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Abstract

Multilateration is a popular geometrical algorithm to determine the location
of a mobile smartphone in an indoor environment. In this method, the distance of the
smartphone from three or more WiFi access sites is calculated based on the strengths
of radio signals. Intermittent measurements of radio signals due to the presence of
obstacles in the indoor environment affect the overall localization accuracy. The
present work addresses this problem and manages the intermittent measurements issue
with an innovative Kalman filter-based approach. The linear interpolation method is
applied to obtain uninterrupted coordinate information from WiFi RSS measurements.
A Kalman filter is designed that uses these interpolated measurements along with its
own sensor data to obtain an optimal localization estimate. Less than 2 meters of final
position estimation accuracy is attained in Monte-Carlo simulations, which is better
than other state-of-the-art techniques in this domain. Additionally, the performance of
this intended approach has been found indistinguishable during frequent loss of
measurements, in case of which the conventional trilateration approach could not
succeed.

Keywords: Linear Interpolation, Indoor navigation, Wi-Fi Access Points, Intermittent
measurement, Kalman filter

1. Introduction

With the advent of sensor technologies, indoor localization has become an on-
demand research topic to facilitate location-based services [IV]. The need for indoor
localization is essential in modern applications ranging from navigation to emergency
detection or context-aware services [ VI]. Due to the absence of satellite signals in the
indoor environment, localization of a mobile object mainly depends on smartphone
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sensor data. Smartphones’ built-in sensors, such as gyroscope and accelerometer is
widely used to obtain reliable positioning information [XIV, X VII]. Smartphone-based
indoor localization often depends on external radio signals, which heavily depend on
preinstalled WiFi access points [I, II, VII]. However, it is more likely to be prone to
noise or sometimes get intermittent, leading to inaccuracy in positioning [III, X].

To handle these intricacies of irregular or intermittent signals, the concept of linear
interpolation can be utilized [V, XVI]. One of the primary objectives of the linear
interpolation concept is to handle the intermittent data, which can be used to improve
localization accuracy [X]. Robust positioning information could be achieved by
supplementing the irregular data that are lost due to some technical or environmental
glitch, and are handled by prioritizing the concept of linear interpolation of position
coordinates. The possibility of reducing the impact of abrupt variations and improving
the continuity of movement tracking within an indoor environment can be observed
while utilizing the concept of linear interpolation [IX]. Advantages of the linear
interpolation technique are its simplicity, low computational demand, and effectiveness
in estimating intermediate values between sampled sensor data points [XI].

This study investigates the applicability of linear interpolation to improve performance
and accuracy in indoor position estimation. For this, a linear interpolation algorithm
has been combined with a smartphone sensor-based Kalman Filter method to achieve
enhanced position estimation [XII, XII]. This study aims to bridge the gap in position
coordinates and produce more precise location estimates. Application of this type of
integration is a novel approach. Simulation results show the potential of this proposed
novel approach to build trustworthy, infrastructure-free indoor positioning systems that
can perform well even with intermittent WiFi measurements.

This paper is organized into sections. Following this introduction, the actual problem
addressed in this work is stated in Section II. Methods to solve the stated problem and
the design of the proposed system have been demonstrated in Section III. The
simulation results and their analysis are presented in Section IV, and the concluding
remarks are made in Section V.

II. Problem Statement

In a WiFi signal-based indoor localization method, the strengths of received
signals emitted from preinstalled WiFi access points (APs) are processed to find the
location of the smartphone. The correctness of this technique, however, relies on the
quality of the received signal. The existence of diverse obstacles within indoor
scenarios, as well as the fast movement of a smartphone user, generates breaks in the
signal measurements, affecting localization performance significantly. While
occasional, transient accelerometer and gyroscope data from the smartphone could
validate these erratic readings, they can also be interrupted as well. The linear
interpolation method may be used to interpolate the position coordinates obtained from
RSS measurements during intermittent periods. In this work, a Kalman filter method
is introduced to work on interpolated WiFi RSS data, which complements the
intermittent measurement phases by a linear interpolation method.

III. Proposed Solution

The proposed approach implements a Kalman filter, which interpolates the
interrupted position coordinates and thus is named as KFwiri+nterpolation throughout this
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work. The block diagram depicting the operation of the proposed
KFWiFi+Interpolation approach is provided in Figure 1.

