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Abstract 

In this research paper, we have proposed a new technique for resolving the 

Benjamin-Ono and Buckmaster equations that come up in many engineering and 

science applications. The double Elzaki transform and the Adomian polynomials are 

coupled in the suggested hybrid approach. Experiments have been carried out to 

verify the correctness and simplicity of the suggested scheme. To assess the 

effectiveness of the suggested scheme, the outcomes so obtained are compared with 

the results obtained by the variational iteration method. 

Keywords: Double Elzaki Transform; Adomian Decomposition method; Benjamin-

Ono Equation; Buckmaster Equations; Variational Iteration Method (VIM); Test 

examples. 

 
I.   Introduction 

Partial differential equations that are nonlinear play a crucial role in modeling 

complex physical phenomena, especially in fluid dynamics and wave propagation. 

The Benjamin–Ono equation and the Buckmaster equation are two significant 

examples of these equations, which both occur in the study of nonlinear dispersive 

waves. The Benjamin–Ono equation, introduced independently by T.B. Benjamin and 

H. Ono in the 1960s and 1970s, describes one-dimensional internal waves in deep 

stratified fluids. It is an integrable equation and takes the form: 

 𝑢𝜌 = 𝑎(𝑢
4)𝜅𝜅 + 𝑏(𝑢

3)𝜅 + 𝑓(𝜅, 𝜌) 

Where 𝑎, 𝑏 denote the constants or parameters and 𝑓(𝜅, 𝜌) is any function of κ and ρ. 

The equation captures the balance between nonlinear steepening and dispersive 

spreading, making it an important tool in the analysis of internal wave dynamics in 

oceanography. On the other hand, the Buckmaster equation is a higher-order 

nonlinear PDE used to model the behavior of certain Non-Newtonian fluids, such as 
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those found in lubrication theory or viscous thin films. The general form of 

Buckmaster’s equation is: 

  𝑢𝜌𝜌 + 𝑑(𝑢
2)𝜅𝜅 + 𝑒𝑢𝜅𝜅𝜅𝜅 = 𝑔(𝜅, 𝜌) 

Where 𝑑, 𝑒 denote the constants or parameters and 𝑔(𝜅, 𝜌) is any function in terms of 

κ and 𝜌.         

While less well-known than the Benjamin–Ono equation, the Buckmaster equation 

includes strong nonlinear and dispersive effects, providing insights into complex flow 

patterns and instabilities. Both equations have attracted significant mathematical 

interest due to their rich structure, challenging analytical properties, and relevance to 

physical systems. They serve as important benchmarks in the study of solitons, 

dispersive shock waves, and mathematical fluid mechanics. 

Convergence analysis of the Adomian method has been presented for solving various 

differential equations arising in several applications of sciences and engineering in 

[I]. For the semi-analytical solutions of Burger’s equation, the Sumudu transform-

based decomposition technique has been used in [II]. The double integral transform-

based approach has been used to derive the solutions of a singular system of 

hyperbolic equations in [III]. In [IV], the analytical solutions of the Telegraph 

equations are examined using the double Laplace transform. In order to find the 

analytical solutions of the differential equation, newly integral transform known as 

the ‘Elzaki transform’ is established in [V]. In [VI], a projected differential transform 

method and the Elzaki transform have been used to solve both linear and nonlinear 

PDEs. Modification in the double Sumudu transform method has been carried out in 

[VII] for solving the differential equations. For solving the differential equations, two 

analytical techniques based on the Elzaki and Sumudu transforms have been 

established and implemented in [VIII]. The relationship between Elzaki and Laplace 

transforms has been described in [IX]. In [X], authors have used the Elzaki transform 

to tackle the ordinary differential equations with variable coefficients. The double 

Elzaki transform has been used for solving wave-like equations, and the results are 

compared with the double Laplace transform method in [XI]. The authors have used 

the double Elzaki decomposition technique for solving some nonlinear partial 

differential equations arising in various applications of sciences and engineering in 

[XII]. The combination of the Adomian decomposition method with double Elzaki 

transforms has been implemented on third-order KdV equations in [XIII]. The 

classical method based on the finite volume has been developed to solve Buckmaster, 

Fisher, and Sine Gordan equations in [XIV]. In [XV], the authors have presented a 

novel approach to finding the semi-analytic solutions of the Buckmaster equations. 

For this purpose, the Elzaki transform and the projected differential transform method 

have been employed. The convergence of the double Elzaki transform scheme for 

solving PDEs has been discussed in [XVI]. Korteweg-De Vries equations of third 

order have been solved using Adomian polynomials and the Elzaki transform method 

in [XVII]. Local well-posedness of the Benjamin-Ono equations has been discussed 

in [XVIII-XIX]. Global well-posedness of Benjamin-Ono equations has been 

discussed in [XXII]. Efficient techniques based on different integral transforms have 

been established and implemented on various higher-dimensional PDEs arising in 
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several applications of sciences and engineering in [XX-XXI] and [XXIII-XXIV]. In 

[XXV], authors have established a novel technique for precisely determining the 

soliton solutions to the second –order Benjamin-Ono equation. A modification in the 

Adomian decomposition method has been carried out for the rapid convergence of the 

series solution for solving differential equations in [XXVI]. 
 

