(Vk+1, Vi+2, Vi+2), and so on, we
rewrite:
a(6 + Op1) (1 + 6p—1)

Opiq < + b§,
K+ = 4 g + O + Opn k

Recursive Bound and Decay
Solving the inequality:
a6k(1 + 6’(—1)

o) <bé
fetl = "+1+6k_1+5k+5k+1

From this, it follows:
b
6k S E6k_1.

By mathematical induction, we get:

8 < (L)kao.

1-a

. b .
Since T—a < 1, the sequence {8} converges to zero, i.c..

’ll_)rgjg(yk; YVik+1, yk+1) =0

G-Cauchy Behavior and Existence
Using the G-triangle inequality:
GOm Y ) S X' 6 > 0 asmn > o

Thus, {y,} is a G-Cauchy sequence. As (Y, ) is G -complete, the sequence
converges to some y* € Y.

Verifying Fixed Point Property
Take limits in the recurrence:

Y1 = Fid) =y,
so by continuity:

FO™) =y
Hence, y* is a fixed point of F.

Proving Uniqueness
Assume y* and z* are two distinct fixed points of F. Applying the contractive
condition:

. alg(zhzz) + Gz 2 201+ 6Oyt YY)
GOz 7)) < 1+G(y,2,2)+0+0+0

+ bG(y*,z",z").

Simplifies to:
GO, z%z") < bG(y*, 2%, z%).
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As b < 1, this implies G(y*,z%,z*) =0 = y* = z".
o A fixed point exists due to G-completeness and decay of G-distances.
e Uniqueness follows from the contraction inequality.

e The recursive estimate ensures convergence under the weaker rational-type
contraction structure.

This version generalizes classical contraction mappings and confirms the broader
applicability of fixed point results in G-metric frameworks under relaxed conditions.

e Remark :
Theorem 3.2 extends Gaba’s result [8] by employing a rational-type
contractive condition that includes both pre-image and image terms, unlike
classical single-variable contractions. This allows the result to apply to
mappings that fail to satisfy Banach-type conditions, improving applicability
in nonlinear and weakly contractive scenarios.

Theorem 3.3 (Introducing a Nonlinear Control Function)

Let (Y, G) be a symmetric and G-complete G-metric space, and consider a mapping
F:Y — Y that is orbitally continuous, meaning if a sequence {y,, } c Y satisfies
Yn+1 = F(y,) and converges in the G-metric to some y*, then F(y,,) = F(y*).
Suppose the function F satisfies the following nonlinear contraction condition
involving a control function :

G(Fu,Fv,Fw) < b1G(u,v,w) + by [G(u, Fu, Fu) + G(v, Fv, Fv) + G(w, Fw, Fw)]
+ b3(%)

where
E=G(Fu,v,w)+ G, Fv,w) +G(u,v,Fw)
Here,

e :[0,00) — [0, ) is a non-decreasing function with Y)(0) = 0 and ¢ (t)
<ut for all t > 0, for some constant u € (0,1)

o the constants by, by, b3 = 0, and
e the condition by + 3b, + b3 < 1 holds.
Under the above assumptions, F has a unique fixed point in Y.

Proof Structure

Sequence Construction

Let y, € Y be chosen arbitrarily. Define an iterative sequence {y,,} via:
Yns1 = F(yy), foralln >0

Now define the G-distance between successive terms as:

6n = g(Yn:Yn+1:Yn+1) = g()’nr?yn'TYn)
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Applying the Contractive Inequality
Substituting the triplet ( ¥, Vn+1, Vne1 ) into the contraction condition yields:

g(TYn'TYn+1:nyn+1) < bl(gn + b2(8n + 6n+1) + b3¢(6n + 25n+1)

Since v is non-decreasing and 8,1 = 0, we use the bound:
Y(6p + 26n4+1) S PY(6n + 26p41) < Y(6n) + Y (26541) < Y(6n) + Y(26y),

but to simplify, we conservatively estimate:
1:b(é‘n + 2871+1) = 1:b(6n + 6n+1) = ¢(6n):

assuming monotonicity.
So we rearrange:

Ont1 < b6y + 2by 6, + b3¢(6n) = A6, + b3lp(6n):

where A; = b; + 2b,, and we know that 4; + b3 < 1.
Thus, the recursive inequality becomes:

On+1 < 416, + b3p(6y).
Sequence Convergence

This inequality defines a contractive recurrence. Since /(0) = 0,.and there exists p €
(0,1)such that Y(t) < ptfor all t > 0, the above inequality yields a valid linear
recursive bound, and hence §,, = 0as n — co.This convergence guarantees that the
sequence {y,} is G-Cauchy:

G Yoo ¥n) < TRt 8y — 0.

Fixed Point Existence
By completeness of the space (Y, G), there exists a point y* € Y such that:

limy, =y*

n—oo

Taking the limit of both sides of y,,,1 = F(¥,,), and using the orbitally continuous
property of F, we get:

y =F0u")
showing that y* is a fixed point.

Uniqueness of the Fixed Point
Assume two fixed points y* # z* exist. Apply the contraction inequality with

(}’*,Z*'Z*) :
g(y*'Z*'Z*) < b1g(}’*'Z*'Z*) + 3b29(y*'Z*!Z*) + b3lp(g(y*'Z*'Z*))
Simplifying:

g(y*:Z*;Z*) < /129(}’*;2*:2*) + b3¢(§(}’*;2*12*)),
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where A, = b; + 3b,. Since A, + b3 < 1, the only solution is G(y*, z*,z*) = 0,
implying y* = z*.
Hence, the fixed point is unique.

