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Abstract 

Multilateration is a popular geometrical algorithm to determine the location 

of a mobile smartphone in an indoor environment. In this method, the distance of the 

smartphone from three or more WiFi access sites is calculated based on the strengths 

of radio signals. Intermittent measurements of radio signals due to the presence of 

obstacles in the indoor environment affect the overall localization accuracy. The 

present work addresses this problem and manages the intermittent measurements issue 

with an innovative Kalman filter-based approach. The linear interpolation method is 

applied to obtain uninterrupted coordinate information from WiFi RSS measurements. 

A Kalman filter is designed that uses these interpolated measurements along with its 

own sensor data to obtain an optimal localization estimate. Less than 2 meters of final 

position estimation accuracy is attained in Monte-Carlo simulations, which is better 

than other state-of-the-art techniques in this domain. Additionally, the performance of 

this intended approach has been found indistinguishable during frequent loss of 

measurements, in case of which the conventional trilateration approach could not 

succeed. 

Keywords: Linear Interpolation, Indoor navigation, Wi-Fi Access Points, Intermittent 

measurement, Kalman filter  
 

I.   Introduction 

With the advent of sensor technologies, indoor localization has become an on-
demand research topic to facilitate location-based services [IV]. The need for indoor 
localization is essential in modern applications ranging from navigation to emergency 
detection or context-aware services [VI]. Due to the absence of satellite signals in the 
indoor environment, localization of a mobile object mainly depends on smartphone 
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sensor data. Smartphones’ built-in sensors, such as gyroscope and accelerometer is 
widely used to obtain reliable positioning information [XIV, XVII]. Smartphone-based 
indoor localization often depends on external radio signals, which heavily depend on 
preinstalled WiFi access points [I, II, VII]. However, it is more likely to be prone to 
noise or sometimes get intermittent, leading to inaccuracy in positioning [III, X].  

To handle these intricacies of irregular or intermittent signals, the concept of linear 
interpolation can be utilized [V, XVI]. One of the primary objectives of the linear 
interpolation concept is to handle the intermittent data, which can be used to improve 
localization accuracy [X]. Robust positioning information could be achieved by 
supplementing the irregular data that are lost due to some technical or environmental 
glitch, and are handled by prioritizing the concept of linear interpolation of position 
coordinates. The possibility of reducing the impact of abrupt variations and improving 
the continuity of movement tracking within an indoor environment can be observed 
while utilizing the concept of linear interpolation [IX]. Advantages of the linear 
interpolation technique are its simplicity, low computational demand, and effectiveness 
in estimating intermediate values between sampled sensor data points [XI].  

This study investigates the applicability of linear interpolation to improve performance 
and accuracy in indoor position estimation. For this, a linear interpolation algorithm 
has been combined with a smartphone sensor-based Kalman Filter method to achieve 
enhanced position estimation [XII, XII]. This study aims to bridge the gap in position 
coordinates and produce more precise location estimates. Application of this type of 
integration is a novel approach. Simulation results show the potential of this proposed 
novel approach to build trustworthy, infrastructure-free indoor positioning systems that 
can perform well even with intermittent WiFi measurements.  

This paper is organized into sections. Following this introduction, the actual problem 
addressed in this work is stated in Section II. Methods to solve the stated problem and 
the design of the proposed system have been demonstrated in Section III. The 
simulation results and their analysis are presented in Section IV, and the concluding 
remarks are made in Section V. 

II.   Problem Statement 

In a WiFi signal-based indoor localization method, the strengths of received 

signals emitted from preinstalled WiFi access points (APs) are processed to find the 

location of the smartphone. The correctness of this technique, however, relies on the 

quality of the received signal. The existence of diverse obstacles within indoor 

scenarios, as well as the fast movement of a smartphone user, generates breaks in the 

signal measurements, affecting localization performance significantly. While 

occasional, transient accelerometer and gyroscope data from the smartphone could 

validate these erratic readings, they can also be interrupted as well. The linear 

interpolation method may be used to interpolate the position coordinates obtained from 

RSS measurements during intermittent periods. In this work, a Kalman filter method 

is introduced to work on interpolated WiFi RSS data, which complements the 

intermittent measurement phases by a linear interpolation method.  

III.   Proposed Solution 

The proposed approach implements a Kalman filter, which interpolates the 

interrupted position coordinates and thus is named as KFWiFi+Interpolation throughout this 
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work. The block diagram depicting the operation of the proposed 

KFWiFi+Interpolation approach is provided in Figure 1.  