The novelty of the present work lies in the following aspects: Unlike existing studies 

that employ a single Elzaki transform or combine it with decomposition techniques in 

a sequential manner, this work introduces a double Elzaki transform applied 

simultaneously with respect to two independent variables. This structural formulation 

enables a direct treatment of multidimensional governing equations without reducing 

them to lower-dimensional auxiliary problems. The Adomian decomposition is 

implemented after applying the inverse double Elzaki transform, which leads to a 

recursive scheme that avoids linearization, perturbation, or discretization. This 

ordering differs fundamentally from earlier transform–ADM hybrids, where 

decomposition is typically applied before inversion. The proposed approach is shown 

to apply to a wider class of nonlinear partial differential equations with coupled 

initial–boundary conditions, which are not easily handled using classical Elzaki-based 

techniques. The double transform reduces algebraic complexity in the recurrence 

relations, leading to faster convergence of the series solution. A theoretical discussion 

on convergence behavior has been added, emphasizing the stabilizing effect 

introduced by the double transform structure. 

The following is the structure of this research paper: The complete details of the 

double Elzaki transform and its characteristics are provided in Section 2. Section 3 

presents a suggested method for solving mathematical models of partial differential 

equations in Section 3. In Section 4, the suggested method for solving such equations 

has been used in some computational studies. Convergence and result discussion have 

been discussed in Section 5. The conclusion of the study paper is located in Section 6. 

II.    The Double Elzaki Transform and its Characteristics  

This section discusses the double Elzaki transform, the inverse double Elzaki 

transform, and a few of its features.  

II.i.   The Double Elzaki Transform: An Overview 

Consider 𝑓(𝜅, 𝜌) with 𝜅, 𝜌 > 0, a function. An infinite series can be used to represent 

this function. The double Elzaki transform is therefore expressed as: 

𝐷𝐸 {𝑓(𝜅, 𝜌); 𝜂, 𝜁} = 𝑇(𝜂, 𝜁) = 𝜂 𝜁 ∫ ∫ 𝑓(𝜅, 𝜌)

∞

0

∞

0

𝑒 −
(
𝜅
𝜂
+
𝜌 
𝜁
)
𝑑𝜅𝑑𝜌, 

Whenever an integral exists.  

II.ii.   Double Elzaki Transform Inverse 

The double Elzaki transform's inverse can be expressed as: 

   𝐷𝐸−1{𝑇(𝜂, 𝜁)} = 𝑓(𝜅, 𝜌), 𝜅, 𝜌 > 0 
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If ∃ a positive constant 𝐻 such that 𝑚 > 0, 𝑛 > 0 in the region belong to the interval 

0 ≤ 𝜅 < ∞, 0 ≤ 𝜌 < ∞  the function 𝑓(𝜅, 𝜌) is said to have an exponential order: 

|𝑓(𝜅, 𝜌)| ≤ 𝐻 𝑒
(
𝜅
𝑚
+
𝜌
𝑛
)
 

II.iii.   The Double Elzaki Transform Standard Characteristics 

This section will discuss a few features of the double Elzaki transform.: 

LINEARITY PROPERTY: If 𝑓(𝜅, 𝜌)and 𝑔(𝜅, 𝜌) be two function of 𝜅, 𝜌 > 0 such 

that [𝑓(𝜅, 𝜌)] =  𝑇1(𝜂, 𝜁)  and   DE[𝑔(𝜅, 𝜌)] = 𝑇2(𝜂, 𝜁), then  

DE{ 𝑎𝑓(𝜅, 𝜌) + 𝑏 𝑔(𝜅, 𝜌)} = 𝑎 𝐷𝐸{𝑓(𝜅, 𝜌)} + 𝑏 𝐷𝐸 {𝑔(𝜅, 𝜌)} = 𝑎 𝑇1(𝜂, 𝜁) + 𝑏𝑇2(𝜂, 𝜁) 

CHANGE SHIFTING PROPERTY: If DE{𝑓(𝜅, 𝜌)} = 𝑇(𝜂, 𝜁), then  

  DE{𝑓(𝑎𝜅, 𝑏𝜌)} =
1

𝑎𝑏
 𝑇(𝑎𝜅, 𝑏𝜌) 

FIRST SHIFTING PROPERTY:  

(a) If DE{𝑓(𝜅, 𝜌)} = 𝑇(𝜂, 𝜁), then  

   𝐷𝐸{ 𝑒𝑎𝜅+𝑏𝜌 𝑓(𝜅, 𝜌) = 𝑇 [
𝜂

1−𝑎𝜂
,

𝜁

1−𝑏𝜁
] 

