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Abstract

In this research paper, we have proposed a new technique for resolving the
Benjamin-Ono and Buckmaster equations that come up in many engineering and
science applications. The double Elzaki transform and the Adomian polynomials are
coupled in the suggested hybrid approach. Experiments have been carried out to
verify the correctness and simplicity of the suggested scheme. To assess the
effectiveness of the suggested scheme, the outcomes so obtained are compared with
the results obtained by the variational iteration method.

Keywords: Double Elzaki Transform; Adomian Decomposition method; Benjamin-
Ono Equation; Buckmaster Equations; Variational Iteration Method (VIM); Test
examples.

I. Introduction

Partial differential equations that are nonlinear play a crucial role in modeling
complex physical phenomena, especially in fluid dynamics and wave propagation.
The Benjamin—Ono equation and the Buckmaster equation are two significant
examples of these equations, which both occur in the study of nonlinear dispersive
waves. The Benjamin—Ono equation, introduced independently by T.B. Benjamin and
H. Ono in the 1960s and 1970s, describes one-dimensional internal waves in deep
stratified fluids. It is an integrable equation and takes the form:

Up = a(u4)mc + b(ug)x + f(x,p)

Where a, b denote the constants or parameters and f (x, p) is any function of x and p.
The equation captures the balance between nonlinear steepening and dispersive
spreading, making it an important tool in the analysis of internal wave dynamics in
oceanography. On the other hand, the Buckmaster equation is a higher-order
nonlinear PDE used to model the behavior of certain Non-Newtonian fluids, such as
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those found in lubrication theory or viscous thin films. The general form of
Buckmaster’s equation is:

Upp + d(uz)mc + €U = 9 (K, P)

Where d, e denote the constants or parameters and g(k, p) is any function in terms of
Kk and p.

While less well-known than the Benjamin—Ono equation, the Buckmaster equation
includes strong nonlinear and dispersive effects, providing insights into complex flow
patterns and instabilities. Both equations have attracted significant mathematical
interest due to their rich structure, challenging analytical properties, and relevance to
physical systems. They serve as important benchmarks in the study of solitons,
dispersive shock waves, and mathematical fluid mechanics.

Convergence analysis of the Adomian method has been presented for solving various
differential equations arising in several applications of sciences and engineering in
[I]. For the semi-analytical solutions of Burger’s equation, the Sumudu transform-
based decomposition technique has been used in [II]. The double integral transform-
based approach has been used to derive the solutions of a singular system of
hyperbolic equations in [III]. In [IV], the analytical solutions of the Telegraph
equations are examined using the double Laplace transform. In order to find the
analytical solutions of the differential equation, newly integral transform known as
the ‘Elzaki transform’ is established in [V]. In [VI], a projected differential transform
method and the Elzaki transform have been used to solve both linear and nonlinear
PDEs. Modification in the double Sumudu transform method has been carried out in
[VII] for solving the differential equations. For solving the differential equations, two
analytical techniques based on the Elzaki and Sumudu transforms have been
established and implemented in [VIII]. The relationship between Elzaki and Laplace
transforms has been described in [IX]. In [X], authors have used the Elzaki transform
to tackle the ordinary differential equations with variable coefficients. The double
Elzaki transform has been used for solving wave-like equations, and the results are
compared with the double Laplace transform method in [XI]. The authors have used
the double Elzaki decomposition technique for solving some nonlinear partial
differential equations arising in various applications of sciences and engineering in
[XII]. The combination of the Adomian decomposition method with double Elzaki
transforms has been implemented on third-order KdV equations in [XIII]. The
classical method based on the finite volume has been developed to solve Buckmaster,
Fisher, and Sine Gordan equations in [XIV]. In [XV], the authors have presented a
novel approach to finding the semi-analytic solutions of the Buckmaster equations.
For this purpose, the Elzaki transform and the projected differential transform method
have been employed. The convergence of the double Elzaki transform scheme for
solving PDEs has been discussed in [XVI]. Korteweg-De Vries equations of third
order have been solved using Adomian polynomials and the Elzaki transform method
in [XVII]. Local well-posedness of the Benjamin-Ono equations has been discussed
in [XVII-XIX]. Global well-posedness of Benjamin-Ono equations has been
discussed in [XXII]. Efficient techniques based on different integral transforms have
been established and implemented on various higher-dimensional PDEs arising in
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several applications of sciences and engineering in [XX-XXI] and [XXIII-XXIV]. In
[XXV], authors have established a novel technique for precisely determining the
soliton solutions to the second —order Benjamin-Ono equation. A modification in the
Adomian decomposition method has been carried out for the rapid convergence of the
series solution for solving differential equations in [XXVI].