 

Fig 1. Structure of the proposed method 

Received Signal Strength (RSS) readings from the user’s smartphone are compared to 

find the three nearest WiFi APs. With these, the current position of the smartphone in 

(x, y) coordinates is calculated by the trilateration algorithm. The log-normal 

shadowing formula used to convert RSS values to (x, y) coordinates is given as : 

  d = 10(p(d
0
) – p(d))/10η * d0       (1) 

Here, ‘d’ is the distance to be estimated, ‘d0’ is the reference distance taken as 1 meter 

for this work, p(d) and p(d0) are measured RSS values in dBm. The path loss exponent 

is taken as η = 2, considering the data collection setup is a computer lab, which is 

heavily loaded with furniture. 

Readings from the device’s inertial navigation sensors and WiFi RSS values are 

processed in order to get a constant stream of measurements. In case of discontinuity 

in obtaining WiFi RSS measurements, linear interpolation is used to interpolate missing 

(x, y) coordinates and fed to the proposed Kalman filter. 

The linear interpolation formula used to interpolate position coordinates in this work 

may be described as follows: 

  y = y0 + (x – x0) [(yb - ya) / (xb - xa)]                (2) 

Here, (x, y) is the point whose x-coordinate is known, but whose y-coordinate needs to 

be interpolated. (x0, y0) is the initial point whose coordinates are known, and (xa, ya) 

and (xb, yb) are two other known data points. Linear interpolation is very fast and thus 

used in this work for interpolation purposes. 
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Input to the linear interpolation module of the proposed system is the initial position 

(x0, y0) and coordinates of previous time steps (xb, yb), (xb, yb). The output of this 

module is the continuous (x, y) values. These continuous position coordinates and 

smartphones’ own sensor measurements are fed to the Kalman filter as input. The filter, 

in turn, uses interpolated Cartesian coordinates and its own sensor data to compute the 

orientation (roll, pitch, and yaw) information, which is processed to provide an optimal 

estimate of the smartphone’s optimal orientation in terms of quaternion values.  

The yield of the Kalman filter is the quaternion values corresponding to the 

smartphone's Cartesian coordinates. These quaternion values are then passed through 

an inverse transformation to produce the optimal Cartesian coordinates of the 

smartphone. These optimal estimates are further processed using a trilateration 

algorithm to provide smartphones’ current (x, y) coordinates. When RSS measurement 

is available, position coordinates obtained from both the RSS module and the Kalman 

filter are used in trilateration. However, in the case of discontinuous RSS measurement, 

the position estimate is obtained from the filter module only, which yields optimal 

position estimates because of interpolated and uninterrupted position coordinate input. 

The Kalman filter implemented in this work employs a state vector 𝑥 = [𝑞0 𝑞1 𝑞2 𝑞3]
𝑇 

[VI, VIII, XII] where 𝑞0 𝑞1 𝑞2 𝑎𝑛𝑑 𝑞3 are accelerometer-derived quaternion 

measurements obtained using Equation 3. 

  [

𝑞0

𝑞1
𝑞2

𝑞3

] =  

[
 
 
 
𝑐𝑜𝑠(∅ 2⁄ ) 𝑐𝑜𝑠(𝜃 2⁄ ) 𝑐𝑜𝑠(𝜓 2⁄ ) + 𝑠𝑖𝑛(∅ 2⁄ ) 𝑠𝑖𝑛(𝜃 2⁄ ) 𝑠𝑖𝑛(𝜓 2⁄ )

𝑠𝑖𝑛(∅ 2⁄ ) 𝑐𝑜𝑠(𝜃 2⁄ ) 𝑐𝑜𝑠(𝜓 2⁄ ) − 𝑐𝑜𝑠(∅ 2⁄ ) 𝑠𝑖𝑛(𝜃 2⁄ ) 𝑠𝑖𝑛(𝜓 2⁄ )

𝑐𝑜𝑠(∅ 2⁄ ) 𝑠𝑖𝑛(𝜃 2⁄ ) 𝑐𝑜𝑠(𝜓 2⁄ ) + 𝑠𝑖𝑛(∅ 2⁄ ) 𝑐𝑜𝑠(𝜃 2⁄ ) 𝑠𝑖𝑛(𝜓 2⁄ )

𝑐𝑜𝑠(∅ 2⁄ ) 𝑐𝑜𝑠(𝜃 2⁄ ) 𝑠𝑖𝑛(𝜙 2⁄ ) − 𝑠𝑖𝑛(∅ 2⁄ ) 𝑠𝑖𝑛(𝜃 2⁄ ) 𝑠𝑖𝑛(𝜙 2⁄ )]
 
 
 

    (3) 

Roll, pitch, and yaw of the moving smartphone are indicated by [𝜙, 𝜃, 𝜓]angles. 

Values of these angles are obtained from smartphones’ INS and WiFi RSS values. Here 

[𝑤𝑥  𝑤𝑦 𝑤𝑧] is the roll rate which can be obtained from aerial platforms by using 

smartphone’s gyroscope sensors, the state transition matrix (F) based on the proposed 

Kalman Filter is given by Equation 4. 