(b) If DE{𝑓(𝜅, 𝜌)} = 𝑇(𝜂, 𝜁), then  

 𝐷𝐸{ 𝑒−𝑎𝜅−𝑏𝜌 𝑓(𝜅, 𝜌) =  𝑇 [
𝜂

1−𝑎𝜂
,

𝜁

1−𝑏𝜁
] 

II.iv.   PARTIAL DERIVATIVES USING DOUBLE ELZAKI TRANSFORM   

This section presents the double Elzaki transform of various partial derivatives: 

a) 𝐷𝐸 {
𝜕

𝜕𝜅
 𝑓(𝜅, 𝜌)} =

1

𝜂
 𝑇(𝜂, 𝜁) − 𝜂 𝑇(0, 𝜁) 

b) DE {
𝜕

𝜕𝜌
 𝑓(𝜅, 𝜌)} =

1

𝜁
 𝑇(𝜂, 𝜁) − 𝜁 𝑇(𝜂, 0) 

c) DE{
𝜕2

𝜕𝜅2
 𝑓(𝜅, 𝜌) } = 

1

𝜂2
 𝑇(𝜂, 𝜁) − 𝑇(0, 𝜁) − 𝜂

𝜕

𝜕𝜅
 𝑇(0, 𝜁) 

d) DE {
𝜕2

𝜕𝜌2
 𝑓(𝜅, 𝜌) } = 

1

𝜁2
 𝑇(𝜂, 𝜁) − 𝑇(𝜂, 0) − 𝜁

𝜕

𝜕𝜌
 𝑇(𝜂, 0) 

e) DE {
𝜕2

𝜕𝜅𝜕𝜌
  𝑓(𝜅, 𝜌)  } = 

1

𝜂𝜁
 𝑇(𝜂, 𝜁) −

𝜁

𝜂
 𝑇(𝜂, 0) −

𝜂

𝜁
 𝑇(0,0) +

𝜂 𝜁 𝑇(0,0) 

III. Proposed Technique for Solving Models of  PDEs 

Examine the universal nonlinear partial differential equation's form.: 

𝐿 𝑢( 𝜅, 𝜌) + 𝑁 𝑢( 𝜅, 𝜌) = 𝑔(𝜅, 𝜌)                                           (2) 
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Under the initial condition 

 𝑢(𝜅, 0) = ℎ(𝜅),                                                            (3) 

Here  𝑔(𝜅, 𝜌) is the source term, and 𝐿 stands for a linear differential operator 𝐿 =
𝜕

𝜕𝜅
, 

and 𝑁 for the nonlinear differential operator. 

When using the single Elzaki transform on the initial condition, i.e., Equation (3), and 

the double Elzaki transform on Equation (2), we obtain  

DE(𝐿 𝑢(𝜅, 𝜌)) + 𝐷𝐸 (𝑁 𝑢(𝜅, 𝜌)) = 𝐷𝐸 (𝑔(𝜅, 𝜌))                                 (4) 

and 

 𝐸(𝑢(𝜅, 0)) =  𝐸(ℎ(𝜅)) = 𝑇(𝜂, 0)                                               (5) 

From Equation (4), we obtain   

  
1

𝜁
𝑇(𝜂, 𝜁) − 𝜁 𝑇(𝜂, 0) = 𝐷𝐸 (𝑔(𝜅, 𝜌)) − 𝐷𝐸 (𝑁 𝑢(𝜅, 𝜌)) 

This implies 

  𝑇(𝜂, 𝜁) = 𝜁2𝑇(𝜂, 0) + 𝜁𝐷𝐸 (𝑔(𝜅, 𝜌)) − {𝜁𝐷𝐸 (𝑁 𝑢(𝜅, 𝜌)) 

Or 

DE(𝑢(𝜅, 𝜌)) = 𝜁2 𝐸(ℎ(𝜅)) + 𝜁 𝐷𝐸 (𝑔(𝜅, 𝜌)) − {𝜁𝐷𝐸(𝑁 𝑢(𝜅, 𝜌))}                (6)     

 The inverse double Elzaki transform applied to Equation (6), yields 

 𝑢(𝜅, 𝜌) = 𝐺(𝜅, 𝜌) − 𝐷𝐸−1{𝜁𝐷𝐸(𝑁 𝑢(𝜅, 𝜌))}                                (7) 

where 

 𝐺(𝜅, 𝜌) = 𝐷𝐸−1{𝜁2 𝐸(ℎ(𝜅)) + 𝜁𝐷𝐸 (𝑔(𝜅, 𝜌))} 

Assume that the solution has the following form: 

  𝑢(𝜅, 𝜌) = ∑ 𝑢𝑛(𝜅, 𝜌)
∞
𝑛=0         (8) 

The nonlinear term has the following form:  

   𝑁𝑢(𝜅, 𝜌) = ∑ 𝐴𝑛(𝑢),
∞
𝑛=0        (9) 

The Adomian polynomials  𝐴𝑛(𝑢) are represented here, and they may be computed 

as: 

  𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜖𝑛
{𝑁(∑ 𝜖𝑗𝑢𝑗

∞
𝑗=0 )}

𝜖=0
, 𝑛 = 0, 1, 2, 3, … 

When the values from (8) and (9) are entered into (7), we get 

    ∑ 𝑢𝑛(𝜅, 𝜌)
∞
𝑛=0 = 𝑆(𝜅, 𝜌) − 𝐷𝐸_1{𝜁𝐷𝐸(∑ 𝐴𝑛(𝑢)

∞
𝑛=0 )}     (10) 

From (10), we get 

  𝑢0(𝜅, 𝜌) = 𝑆(𝜅, 𝜌), 
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  𝑢1(𝜅, 𝜌) = −𝐷𝐸
−1{𝜁 𝐷𝐸(𝐴0)}, 

 𝑢2(𝜅, 𝜌) = −𝐷𝐸
−1{𝜁 𝐸2(𝐴1)}, 

⋮ 

The problem’s approximate solution is: 

  𝑢(𝜅, 𝜌) = lim
𝑛→∞

∑ 𝑢𝑛(𝜅, 𝜌).
∞
𝑛=0  

IV.      Computational Work  

In order to find the solutions of nonlinear PDEs that arise during the creation 

of liquid drops, we conduct a few test examples in this section. 

Example 1: Examine the nonlinear Benjamin-Ono-like equation   

  𝑢𝜌𝜌 + (𝑢
2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅 = 2𝜌

2         (11) 

In the initial condition 𝑢(𝜅, 0) = 0, 𝑢𝜌(𝜅, 0) = 𝜅. The exact solution is: 

  𝑢(𝜅, 𝜌) = 𝜅𝜌 

 Equation (11), when subjected to the double Elzaki transform, yields 

  DE(𝑢𝜌𝜌) = 𝐷𝐸(2𝜌
2) − 𝐷𝐸((𝑢2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅) 

This implies  

1

𝜁2
𝑇(𝜂, 𝜁) − 𝑇(𝜂, 0) − 𝜁.

𝜕

𝜕𝜌
𝑇(𝜂, 0) = 𝐷𝐸(2𝜌2) − 𝐷𝐸((𝑢2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅)    (12) 

Using the initial conditions and a single Elzaki transform, we get  

  𝐸(𝑢(𝜅, 0)) = 𝑇(𝜂, 0) = 𝐸(0) = 0 

and  

  𝐸 (𝑢𝜌(𝜅, 0)) =
𝜕

𝜕𝜌
𝑇(𝜂, 0) = 𝐸(𝜅) = 𝜂3 

From (12), we obtain  

1

𝜁2
𝑇(𝜂, 𝜁) = 𝜁. 𝜂3 + 𝐷𝐸(2𝜌2) − 𝐷𝐸((𝑢 2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅) 

This implies  

𝑇(𝜂, 𝜁) = 𝜁3. 𝜂3 + 𝜁2. 𝐷𝐸(2𝜌2) − 𝜁2. 𝐷𝐸((𝑢2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅) 

When inverse double Elzaki transforms are implemented, we get 

DE−1(𝑇(𝜂, 𝜁)) = 𝐷𝐸−1{𝜁3. 𝜂3 + 𝜁2. 𝐷𝐸(2𝜌2) − 𝜁2. 𝐷𝐸((𝑢2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅)} 

This implies  

𝑢(𝜅, 𝜌) = 𝜅𝜌 +
𝜌4

6
− 𝐷𝐸−1{𝜁2. 𝐷𝐸((𝑢2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅)} 
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Applying the Adomian decomposition method, we obtain 

∑𝑢𝑛(𝜅, 𝜌)

∞

𝑛=0

= 𝜅𝜌 +
𝜌4

6
− 𝐷𝐸−1 {𝜁2. 𝐷𝐸 {∑𝐴𝑛(𝑢)

∞

𝑛=0

}} 

From the above Equation, we obtain  

  

{
 
 

 
 
𝑢0(𝜅, 𝜌) = 𝜅𝜌,                                  

𝑢1(𝜅, 𝜌) =
𝜌4

6
− 𝐷𝐸−1(𝜁2. 𝐷𝐸{𝐴0}),

𝑢2(𝜅, 𝜌) = −𝐷𝐸
−1(𝜁2. 𝐸2{𝐴1}),     
⋮

 

Some of the Adomian polynomials are: 

  {

𝐴0 = 2𝜌
2,

𝐴1 = 0,    
𝐴2 = 0,    

⋮

  

The values of 𝑢0, 𝑢1, 𝑢2, … are given by 

  {

𝑢0(𝜅, 𝜌) = 𝜅𝜌,   

𝑢1(𝜅, 𝜌) = 0,   

𝑢2(𝜅, 𝜌) = 0,   
⋮

 

The solution is: 

  𝑢(𝜅, 𝜌) = 𝑢0(𝜅, 𝜌) + 𝑢1(𝜅, 𝜌) + 𝑢2(𝜅, 𝜌) + ⋯ 

Or 

  𝑢(𝜅, 𝜌) = 𝜅𝜌 

 
 

Fig. 1. Physical behavior of solutions of Example 1 
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Fig. 2. Solutions of Example 1 for a different range of 𝛋, ρ 

 

The dynamical and physical characteristics of Example 1's analytical solutions 

generated by the Adomian decomposition method based on the double Elzaki 

transform are displayed in Figures 1 and 2 at various ranges of  𝜅and   𝜌  . 