The novelty of the present work lies in the following aspects: Unlike existing studies
that employ a single Elzaki transform or combine it with decomposition techniques in
a sequential manner, this work introduces a double Elzaki transform applied
simultaneously with respect to two independent variables. This structural formulation
enables a direct treatment of multidimensional governing equations without reducing
them to lower-dimensional auxiliary problems. The Adomian decomposition is
implemented after applying the inverse double Elzaki transform, which leads to a
recursive scheme that avoids linearization, perturbation, or discretization. This
ordering differs fundamentally from earlier transform—ADM hybrids, where
decomposition is typically applied before inversion. The proposed approach is shown
to apply to a wider class of nonlinear partial differential equations with coupled
initial-boundary conditions, which are not easily handled using classical Elzaki-based
techniques. The double transform reduces algebraic complexity in the recurrence
relations, leading to faster convergence of the series solution. A theoretical discussion
on convergence behavior has been added, emphasizing the stabilizing effect
introduced by the double transform structure.

The following is the structure of this research paper: The complete details of the
double Elzaki transform and its characteristics are provided in Section 2. Section 3
presents a suggested method for solving mathematical models of partial differential
equations in Section 3. In Section 4, the suggested method for solving such equations
has been used in some computational studies. Convergence and result discussion have
been discussed in Section 5. The conclusion of the study paper is located in Section 6.

II. The Double Elzaki Transform and its Characteristics

This section discusses the double Elzaki transform, the inverse double Elzaki
transform, and a few of its features.

II.i. The Double Elzaki Transform: An Overview

Consider f(x, p) with k,p > 0, a function. An infinite series can be used to represent
this function. The double Elzaki transform is therefore expressed as:

) ) 0o oo (E_}_ﬂ)
DE (. p)in.8) = T8 =3 [ [ £eepye =70 awap,
00

Whenever an integral exists.
IL.ii. Double Elzaki Transform Inverse

The double Elzaki transform's inverse can be expressed as:

DE"HT(, )} = f(x,p), 6,p >0
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If 3 a positive constant H such that m > 0,n > 0 in the region belong to the interval
0 <Kk <0< p<oo the function f(k, p) is said to have an exponential order:

f ()| < H elmth)

IL.iii. The Double Elzaki Transform Standard Characteristics

This section will discuss a few features of the double Elzaki transform.:

LINEARITY PROPERTY: If f(k, p)and g(x, p) be two function of k, p > 0 such
that [f (k, p)] = T1(n,¢) and DE[g(k,p)] = T, (1, {), then

DE{ af (x,p) + b g(k,p)} = a DE{f (x,p)} + b DE {g(k,p)} = a T:(,{) + bT,(n,{)
CHANGE SHIFTING PROPERTY: If DE{f(k, p)} = T(n,{), then
DE{(f (ax, bp)} = o T(ax, bp)
FIRST SHIFTING PROPERTY:
(a) If DE{f (x, p)} = T(n,{), then

DE{ e®*bP f(k,p) =T [ . 1_%5]

1-an’

(b) If DE{f (x, p)} = T(n, {), then

DE{e~%bP f(k,p) = T [ ; 1_%(]

1-an’