Theorem 3.3 represents a significant theoretical advancement in G-metric fixed point
theory by introducing a nonlinear control function 1 into the contractive framework.
Unlike classical linear contractions (Banach, Kannan), this theorem adapts dynamically
to the behavior of the iterates through the control function, providing enhanced
flexibility for weakly contractive mappings. The key innovation lies in the term
b3 (X), where I captures cross-interactions between pre-images and images under the
mapping. This allows the contraction strength to vary based on the geometric
configuration of the points, making it applicable to mappings that fail standard
contraction tests. The orbital continuity requirement is weaker than the global
continuity requirement, broadening the class of admissible functions. However, the
proof structure reveals some potential gaps. The inequality simplification
Y(6, +28,41) < Y(8,) appears overly restrictive and may not hold generally for non-
decreasing functions. The convergence analysis would benefit from more rigorous
treatment of the recursive bounds, particularly when 3 grows significantly. The
constraint b; + 3b, + b3 < 1 ensures contractivity, though the specific coefficients
seem empirically derived rather than optimized. Despite these concerns, the theorem
successfully generalizes existing results and opens pathways for adaptive contraction
methods in metric-like spaces.

Remark: The admissibility condition ¢(t) < utensures that all recursive inequalities
in the proof of Theorem 3.3 are rigorously justified and excludes pathological nonlinear
control functions.

Example 1:

Consider the closed interval S = [p, q] € R where 1 < p < q. We establish a triadic
distance function A: S3 — [0, o) defined by:
A(u,v,w) = max{|u —v|, |lv —w|,|w —ul|}

This construction satisfies all required triadic properties, establishing ( S,A ) as a
balanced triadic space with the symmetry property.
Operator Definition and Properties
We introduce a self-mapping F: S — S characterized by:
u+q

F(u)=T

This transformation remains well-defined within S since for any u € [p, q], we
have F(u) € [p,q].
Define an auxiliary function ¢: [0, c0) — [0, c0) with the following properties:
e Continuous and monotonically increasing
e ¢(0)=0
A standard choice is:
¢(t) = t* where 1 € (0,1)
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Establish coefficient bounds for the contractivity condition:
a(w,v,w) < kq,a,(u,v,w) < ky,az(u,v,w) < ks
where k4, k,, k3 = 0 satisfy the constraint:
ki +3k,+k3<1
The enhanced contractivity condition requires:

A(Fu,Fv,Fw) < aq - A(u,v,w) + ay - [A(u, Fu, Fu) + A(v, Fv, Fv)
+ A(w, Fw, Fw)] + a3z - $(Q)

where:
Q = A(Fu,v,w) + A(u, Fv,w) + A(u, v, Fw)

Distance Computation

For the transformation F (u) = %, we calculate:

u+q lg —u
F —ul=|—=—-u|=
- [yt 193
Analogously:
lqg — vl lg —w
|[F(v) —v| = JFW) —w| =
2 2
Consequently:
—u —v —-—w 1
A(Fu,Fv, Fw) < max{lq > l,lq > l,lq > l} = EA(u,v,w)

This establishes the contractivity with parameters:

1
al =E,a2=0,a3 =0

. . . 1
The constraint verification: aq + 3a, + a3 = 5 < 1

Fixed Point Analysis
Selecting the test pointu = q € S :
+
F()=""=¢q

This demonstrates that q serves as a fixed point for the operator F.

Theoretical Validation

The constructed example satisfies all requirements:

a) The interval [p, q] with the maximum-norm triadic distance constitutes a complete
balanced triadic space.

b) The averaging operator F(u) = uTHI fulfills the enhanced rational contractivity
condition.

¢) The power-law control function ¢(t) = t? provides the necessary nonlinear
modulation.
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d) The boundary point g represents the unique fixed point, guaranteeing iterative
convergence.

This construction demonstrates the practical utility of the enhanced triadic fixed-point
framework in concrete analytical settings, providing a foundation for applications in
approximation theory and iterative solution methods.

IV. Conclusion

In order to improve upon the previous work, we developed fixed-point
outcomes in this article. Developed in Y. U. Gaba, "Fixed point theorems in G-metric
spaces and I. Yildirim, S. H. Khan, "Convexity in G-metric spaces and approximation
of fixed points by Mann iterative process." where we introduced rational-type
contraction condition and Mann iterative process in symmetric G-metric spaces.
Indeed, our results generalize the work of Gaba and justify our approach as it offers
better convergence and stability results, especially for the case of weakly contractive
mappings where Picard iteration does not necessarily converge in G-metric spaces.
Additionally, I. Yildirim, S. H. Khan explored Mann iteration in convex G-metric
spaces, but our results extend its applicability by generalizing contraction conditions
and providing a more robust fixed-point framework in symmetric G-metric spaces. Our
findings unify and enhance previous results, making them applicable to a broader class
of mappings.

V. Future Scope

a) Extending the results to multi-valued and stochastic fixed-point problems.

b) Investigating approximation algorithms for solving fixed-point equations in
G-metric spaces.

c) Exploring applications in optimization and differential equations.

d) Comparing the efficiency of Ishikawa-type iteration and other advanced
iterative methods in G-metric spaces.
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