Computation of Optimal
WiFi RSS o (%.¥) coordinate estimates of
Measurements from RSS \I' (X, ¥)
Measurements - - coordinates
Tnlateration
Algorithm
Smartphones’ Fy q-— Cn@uted
accelerometer Quaternion | quaternion values
measurement Computation Quatemion o (X, ¥)
coordinate computation
Smartphones’ . - i estimates
P Kalman Filter _F&pumal Eshmates
gVIoscope of quaternions
measurement | Uninterrupted WiFi
atial (. ) Linear Intepolation of FE5S meazurements
coordina;e_- » WiFi RSS Feedback of
rv measurements | Tninterrupted WiFi R58
|  measurements

Fig 1. Structure of the proposed method

Received Signal Strength (RSS) readings from the user’s smartphone are compared to
find the three nearest WiFi APs. With these, the current position of the smartphone in
(X, y) coordinates is calculated by the trilateration algorithm. The log-normal
shadowing formula used to convert RSS values to (x, y) coordinates is given as :

d = 10®d) - pd)y10m * 4 (1)

Here, ‘d’ is the distance to be estimated, ‘dy’ is the reference distance taken as 1 meter
for this work, p(d) and p(do) are measured RSS values in dBm. The path loss exponent
is taken as n = 2, considering the data collection setup is a computer lab, which is
heavily loaded with furniture.

Readings from the device’s inertial navigation sensors and WiFi RSS values are
processed in order to get a constant stream of measurements. In case of discontinuity
in obtaining WiFi RSS measurements, linear interpolation is used to interpolate missing
(%, y) coordinates and fed to the proposed Kalman filter.

The linear interpolation formula used to interpolate position coordinates in this work
may be described as follows:

Yy =yo+ (X =Xo) [(yb - ya) / (Xb - Xa)] 2

Here, (X, y) is the point whose x-coordinate is known, but whose y-coordinate needs to
be interpolated. (xo, yo) is the initial point whose coordinates are known, and (Xa, Ya)
and (xv, yb) are two other known data points. Linear interpolation is very fast and thus
used in this work for interpolation purposes.
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Input to the linear interpolation module of the proposed system is the initial position
(X0, Yo) and coordinates of previous time steps (Xb, ¥b), (Xb, ¥b). The output of this
module is the continuous (X, y) values. These continuous position coordinates and
smartphones’ own sensor measurements are fed to the Kalman filter as input. The filter,
in turn, uses interpolated Cartesian coordinates and its own sensor data to compute the
orientation (roll, pitch, and yaw) information, which is processed to provide an optimal
estimate of the smartphone’s optimal orientation in terms of quaternion values.

The yield of the Kalman filter is the quaternion values corresponding to the
smartphone's Cartesian coordinates. These quaternion values are then passed through
an inverse transformation to produce the optimal Cartesian coordinates of the
smartphone. These optimal estimates are further processed using a trilateration
algorithm to provide smartphones’ current (X, y) coordinates. When RSS measurement
is available, position coordinates obtained from both the RSS module and the Kalman
filter are used in trilateration. However, in the case of discontinuous RSS measurement,
the position estimate is obtained from the filter module only, which yields optimal
position estimates because of interpolated and uninterrupted position coordinate input.

The Kalman filter implemented in this work employs a state vector x = [qo 91 g2 q3]”
[VI, VIII, XII] where qqqq q,and q3 are accelerometer-derived quaternion
measurements obtained using Equation 3.

9o [cos((?)/Z) cos(0/2) cos(y/2) + sin(@/2)sin(6/2) sin(lp/Z)]
q1| _ |sin(@/2) cos(8/2) cos(yp/2) — cos(®/2) sin(0/2) sin(yp/2) 3
Q| [cos((Z)/Z) sin(0/2) cos(Y/2) + sin(@/2) cos(0/2) sin(y/2) 3)
qs3

cos(®/2) cos(0/2) sin(¢p/2) — sin(@/2) sin(0/2) sin(¢p/2)

Roll, pitch, and yaw of the moving smartphone are indicated by [¢, 8,1 ]angles.
Values of these angles are obtained from smartphones’ INS and WiFi RSS values. Here
[Wx Wy Wz]is the roll rate which can be obtained from aerial platforms by using
smartphone’s gyroscope sensors, the state transition matrix (F) based on the proposed
Kalman Filter is given by Equation 4.