Variational Iteration Method (VIM) : 

The formula for the variational iteration method is: 

  𝑢𝑛+1(𝜅, 𝜌) = 𝑢𝑛(𝜅, 𝜌) + 𝜆 ∫ ((𝑢𝑛)𝜌𝜌 + (𝑢𝑛
2)𝜅𝜅 + (𝑢𝑛)𝜅𝜅𝜅𝜅 − 2𝜌

2 )𝑑𝜏
𝜏

0
  (13) 

Here 𝜆 = 𝜏 − 𝜌, and 𝑢0(𝜅, 0) = 0,   𝑢𝜌(𝜅, 0) = 𝜅. 

Equation (13) can be written simply as: 

𝑢𝑛+1(𝜅, 𝜌) = 𝑢(𝜅, 0) + 𝜁. 𝑢𝜌(𝜅, 0) + ∫(𝜏 − 𝜌)((𝑢𝑛
2)𝜅𝜅 + (𝑢𝑛)𝜅𝜅𝜅𝜅 − 2𝜌

2 )𝑑𝜏

𝜏

0

 

and the initial approximation is   𝑢0 = 𝑢 (𝜅, 0) + 𝜌. 𝑢𝜌(𝜅, 0) = 𝜅𝜌. 

This can be written as:  

𝑢𝑛+1(𝜅, 𝜌) = 𝜅𝜌 + ∫(𝜏 − 𝜌)((𝑢𝑛
2)𝜅𝜅 + (𝑢𝑛)𝜅𝜅𝜅𝜅 − 2𝜌

2 )𝑑𝜏

𝜏

0

 

For 𝑛 = 0, 

  𝑢1 = 𝜅𝜌 + ∫ (𝜏 − 𝜌)(2𝜌
2 + 0 − 2𝜌2 )𝑑𝜌

𝜏

0
= 𝜅𝜌 

For 𝑛 = 1, 

𝑢2 = 𝜅𝜌 +∫(𝜏 − 𝜌)((𝑢1
2)𝜅𝜅 + (𝑢1)𝜅𝜅𝜅𝜅 − 2𝜌

2 )𝑑𝜌

𝜏

0

= 𝜅𝜌 
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For 𝑛 = 2, 

𝑢3 = 𝜅𝜌 +∫(𝜏 − 𝜌)((𝑢2
2)𝜅𝜅 + (𝑢2)𝜅𝜅𝜅𝜅 − 2𝜌

2 )𝑑𝜌

𝜏

0

= 𝜅𝜌 

and so on. The way to solve this is:  

𝑢(𝜅, 𝜌) = lim
𝑛→∞

𝑢𝑛(𝜅, 𝜌) = 𝜅𝜌 
 

Example 2: Consider the nonlinear Benjamin-Ono type equation   

𝑢𝜌𝜌 + 2(𝑢
2)𝜌𝜌 + 𝑢𝜅𝜅𝜅𝜅 = 4                                                  (14) 

 

with initial condition 𝑢(𝜅, 0) = 𝜅, 𝑢𝜌(𝜅, 0) = 1. The precise solution is: 

𝑢(𝜅, 𝜌) = 𝜅 + 𝜌 
  

When the double Elzaki transform is applied to Equation (14), we get 

DE(𝑢𝜌𝜌) = 𝐷𝐸(4) − 𝐷𝐸(2(𝑢
2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅) 

This implies  
1

𝜁2
𝑇(𝜂, 𝜁) − 𝑇(𝜂, 0) − 𝜁.

𝜕

𝜕𝜌
𝑇(𝜂, 0) = 𝐷𝐸(4) − 𝐷𝐸(2(𝑢2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅)             (15) 

 

Using the initial conditions and a single Elzaki transform, we get  

𝐸(𝑢(𝜅, 0)) = 𝑇(𝜂, 0) = 𝐸(𝜅) = 𝜂3 

and  

𝐸 (𝑢𝜌(𝜅, 0)) =
𝜕

𝜕𝜌
𝑇(𝜂, 0) = 𝐸(1) = 𝜂2 

From (15), we obtain  
1

𝜁2
𝑇(𝜂, 𝜁) = 𝜂3 + 𝜁. 𝜂2 + 𝐷𝐸(4) − 𝐷𝐸(2(𝑢2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅) 