𝐹 = 
1

2
 

[
 
 
 
0 −𝜔𝑥 −𝜔𝑦

𝜔𝑥 0 𝜔𝑧

𝜔𝑦 −𝜔𝑧 0
    

−𝜔𝑧

−𝜔𝑦

𝜔𝑥

𝜔𝑧 𝜔𝑦 −𝜔𝑥          0 ]
 
 
 

                 (4) 

The measurement to be employed in the proposed Kalman filter is the quaternion 

representation of gyroscope data. Then the tensor of measurement sensitivity matrix is 

given by Equation 5. 

  𝐻 = [
1 0 0 0
0 1 0 0
0 0 0 1

]                   (5) 
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The system and measurement noise covariance for this work has been assumed to be Q 

(μ = 0.01, σ = 0.002) and R (μ = 0.001, σ = 0.0002).  In order to capture the fast pace 

of walking, the sampling rates of KFWiFi+Interpolation have been assumed to be 5 Hz, i.e., 

capturing and feeding 5 measurements per second to all the implemented filters. 

IV.   Result Analysis 

Performance of the proposed KFWiFi+Interpolation approach is compared with two 

other state-of-the-art approaches in this domain. The first one of these is the 

conventional Kalman filter, which works with only WiFi signals and does not use any 

external aiding. This filter is implemented and termed as KFWiFi [I, II] in this work. 

Another state-of-the-art and widely used technique fuses WiFi signals with smartphone 

inertial sensors (INS) data in order to achieve better performance. This filter is 

implemented in this work and named as KFWiFi+INS [III, XII]. Other variants of Kalman 

filters, like the Extended Kalman filter (EKF) or Particle filter (PF), have not been tried 

in this work, as these filters fit well with non-linear systems, which are not exercised 

in this work.  

In this section, simulation results of abovementioned three approaches are presented. 

In KFWiFi approach, only RSS measurements are used. The intermittent measurement 

issue has not been remedied by any means. The KFWiFi+INS approach fuses smartphone 

INS measurements with WiFi sensors RSS values without any special consideration to 

interpolated RSS values. On the contrary, the KFWiFi+Interpolation uses the interpolated RSS 

measurements and smartphone sensor measurements to complement the intermittent 

measurement.  

A typical example comparing the three tracking methods is demonstrated in Figure 2. 

It shows that the KFWiFi and KFWiFi+INS deviate significantly and end up more than 2 

meters away from the actual moving trace, while KFWiFi+Interpolation can track the real path 

much closer (less than 1 meter from the true terminal point). 

The position error (drift) plot for the same trial is presented in Figure 3. It is shown that 

in KFWiFi and KFWiFi+INS, there are large position errors compared to the KFWiFi+Interpolation, 

across all iterations. The cause of this proper management of large drift in the position 

estimation of KFWiFi+Interpolation may be attributed to its ability to interpolate the RSS 

measurement during intermittent transmission, which is not taken care of by the other 

two approaches. 

For a clear understanding of positional errors in two dimensions, the CDF for all the 

methods is plotted along the X and Y axes individually, which are depicted in Figure 

4. KFWiFi+Interpolation shows considerable accuracy, over 80 % of the points are less than 

0.2 on the X-axis, and a maximum deviation of 1 metre along the Y-axis. In contrast, 

KFWiFi and KFWiFi+INS algorithms achieve significantly lower accuracy: in over 80% of 

the test cases its errors are over 1.5 meters on the X-axis and above 2 meters along the 



 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026)  pp 125-135 

Hena Kausar et al. 
 

130 

 

Y-axis. These large drifts across all iterations along the Y-axis cause substantial error 

in the final position estimation of both conventional approaches. 

 
Fig 2. Typical tracking result of the filters 

 

Fig 3. Position error plot of three filters 

How well a localization technique performs is highly related to its ability to accurately 

track the smartphone's acceleration, particularly while traveling at high speed. The 

present work simulates fast moving object situation when the possibility of having 

intermittent measurements is much higher. Acceleration tracking plots for both 

approaches along the X & Y axes have been presented in Figures 5 and 6. In this regard, 

the performance of the KFWiFi+Interpolation approach has been found optimal as the 

proposed approach could track the acceleration correctly, even being affected by 

intermittent measurements. However, the other two conventional approaches, KFWiFi 

and KFWiFi+INS, failed to track the acceleration badly, as can be noticed in Figures 5 and 

6. 
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Fig 4. Cumulative distribution of probability plot of position errors 