0 —wy —-wy —w,
Fel Wy 0 w, —wy 4
T 2|w, —w 0 w )
y z x
W, Wy —Wy 0

The measurement to be employed in the proposed Kalman filter is the quaternion
representation of gyroscope data. Then the tensor of measurement sensitivity matrix is
given by Equation 5.

1 0 0 O
H=(0 1 0 0] %)
0 0 01
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The system and measurement noise covariance for this work has been assumed to be Q
(n=0.01,6=0.002) and R (L= 0.001, o =0.0002). In order to capture the fast pace
of walking, the sampling rates of KFwiri+terpolation have been assumed to be 5 Hz, i.e.,
capturing and feeding 5 measurements per second to all the implemented filters.

IV. Result Analysis

Performance of the proposed KFwiritinterpolation @pproach is compared with two
other state-of-the-art approaches in this domain. The first one of these is the
conventional Kalman filter, which works with only WiFi signals and does not use any
external aiding. This filter is implemented and termed as KFwiri [I, II] in this work.
Another state-of-the-art and widely used technique fuses WiFi signals with smartphone
inertial sensors (INS) data in order to achieve better performance. This filter is
implemented in this work and named as KFwiri+ins [ 111, XII]. Other variants of Kalman
filters, like the Extended Kalman filter (EKF) or Particle filter (PF), have not been tried
in this work, as these filters fit well with non-linear systems, which are not exercised
in this work.

In this section, simulation results of abovementioned three approaches are presented.
In KFwiri approach, only RSS measurements are used. The intermittent measurement
issue has not been remedied by any means. The KFwiri+ins approach fuses smartphone
INS measurements with WiFi sensors RSS values without any special consideration to
interpolated RSS values. On the contrary, the KFwiri+nterpolation uses the interpolated RSS
measurements and smartphone sensor measurements to complement the intermittent
measurement.

A typical example comparing the three tracking methods is demonstrated in Figure 2.
It shows that the KFwiri and KFwiri+ins deviate significantly and end up more than 2
meters away from the actual moving trace, while KFwiri+nterpolation can track the real path
much closer (less than 1 meter from the true terminal point).

The position error (drift) plot for the same trial is presented in Figure 3. It is shown that
in KFwiri and KFwiri+ins, there are large position errors compared to the KF wiri+interpotation,
across all iterations. The cause of this proper management of large drift in the position
estimation of KFwiri+mterpolation may be attributed to its ability to interpolate the RSS
measurement during intermittent transmission, which is not taken care of by the other
two approaches.

For a clear understanding of positional errors in two dimensions, the CDF for all the
methods is plotted along the X and Y axes individually, which are depicted in Figure
4. KFwiFi+mterpolation Shows considerable accuracy, over 80 % of the points are less than
0.2 on the X-axis, and a maximum deviation of 1 metre along the Y-axis. In contrast,
KFwiri and KFwiririns algorithms achieve significantly lower accuracy: in over 80% of
the test cases its errors are over 1.5 meters on the X-axis and above 2 meters along the
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Y-axis. These large drifts across all iterations along the Y-axis cause substantial error
in the final position estimation of both conventional approaches.
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Fig 2. Typical tracking result of the filters
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Fig 3. Position error plot of three filters

How well a localization technique performs is highly related to its ability to accurately
track the smartphone's acceleration, particularly while traveling at high speed. The
present work simulates fast moving object situation when the possibility of having
intermittent measurements is much higher. Acceleration tracking plots for both
approaches along the X & Y axes have been presented in Figures 5 and 6. In this regard,
the performance of the KFwirititerpolaion approach has been found optimal as the
proposed approach could track the acceleration correctly, even being affected by
intermittent measurements. However, the other two conventional approaches, KFwiri
and KFwiri+ivs, failed to track the acceleration badly, as can be noticed in Figures 5 and

6.

Hena Kausar et al.