This implies  

𝑇(𝜂, 𝜁) = 𝜁2. 𝜂3 + 𝜁3. 𝜂2 + 𝜁2. 𝐷𝐸(4) − 𝜁2. 𝐷𝐸(2(𝑢2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅) 
 

When inverse double Elzaki transforms are implemented, we get 

 

DE−1(𝑇(𝜂, 𝜁)) = 𝐷𝐸−1{𝜁2. 𝜂3 + 𝜁3. 𝜂2 + 𝜁2. 𝐷𝐸(4) − 𝜁2. 𝐷𝐸(2(𝑢2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅)} 
 

This implies  

𝑢(𝜅, 𝜌) = 𝜅 + 𝜌 + 2𝜌2 − 𝐷𝐸−1{𝜁2. 𝐷𝐸(2(𝑢2)𝜅𝜅 + 𝑢𝜅𝜅𝜅𝜅)} 
 

Applying the Adomian decomposition method, we get 

∑𝑢𝑛(𝜅, 𝜌)

∞

𝑛=0

= 𝜅 + 𝜌 + 2𝜌2 − 𝐷𝐸−1 {𝜁2. 𝐷𝐸 {∑𝐴𝑛(𝑢)

∞

𝑛=0

}} 

 

 

 

 



 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-21, No.-01, February (2026)  pp 104-120 

Inderdeep Singh et al. 

 

 

113 

 

From the above Equation, we get  

{

𝑢0(𝜅, 𝜌) = 𝜅 + 𝜌,                                  

𝑢1(𝜅, 𝜌) = 2𝜌
2 − 𝐷𝐸−1(𝜁2. 𝐷𝐸{𝐴0}),   

𝑢2(𝜅, 𝜌) = −𝐷𝐸
−1(𝜁2. 𝐷𝐸{𝐴1}),         
⋮

 

 

Some of the Adomian polynomials are: 

{

𝐴0 = 4,    
𝐴1 = 0,    
𝐴2 = 0,    

⋮

  

The values of 𝑢0, 𝑢1, 𝑢2, … are given by 

{

𝑢0(𝜅, 𝜌) = 𝜅 + 𝜌,   

𝑢1(𝜅, 𝜌) = 0,          

𝑢2(𝜅, 𝜌) = 0,          
⋮

 

 

The solution is: 

𝑢(𝜅, 𝜌) = 𝑢0(𝜅, 𝜌) + 𝑢1(𝜅, 𝜌) + 𝑢2(𝜅, 𝜌) + ⋯ 

Or 

𝑢(𝜅, 𝜌) = 𝜅 + 𝜌 

  
Fig. 3. Physical characteristics of Example 2's solutions 
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Fig. 4. Solutions of Example 2 for different ρ   
 

The dynamical and physical behavior of analytical solutions derived from the 

Adomian decomposition approach based on the double Elzaki transform at various 

ranges of κ and ρ, and of Example 2, is depicted in Figures 3 and 4.   

Variational Iteration Method (VIM) : 

The formula for the variational iteration method is: 

𝑢𝑛+1(𝜅, 𝜌) = 𝑢𝑛(𝜅, 𝜌) + 𝜆∫((𝑢𝑛)𝜌𝜌 + 2(𝑢𝑛
2)𝜅𝜅 + (𝑢𝑛)𝜅𝜅𝜅𝜅 − 4 )𝑑𝜏

𝜏

0

     (16) 

Here 𝜆 = 𝜏 − 𝜌, and 𝑢0(𝜅, 0) = 𝜅. 
Equation (16) can be written simply as: 

𝑢𝑛+1(𝜅, 𝜌) = 𝑢(𝜅, 0) + 𝜌. 𝑢𝜌(𝜅, 0) + ∫(𝜏 − 𝜌)(2(𝑢𝑛
2)𝜅𝜅 + (𝑢𝑛)𝜅𝜅𝜅𝜅 − 4 )𝑑𝜏

𝜏

0

 

This can be written as:  

𝑢𝑛+1(𝜅, 𝜌) = (𝜅 + 𝜌) + ∫(𝜏 − 𝜌)(2(𝑢𝑛
2)𝜅𝜅 + (𝑢𝑛)𝜅𝜅𝜅𝜅 − 4 )𝑑𝜏

𝜏

0

 

For 𝑛 = 0, 

𝑢1 = (𝜅 + 𝜌) + ∫(𝜏 − 𝜌)(2(𝑢0
2)𝜅𝜅 + (𝑢0)𝜅𝜅𝜅𝜅 − 4 )𝑑𝜌

𝜌

0

= 𝜅 + 𝜌 

For 𝑛 = 1, 

𝑢2 = (𝜅 + 𝜌) + ∫(𝜏 − 𝜌)(2(𝑢1
2)𝜅𝜅 + (𝑢1)𝜅𝜅𝜅𝜅 − 4 )𝑑𝜌

𝜌

0

= 𝜅 + 𝜌 
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For 𝑛 = 2, 

𝑢3 = (𝜅 + 𝜌) + ∫(𝜏 − 𝜌)(2(𝑢2
2)𝜅𝜅 + (𝑢2)𝜅𝜅𝜅𝜅 − 4 )𝑑𝜌

𝜌

0

= 𝜅 + 𝜌 

and so on. The way to solve this is:  