ILiv. PARTIAL DERIVATIVES USING DOUBLE ELZAKI TRANSFORM
This section presents the double Elzaki transform of various partial derivatives:
0 1
a) DE {3 f(,p)} =7 T(n,O) =0 T(0,0)
a 1
b) DE {@ flep)} =2 T, =S T(,0)
9 -1 _ _n2
C) DE{m f(K' p) } - 7]2 T(U, () T(O' () n EP T(O' ()
92 1 d
d) DE{ 5 flp)i=7Tm O —T0) - {5 T, 0)
2

9 - L < _1

©) DE {5 flcp) } = T, =270 -2 T(00)+
n¢T(0,0)

III. Proposed Technique for Solving Models of PDEs

Examine the universal nonlinear partial differential equation's form.:

Lu(xk,p) + Nu(x,p) = g(x,p) 2

Inderdeep Singh et al.

107



J. Mech. Cont.& Math. Sci., Vol.-21, No.-01, February (2026) pp 104-120
Under the initial condition
u(k,0) = h(x), 3)

. . . . a
Here g(k,p) is the source term, and L stands for a linear differential operator L = PP

and N for the nonlinear differential operator.

When using the single Elzaki transform on the initial condition, i.e., Equation (3), and
the double Elzaki transform on Equation (2), we obtain

DE(L u(x, p)) + DE (N u(k, p)) = DE (g(x, p)) 4)

and
E(u(x,0)) = E(h(x)) = T(7,0) )
From Equation (4), we obtain
:T,9) = { T(1,0) = DE (g(x,p)) = DE (N u(, p)
This implies
T(,¢) = *T(n,0) + {DE (g(x, p)) — {{DE (N u(x, p))

Or

DE(u(k, p)) = ¢? E(h(x)) + { DE (g(x, p)) — {¢DE(N u(k, p))} (6)
The inverse double Elzaki transform applied to Equation (6), yields

u(x, p) = G(x,p) — DET{{DE(N u(x, p))} (7)
where

G(x,p) = DE"Y¢? E(h(x)) + {DE (g(x, p))}

Assume that the solution has the following form:

u(x, p) = Xp=o un (i, p) ®)
The nonlinear term has the following form:
Nu(x, p) = Yin=o An (W), €

The Adomian polynomials A, (u) are represented here, and they may be computed
as:

14"
Ay =——
n! de™

NEZoe/w)} _,n=0123,..
When the values from (8) and (9) are entered into (7), we get

Y=o un(x, p) = S(i, p) — DE-H{{DE (X5=0 An (W)} (10)
From (10), we get

uo(x, p) = S(x, p),
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u; (ic,p) = —DE~{{ DE(4y)},

u,(k, p) = _DE_l{Z E;(AD}

The problem’s approximate solution is:
ulic, p) = lim Yo un (i, p).

IV. Computational Work

In order to find the solutions of nonlinear PDEs that arise during the creation
of liquid drops, we conduct a few test examples in this section.
Example 1: Examine the nonlinear Benjamin-Ono-like equation

Upp + (uz)mc t+ U = sz (11)
In the initial condition u(x, 0) = 0, wu,(x, 0) = k. The exact solution is:

u(x, p) = kp
Equation (11), when subjected to the double Elzaki transform, yields

DE(uyp) = DE(2p*) ~ DE((u) e + W)

This implies

1 0
(—ZT(ﬂ, )—=Tm0) - (-%T(n, 0) = DE(2p?) = DE((U)ix + W) (12)

Using the initial conditions and a single Elzaki transform, we get
E(u(x,0)) =T(1,0)=E(0) =0
and

E (up(rc, O)) = %T(TI. 0)=E() =n?

From (12), we obtain

1

?T(TI: () = (-T)3 + DE(ZPZ) - DE((u z)mc + umcmc)

This implies
T(,¢) = (3-773 + gz-DE(sz) - ZZ-DE((uZ)lm + Uererere)

When inverse double Elzaki transforms are implemented, we get

DE™H(T(1,¢)) = DE"H{{®.9° + {%.DE(2p?) — (2. DE((u*) e + Uerrerd)}

This implies
4

p -
u(k,p) = kp + z — DE 1{{2- DE((uZ)KK + Uererere) }
Inderdeep Singh et al.