 
Fig 5. Acceleration tracking along the X direction 

For in depth analysis of the performance of KFWiFi+Interpolation, 100 Monte-Carlo 

experiments were performed on all three methods in simulation settings under 

different system and measurement noise levels. However, to make the performances of 

all approaches comparable, noise covariance Qi and Ri for the ith run are 

indistinguishably used for all methods. Table 1 gives the average root mean square 

error (RMSE) and mean absolute error (MAE) of velocity estimation of these Monte-

Carlo simulations. The findings demonstrate that  the KFWiFi+Interpolation method obtains 

much less velocity errors - both RMSE and MAE - than conventional approaches. 
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Fig 6. Acceleration tracking along the Y direction 

Table 1: Mean of velocity errors for three approaches 

Velocity error 

(ms-1) 

Root Mean Square Error 

(RMSE) 

Mean Absolute Error 

(MAE) 

KFWiFi 3.24361 2.16543 

KFWiFi+INS 2.43568 1.11507 

KFWiFi+Interpolation 0.24683 0.22315 

Table 2: Mean and STD of final position error of three filters 

Final position error Mean (m) Max value (m) STD (σ) 

KFWiFi 3.37392 5.75 2.32201 

KFWiFi+INS 3.20237 4.78 1.19601 

KFWiFi+Interpolation 2.20237 2.76 0.13601 

Mean of final position errors as obtained during 100 Monte Carlo runs is tabulated in 

Table 2. KFWiFi+Interpolation limits the mean of final position error to 2.20237 meters with 

standard deviation (σ) = 0.13601. The maximum value obtained for this final position 

error is 2.76 meter which is not far apart from the mean value. This performance of the 

proposed approach is comparable to other indoor localization approaches reported in 

the literature, but not exercised in this work. On the contrary, conventional approaches, 

KFWiFi, and KFWiFi+INS exhibit a mean value of final position error of 3.37392 meters 

and 3.20237 meters with σ = 2.32201 and 1.19601, respectively, signifying a high 

variability of the final position errors from the mean. The maximum value obtained in 

any final position error is 5.75 meters and 4.78 meters, respectively, with conventional 

approaches, which support the notion of large variability and poor performance. 

As an interpretation of this Monte-Carlo simulation performance, it may be inferred 

that the proposed approach could outperform conventional approaches because of 

incorporating more number of measurements in its computation. Moreover, the 

intermittent measurements of accelerometers were complemented by a linear 
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interpolation method, which in turn helped the system to sustain during intermittent 

measurement. 

In general, the time complexity of the Kalman filter can be expressed as O(n3), where 

‘n’ is the size of the state vector. For this current execution, the size of the state vector 

is assumed to be four (due to quaternion representation) and thus, does not affect 

computational complexity much. However, the actual execution times of the three 

filters are found to be different during simulation, which is tabulated in Table 3. Mean 

of Execution time of KFWiFi+INS has been found to be 1.33 seconds, which is 

considerably more than that of 0.779 seconds and 0.473 seconds for KFWiFi and 

KFWiFi+Interpolation, respectively. Integration of INS measurements with WiFi signals is a 

time-consuming process, which is the main cause of KFWiFi+INS execution delay. 

Standard deviations are found well within acceptable limits. 

Table 3: Mean and STD of execution times of three filters 

Filter Execution Time Mean (s) Max value (s) STD (σ) 

KFWiFi 0.779 1.25 0.2101 

KFWiFi+INS 1.33 2.18 0.1054 

KFWiFi+Interpolation 0.473 0.637 0.0012 

V.    Conclusion 
 

Intermittent or a lack of measurements causes severe deterioration in the 

accuracy of indoor localization systems. In this paper, a new KF-based WiFi RSS data 

interpolation method is proposed to address this problem. Often in real time situation, 

WiFi signals become sporadic, which adversely affects indoor tracking filters’ 

performance. One remedy to this problem is to use sensor fusion techniques to 

supplement intermittent WiFi measurements. However, this introduces extra 

computational load in the system and often fails to survive in real time situation. To 

address this problem, the linear interpolation method is used in the proposed filter to 

produce uninterrupted sensors’ input to facilitate persistent tracking. Simulation results 

comparing the proposed method with two conventional approaches in this domain are 

presented to demonstrate the efficiency of the proposed method. Around 2 meters of 

accuracy has been obtained for this proposed approach in final position error estimates 

during Monte-Carlo simulations with intermittent measurements, in case of which 

conventional approaches suffered.   

This work is subject to limitations. The work assumes indoor navigation as a linear 

system perturbed with white, Gaussian noise. In real time situation, multipath 

propagation of WiFi signals or the presence of other signals in the same environment 

may cause nonlinearity in the system. For such cases, nonlinear variants of Kalman 

filters along with other types of interpolation techniques should be used, which may 

open up scopes for some other research. 
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