𝑢(𝜅, 𝜌) = lim
𝑛→∞

𝑢𝑛(𝜅, 𝜌) = 𝜅 + 𝜌 

Example 3: Examine the nonlinear Buckmaster equation, which has the following 

form: 

   𝑢𝜌 = (𝑢
4)𝜅𝜅 + (𝑢

3)𝜌,        (17) 

with initial condition  

  𝑢(𝜅, 0) = 𝜅 

Rewrite the Equation (17), 

  𝑢𝜌 = {(𝑢
4)𝜅𝜅 + (𝑢

3)𝜅} 

Applying both sides of the double Elzaki transform, we get   

  DE(𝑢𝜌) = 𝐷𝐸{(𝑢
4)𝜅𝜅 + (𝑢

3)𝜅} 

This implies  

  
1

𝜁
𝑇(𝜂, 𝜁) − 𝜁. 𝑇(𝜂, 0) = 𝐷𝐸{(𝑢4)𝜅𝜅 + (𝑢

3)𝜅} 

After simplifications, we obtain 

  𝑇(𝜂, 𝜁) = 𝜁2. 𝑇(𝜂, 0) + 𝜁. 𝐷𝐸{(𝑢4)𝜅𝜅 + (𝑢
3)𝜅} 

Applying initial conditions, we obtain 

  𝑇(𝜂, 𝜁) = 𝜁2. 𝜂3 + 𝜁.𝐷𝐸{(𝑢4)𝜅𝜅 + (𝑢
3)𝜅} 

Taking the inverse double Elzaki transform, we obtain 

𝑢(𝜅, 𝜌) = 𝜅 + 𝐷𝐸−1{𝜁. 𝐷𝐸{(𝑢4)𝜅𝜅 + (𝑢
3)𝜅}} 

Using the Adomian decomposition method, we obtain 

∑𝑢𝑛(𝜅, 𝜌)

∞

𝑛=0

= 𝜅 + 𝐷𝐸−1 (𝜁. 𝐷𝐸 {∑𝐴𝑛(𝑢)

∞

𝑛=0

}) 

Comparing the different powers, we obtain  

{

𝑢0(𝜅, 𝜌) = 𝜅,                                         

𝑢1(𝜅, 𝜌) = 𝐷𝐸
−1(𝜁. 𝐷𝐸{𝐴0}),               

𝑢2(𝜅, 𝜌) = 𝐷𝐸
−1(𝜁. 𝐷𝐸{𝐴1}),               

⋮
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and so on. Some of the Adomian components are: 

{
 

 
𝐴0 = 15𝜅

2,              

𝐴1 = −1380𝜅
3𝜌,    

𝐴2 = 45675𝜅
4𝜌2,   

⋮

  

 

and so on. Components of solutions are: 

{

𝑢0(𝜅, 𝜌) = 𝜅,                        

𝑢1(𝜅, 𝜌) = −15𝜅
2𝜌,               

𝑢2(𝜅, 𝜌) = 690𝜅
3𝜌2,          

⋮

 

 

The way to solve this is: 

𝑢(𝜅, 𝜌) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 +⋯ 

Or 

𝑢(𝜅, 𝜌) = 𝜅 − 15𝜅2𝜌 + 690𝜅3𝜌2 +⋯ 

 

 
 

 

Fig. 5 demonstrates the dynamical and physical behavior of solutions at various κ and 

ρ ranges 
. 

Variational Iteration Method (VIM): 

The formula for the variational iteration method is: 

𝑢𝑛+1 = 𝑢𝑛 + 𝜆∫ (
𝜕𝑢𝑛
𝜕𝜌

+ (𝑢𝑛
4)𝜅𝜅 + (𝑢𝑛

3)𝜅)𝑑𝜌

𝜌

0

 

Here 𝜆 = −1, and 𝑢0(𝜅, 0) = 𝜅. 

 

 

0
0.5

1
1.5

2
2.5

3

0

1

2

3

-500

-400

-300

-200

-100

0

100

tx

S
o
lu

ti
o
n
s
 

𝜌 
𝜅  

 



 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-21, No.-01, February (2026)  pp 104-120 

Inderdeep Singh et al. 