109



J. Mech. Cont.& Math. Sci., Vol.-21, No.-01, February (2026) pp 104-120

Applying the Adomian decomposition method, we obtain

oo 4 [00)
Zun(}c,p) = rcp+/%—DE_1 {Z.DE{Z An(u)}
n=0 n=0

From the above Equation, we obtain
uo(x, p) = Kkp,
u; (k,p) = 2~ DE7 ({2 DE{A,)),
(i, p) = ~DE(§2 Ex{Ar)),

Some of the Adomian polyﬁomials are:

AO = 2p2)
A, =0,

A2=0,

The values of ug, uq, u,, ... are given by

uo(k, p) = Kkp,
ul(K' p) = 0,

Uy (K! .0) =0,
The solution is: '

u(x, p) = uo(x, p) +uy(x, p) + up (x, p) + -+
Or

u(k,p) = kp

Solutions

Fig. 1. Physical behavior of solutions of Example 1
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Solutions

Fig. 2. Solutions of Example 1 for a different range of K, p

The dynamical and physical characteristics of Example 1's analytical solutions
generated by the Adomian decomposition method based on the double Elzaki
transform are displayed in Figures 1 and 2 at various ranges of xand p .

Variational Iteration Method (VIM) :

The formula for the variational iteration method is:
Unt1 (6, ) = Un (i, 0) + A [ ((Wn) pp + W) ic + )i — 207 )dT (13)
Here A = 7 — p,and uy(x,0) = 0, u,(x,0) = k.

Equation (13) can be written simply as:
T
un+1(K' p) = u(K' 0) + Z-up (K' 0) + I(T - p)((urzz)mc + (un)mcmc - 2.02 )dT
0

and the initial approximation is ug = u (x, 0) + p.u,(x, 0) = Kp.

This can be written as:

Uny1 (K, p) = Kkp + f(T - p)((urzl)mc + (Un) i — ZPZ )dr
0

Forn =0,
u; =kp+ [(t = p)(2p* +0—2p?)dp = kp
Forn =1,

T
U = Kp + J.(T - p)((u%)rm + (U1 e — 2.02 )dp = Kkp
0
Inderdeep Singh et al.
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Forn = 2,
T
Uz = Kp + f(T - p)((u%)mc + (U2) rerere — sz )dp = Kkp
0

and so on. The way to solve this is:
u(x, p) = lim u, (k, p) = kp
n—-oo

Example 2: Consider the nonlinear Benjamin-Ono type equation
Upp + 2(U2) 5y + U = 4 (14)

with initial condition u(x, 0) = k, u,(x, 0) = 1. The precise solution is:
u(,p) =x+p

When the double Elzaki transform is applied to Equation (14), we get
DE(u,,) = DE(4) — DE(2(u?) ek + Usererc)
This implies
1 d
(—ZT(n, O)—TMm0) - (-@T(U, 0) = DE(4) = DEQ2(U*)exc + Uccrerc) (15)
Using the initial conditions and a single Elzaki transform, we get

E(u(x,0)) = T(n,0) = E(k) = n°
and

9]
E (4 (06.0)) = 3-7(0,0) = 5@) = n*
From (15), we obtain

1

ET(W' () = U3 + (-UZ + DE(4') - DE(Z(uZ)mc + u’KK'K'K)

This implies
T(,¢) = (2-773 + (3-772 + (Z-DE(4‘) - (Z-DE(Z(uz)mc + Uerererc)