130



J. Mech. Cont.& Math. Sci., Vol.-21, No.-02, February (2026) pp 125-135

CDF of position deviations in X-axis CDF of position deviations in Y-axis
1F 1
I
0.8 [ ; 0.8

= =

= =

] ]

=] =1

S 06 2 0.6 f

o o

© © |

= J =

= I =

=2 2 =2

5 5

O 04 O 04

0.2 | 02|
NG / KFwiri
KFW-FHINS KFW-F\HNS
! KF,

r KFWIFi«Imerm\atlu | WiFi+Interpolatior

ol J L L L L ] [ L L L L L ]

o] 05 1 15 2 25 3 o} 2 4 6 8 10 12
Deviation in meter Deviation in meter

Fig 4. Cumulative distribution of probability plot of position errors
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Fig 5. Acceleration tracking along the X direction

For in depth analysis of the performance of KFwiritmterpolation, 100 Monte-Carlo
experiments were performed on all three methods in simulation settings under
different system and measurement noise levels. However, to make the performances of
all approaches comparable, noise covariance Q; and R; for the i run are
indistinguishably used for all methods. Table 1 gives the average root mean square
error (RMSE) and mean absolute error (MAE) of velocity estimation of these Monte-
Carlo simulations. The findings demonstrate that the KFwiri+interpolation method obtains
much less velocity errors - both RMSE and MAE - than conventional approaches.
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Fig 6. Acceleration tracking along the Y direction

Table 1: Mean of velocity errors for three approaches

Table 2: Mean and STD of final position error of three filters

Mean of final position errors as obtained during 100 Monte Carlo runs is tabulated in
Table 2. KFwiFi+mterpolation limits the mean of final position error to 2.20237 meters with
standard deviation (o) = 0.13601. The maximum value obtained for this final position
error is 2.76 meter which is not far apart from the mean value. This performance of the
proposed approach is comparable to other indoor localization approaches reported in
the literature, but not exercised in this work. On the contrary, conventional approaches,
KFwiri, and KFwiri+ins exhibit a mean value of final position error of 3.37392 meters
and 3.20237 meters with ¢ = 2.32201 and 1.19601, respectively, signifying a high
variability of the final position errors from the mean. The maximum value obtained in
any final position error is 5.75 meters and 4.78 meters, respectively, with conventional
approaches, which support the notion of large variability and poor performance.

As an interpretation of this Monte-Carlo simulation performance, it may be inferred
that the proposed approach could outperform conventional approaches because of
incorporating more number of measurements in its computation. Moreover, the
intermittent measurements of accelerometers were complemented by a linear
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interpolation method, which in turn helped the system to sustain during intermittent
measurement.

In general, the time complexity of the Kalman filter can be expressed as O(n?), where
‘n’ is the size of the state vector. For this current execution, the size of the state vector
is assumed to be four (due to quaternion representation) and thus, does not affect
computational complexity much. However, the actual execution times of the three
filters are found to be different during simulation, which is tabulated in Table 3. Mean
of Execution time of KFwiriins has been found to be 1.33 seconds, which is
considerably more than that of 0.779 seconds and 0.473 seconds for KFwiri and
KFwiri+mterpolation, respectively. Integration of INS measurements with WiFi signals is a
time-consuming process, which is the main cause of KFwiririns execution delay.
Standard deviations are found well within acceptable limits.

Table 3: Mean and STD of execution times of three filters

V. Conclusion

Intermittent or a lack of measurements causes severe deterioration in the
accuracy of indoor localization systems. In this paper, a new KF-based WiFi RSS data
interpolation method is proposed to address this problem. Often in real time situation,
WiFi signals become sporadic, which adversely affects indoor tracking filters’
performance. One remedy to this problem is to use sensor fusion techniques to
supplement intermittent WiFi measurements. However, this introduces extra
computational load in the system and often fails to survive in real time situation. To
address this problem, the linear interpolation method is used in the proposed filter to
produce uninterrupted sensors’ input to facilitate persistent tracking. Simulation results
comparing the proposed method with two conventional approaches in this domain are
presented to demonstrate the efficiency of the proposed method. Around 2 meters of
accuracy has been obtained for this proposed approach in final position error estimates
during Monte-Carlo simulations with intermittent measurements, in case of which
conventional approaches suffered.

This work is subject to limitations. The work assumes indoor navigation as a linear
system perturbed with white, Gaussian noise. In real time situation, multipath
propagation of WiFi signals or the presence of other signals in the same environment
may cause nonlinearity in the system. For such cases, nonlinear variants of Kalman
filters along with other types of interpolation techniques should be used, which may
open up scopes for some other research.
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