 

 

117 

 

For 𝑛 = 0, 

𝑢1 = 𝑢0 −∫(
𝜕𝑢0
𝜕𝜌

+ (𝑢0
4)𝜅𝜅 + (𝑢0

3)𝜅)𝑑𝜌

𝜌

0

= 𝜅 − 15𝜅2𝜌, 

For 𝑛 = 1, 

  𝑢2 = 𝑢1 − ∫ (
𝜕𝑢1

𝜕𝜌
+ (𝑢1

4)𝜅𝜅 + (𝑢1
3)𝜅)𝑑𝜌

𝜌

0
     (18) 

For simplifications, we use two terms after expanding (𝑢1
4)𝜅𝜅 and (𝑢1

3)𝜅 such as  

𝑢1
4 ≈ (𝜅 − 15𝜅2𝜌)4 ≈ 𝜅4 + 4𝜅3(−15𝜅2𝜌) ≈ 𝜅4 − 60𝜅5𝜌, 

and 

𝑢1
3 ≈ (𝜅 − 15𝜅2𝜌)3 ≈ 𝜅3 + 3𝜅2(−15𝜅2𝜌) ≈ 𝜅3 − 45𝜅4𝜌 

 

From (18), we obtain 

𝑢2 = (𝜅 − 15𝜅
2𝜌) − ∫(−15𝜅2 + 12𝜅2 − 1200𝜅3𝜌 + 3𝜅2 − 90𝜅3𝜌)𝑑𝜌

𝜌

0

 

After simplifications, we obtain 

𝑢2 = (𝜅 − 15𝜅
2𝜌) +∫(1290𝜅3𝜌)𝑑𝜌

𝜌

0

= 𝜅 − 15𝜅2𝜌 + 645𝜅3𝜌2, 

and so on. 

 

The physical and dynamical behavior of solutions of Example 3 at various κ and ρ 

ranges is depicted in Figure 5. 
 

V.     Convergence and Result Discussion 

The Adomian Decomposition Method (ADM) expresses the solution of a 

nonlinear differential equation in the form of an infinite series 

  𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)
∞
𝑛=0 , 

The convergence of the above infinite series is not automatic, particularly for 

nonlinear differential equations. According to classical Adomian theory, convergence 

is guaranteed if the nonlinear operator 𝑁(𝑢)  satisfies a Lipschitz condition in a 

suitable Banach space and the associated linear operator is contractive. Under these 

assumptions, an infinite series arising in ADM converges absolutely and uniformly to 

the exact solution. For a class of nonlinear differential equations as considered in this 

work, convergence depends strongly on the initial conditions, the nonlinearity 

strength, and parameter regimes. In particular, for sufficiently small initial data and 

bounded nonlinear terms, the ADM series converges rapidly.  

Truncation Error and Residual Analysis: In various computations, an infinite 

series arising in ADM is truncated after 𝑁 terms: 
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𝑢(𝑁)(𝑥, 𝑡) = ∑𝑢𝑛(𝑥, 𝑡)

𝑁

𝑛=0

 

and 

𝐸𝑁(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑢
(𝑁)(𝑥, 𝑡) 

When the series is convergent, the truncation error satisfies 

‖𝐸𝑁‖ ≤ ∑ ‖𝑢𝑛‖

∞

𝑛=𝑁+1

, 

and 

𝑅(𝑁)(𝑥, 𝑡) = ℒ(𝑢(𝑁)) + ℕ(𝑢(𝑁)) − 𝑓(𝑥, 𝑡) 

Parameter Sensitivity and Convergence Behavior: The convergence behavior of 

the ADM solution is sensitive to physical and mathematical parameters appearing in 

the governing equation. Higher nonlinearity coefficients or dispersive parameters 

may slow convergence or restrict the interval of validity of the series solution. 

Conversely, moderate parameter values lead to fast convergence with only a few 

terms required for high accuracy. Numerical experiments demonstrate that increasing 

the number of ADM terms improves agreement with known exact or numerical 

solutions, confirming the stability and robustness of the method within the admissible 

parameter ranges. (see  [I], [XXVI]) 

In particular, we assume that the solution 𝑢(𝑥, 𝑡) belongs to suitable Sobolev spaces 

𝐻𝑠(𝑅) , with 𝑠 >
3

2
 and is exponentially bounded in time. These assumptions 

guarantee the existence of the Elzaki transform with respect to both spatial and 

temporal variables. For the Benjamin-Ono equation, the dispersive term involves the 

nonlocal Hilbert transform. It is well known that the Hilbert transform is a bounded 

linear operator on 𝐿2(𝑅)  and on Sobolev spaces  𝐻𝑠(𝑅) . Therefore, the nonlocal 

dispersive operator is admissible under the double Elzaki transform. (see [XVIII, 

XIX, XXII]) 

The above analysis establishes that the ADM solutions obtained in this study are 

mathematically reliable within appropriate parameter regimes. The convergence 

discussion, residual analysis, and parameter sensitivity collectively enhance the 

mathematical completeness of the work and justify the effectiveness of the proposed 

semi-analytical solutions. 

VI.   Conclusion   

According to the computational data above, the powerful mathematical 

method known as the double Elzaki transform can be applied in combination with 
the Adomian decomposition approach to solve the Benjamin-Ono and Buckmaster 

equations. When an infinite series has varying terms, the solutions are nearer the 

precise answer. This method will be applied in the future to determine the semi-

analytical solutions of fractional nonlinear PDEs that come up in a range of technical 

and scientific applications. 
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