When inverse double Elzaki transforms are implemented, we get

DE_l(T(U, ) = DE_l{fZ-Tf; + (3-712 + (Z-DE(A]‘) - ZZ-DE(Z(uZ)mc + Wirerere) }

This implies
u(k,p)=x+p+ 2,02 - DE_l{ZZ-DE(Z(uZ)mc + Wiererere)}

Applying the Adomian decomposition method, we get

Z up(k,p) =k +p+2p*—DE 1S (% DE {Z An(u)}
n=0

n=0
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From the above Equation, we get

uo(k,p) =k +p,
uy (i, p) = 2p* — DE~1({%. DE{A,)),

Some of the Adomian polynomials are:

u,(x, p) = _DE_l.((z- DE{A;}),

uo(x,p) =k +p,

are given by
uy(x,p) = 0,
U (K', p) = 0'

The values of ug, uq, u,, ...

The solution is:

p) + ...

p) = uo(i, p) +uy (K, p) + uz (i,

)

u(x

Or

u(k,p) =k+p

suoinos

Fig. 3. Physical characteristics of Example 2's solutions
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Solutions

Fig. 4. Solutions of Example 2 for different p

The dynamical and physical behavior of analytical solutions derived from the
Adomian decomposition approach based on the double Elzaki transform at various
ranges of x and p, and of Example 2, is depicted in Figures 3 and 4.

Variational Iteration Method (VIM) :

The formula for the variational iteration method is:
T
U2 6,9) = i, ) + 2 [ () + 20 + e = 4 )T (16)
0

Here A = 7 — p,and uy(x, 0) = k.
Equation (16) can be written simply as:

umﬂmm=u@ﬁﬂmﬂﬁm®+fﬁ—MQ@@m+w0mm—4ﬂf
0

This can be written as:
T

Uns1 (1, p) = (K +p) + f('[ - p)(z(u%)mc + (Un) i — 4)dT
0

Forn =0,
p

w =(k+p)+ f(T - p)(z(u(z))mc + (Ui —4)dp =K +p
0
Forn =1,
p

u; = (k+p) + f(T - p)(z(u%)rm + (U —4)dp =K+ p
0
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Forn = 2,
P

uz = (k+p)+ f(T - p)(z(u%)la{ + (U wrre —4)dp =K +p
0
and so on. The way to solve this is:

u(x,p) = lim u,(k,p) =k +p
n—oo
Example 3: Examine the nonlinear Buckmaster equation, which has the following
form:

Uy = Wi + @), (17
with initial condition
u(x,0) =k
Rewrite the Equation (17),
Uy = {Whe + W)y}
Applying both sides of the double Elzaki transform, we get
DE(u,) = DE{(u") + ()}
This implies
(7,0 = $.T(@,0) = DE{u") e + ()
After simplifications, we obtain
T(1,¢) =2 T(®,0) + {.DE{(u") e + (W)}
Applying initial conditions, we obtain
T(,¢) = ¢%n° + {.DEfu™) e + ()i}
Taking the inverse double Elzaki transform, we obtain
u(x, p) =k + DE~HE DE{u™) e + @)}

Using the Adomian decomposition method, we obtain

i u,(x,p) =k + DE™1 ((. DE {i An(u)}>

n=0 n=0

Comparing the different powers, we obtain

uy(x, p) = K,
u;(k, p) = DE'({.DE{A)),
uy(k,p) = DE_l(q-DE{Aﬂ’),

Inderdeep Singh et al.
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and so on. Some of the Adomian components are:
(Ao = 15k?,
A; = —1380xk3p,
iAz = 45675Kk*p?,

and so on. Components of solutions are:
uO(K' P) =K,
uy (x, p) = —15k?p,
u, (x, p) = 690K3p?,

The way to solve this is:
u(k,p) =ug+uy +uy, +ug +u, + -
Or

u(k, p) = k — 15k%p + 690k3p? + -+

Solutions

Fig. 5 demonstrates the dynamical and physical behavior of solutions at various k and
p ranges

Variational Iteration Method (VIM):

The formula for the variational iteration method is:

p

— aun 4 3
Uppq = Uy + 4 E + (Un) e + (W) | dp
0

Here A = —1, and uy(x, 0) = k.
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Forn =0,

p

ou

Uy = ttg — f (5 + @)+ () dp =k — 1587,
0

Forn =1,

=y — [ (524 @ + (i) dp (18)

For simplifications, we use two terms after expanding (uf),, and (u3), such as
uf =~ (k — 15k2p)* =~ k* + 4x3(—15k%p) =~ k* — 60k°p,
and

ud ~ (k — 15k2p)3 ~ k3 + 3k%(—15k%p) ~ k3 — 45k%p

From (18), we obtain
p

u, = (k — 15x2p) — f(—lSKz + 12Kk? — 1200x3p + 3% — 90x3p)dp
0

After simplifications, we obtain
p

u, = (k — 15x2p) + f(12901c3p)dp =k — 15k%p + 645k3p?,

0
and so on.

The physical and dynamical behavior of solutions of Example 3 at various k and p
ranges is depicted in Figure 5.

V. Convergence and Result Discussion

The Adomian Decomposition Method (ADM) expresses the solution of a
nonlinear differential equation in the form of an infinite series

u(x, t) = Ln=o tn(x, 1),

The convergence of the above infinite series is not automatic, particularly for
nonlinear differential equations. According to classical Adomian theory, convergence
is guaranteed if the nonlinear operator N(u) satisfies a Lipschitz condition in a
suitable Banach space and the associated linear operator is contractive. Under these
assumptions, an infinite series arising in ADM converges absolutely and uniformly to
the exact solution. For a class of nonlinear differential equations as considered in this
work, convergence depends strongly on the initial conditions, the nonlinearity
strength, and parameter regimes. In particular, for sufficiently small initial data and
bounded nonlinear terms, the ADM series converges rapidly.

Truncation Error and Residual Analysis: In various computations, an infinite
series arising in ADM is truncated after N terms:
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N

uM(x,t) = Z u, (x,t)

n=0
and

Ex(x,t) = u(x, t) —u™(x,t)

When the series is convergent, the truncation error satisfies

oo
1BV < D Tl

n=N+1
and

RM(x, t) = L(u™) + N(u™) - f(x,0)

Parameter Sensitivity and Convergence Behavior: The convergence behavior of
the ADM solution is sensitive to physical and mathematical parameters appearing in
the governing equation. Higher nonlinearity coefficients or dispersive parameters
may slow convergence or restrict the interval of validity of the series solution.
Conversely, moderate parameter values lead to fast convergence with only a few
terms required for high accuracy. Numerical experiments demonstrate that increasing
the number of ADM terms improves agreement with known exact or numerical
solutions, confirming the stability and robustness of the method within the admissible
parameter ranges. (see [I], [XXVI])

In particular, we assume that the solution u(x, t) belongs to suitable Sobolev spaces
H®(R), with s> % and is exponentially bounded in time. These assumptions

guarantee the existence of the Elzaki transform with respect to both spatial and
temporal variables. For the Benjamin-Ono equation, the dispersive term involves the
nonlocal Hilbert transform. It is well known that the Hilbert transform is a bounded
linear operator on L*(R) and on Sobolev spaces H5(R). Therefore, the nonlocal
dispersive operator is admissible under the double Elzaki transform. (see [XVIII,
XIX, XXII])

The above analysis establishes that the ADM solutions obtained in this study are
mathematically reliable within appropriate parameter regimes. The convergence
discussion, residual analysis, and parameter sensitivity collectively enhance the
mathematical completeness of the work and justify the effectiveness of the proposed
semi-analytical solutions.

VI. Conclusion

According to the computational data above, the powerful mathematical
method known as the double Elzaki transform can be applied in combination with
the Adomian decomposition approach to solve the Benjamin-Ono and Buckmaster
equations. When an infinite series has varying terms, the solutions are nearer the
precise answer. This method will be applied in the future to determine the semi-
analytical solutions of fractional nonlinear PDEs that come up in a range of technical
and scientific applications.
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