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Abstract 

     The Runge-Kutta method, and especially its fourth-order variant (RK4), is perhaps 

the most widely adopted method for solving ordinary differential equations (ODEs) 

and their systems. This paper deals specifically with the RK4 method to explain a 

system of first-order differential equations, and the ability of the method to converge 

and stabilize positive solutions. It is well known that standard RK4 is both accurate 

and stable, but to particularly maintain positivity of solutions, where the model 

represents physical quantities that must be non-negative, such as populations or 

concentrations, often requires extra techniques. 

This paper discusses theoretically the RK4 method and systems, their execution, the 

need for retention of positivity, and methodologies for retention of positivity. Several 

illustrative examples are included to demonstrate the application of the method and the 

difficulty of maintaining positivity as well. 

Keywords: Runge-Kutta method, fourth-order, systems of first-order differential 

equations, positive solutions.   

I.    Introduction   

Applying the concepts of engineering and science disciplines often results in 

systems of ordinary differential equations (ODEs) when multiple variables interact 

with one another. Such systems can describe population dynamics, electrical circuits, 

or even chemical reactions. Complex or nonlinear systems tend to require numerical 

methods rather than analytical solutions, which are preferable but not achievable in 

most cases [I, XIV].   
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For ODEs, RK is one of the most popular methods due to its ease of use, stability, and 

accuracy. RK4 is widely used in many disciplines, due to a good trade-off between 

computational cost and accuracy [I-II]. Unlike multistep methods, a single-step method 

increases the simplicity of RK4’s application. 

This paper is concerned with the RK4 method for systems of first-order differential 

equations with respect to "positive solutions". In many scenarios, the dependent 

variables are physical entities that must be non-negative: populations, concentrations, 

or mass. Therefore, the numerical procedures adopted must not only approximate the 

solution with enough accuracy, but also preserve both the physical nature and the non-

negativity of these quantities throughout the whole simulation. Many standard 

numerical schemes, some RK methods, and stiff systems with large step sizes tend to 

produce non-physical negative values [III, XIII]. This paper aims to comprehensively 

analyze the RK4 method concerning systems of first-order ODEs, address the issue of 

positivity preservation in numerical solutions, and explain modifications and strategies 

of RK4 aimed at preserving positive solutions. The researcher documents the 

positivity-preserving frameworks and foundational concepts alongside the outcomes 

relevant to their application. In addition, completely solved examples will be given for 

the practical application of the RK4 method, and the techniques that are needed to 

ensure that all solutions are positive will be discussed as well. 

II.   Literature Review 

The Runge-Kutta methods, as a family of iterative numerical techniques for 

estimating the solution of ordinary differential equations, are attributed to Carl Runge 

and Martin Kutta. Until recently, with the emergence of newer methods, the fourth-

order Runge-Kutta method, also referred to as RK4, was one of the most prevalent and 

celebrated methods due to its reasonable accuracy for many problems. It came into 

existence over a century ago and to this day, is heavily relied on in the field of numerical 

analysis for resolving initial value problems (IVPs).   

As for the initial works of the Runga-Kutta methods, most of the research was focused 

on the single ODEs and designed systems of first-order ODEs, which form the key to 

the construction of multi-component systems. It is possible to construct RK4 in such a 

way that it can perform parallelized integration for a system of many dependent 

variables. This makes RK4 a general-purpose method that can be employed across 

multiple disciplines in science and engineering [I, IX]. For instance, Abraha (2020) 

analyzed multiple numerical approaches, including the classical fourth-order Runge-

Kutta method for solving systems of first-order ordinary differential equations, and 

remarked that RK4 provided the best accuracy among all tested methods when 

benchmarked against analytical solutions [IX]. Likewise, Islam (2015) researched the 

practical effectiveness and accuracy of the fourth-order Runge-Kutta method for 

solving initial value problems (IVPs) and discussed its practical effectiveness through 

multiple case studies [I].   

The RK4 method is useful for a wide range of problems; however, there is a 

fundamental issue with systems whose dependent variables must be strictly positive. 

This is particularly important in population studies, epidemiology, chemical kinetics, 

and finance, where variables such as population, concentrations, or even stock prices 
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are expected to be non-negative values. Generally, most numerical methods, including 

the classical RK4, do not guarantee preservation of positivity. Such non-physical 

results are common when using sufficiently large step sizes or when the system is stiff 

[III, XIII]. As an illustration, Redmann and Riedel (n.d.) study the Runge-Kutta 

methods in [4] have tried to solve rough differential equations that are capable of 

solving stochastic differential equations, thereby indicating the implicit need for 

methods that preserve certain attributes of the solution. Most directly, research has 

focused on positivity-preserving adaptive Runge-Kutta methods, where the method 

weights are adjusted to enforce bounds and ensure positivity [III, XIII]. Most of these 

modifications incorporate the use of flux limiters, non-negative steps, or component-

wise non-negativity preserving formulations. Developing such methods is important 

for dependable simulations of phenomena where physically constrained solutions are 

needed. 

The challenge associated with the failure to preserve positivity has given rise to adapted 

or modified Runge-Kutta methods, which aim to ensure that the numerical solutions 

are consistent with the domain of interest. 

A linear stability analysis of the numerical method requires one to start with the 

classical test equation 𝑦′ = 𝜆𝑦, where any one-step scheme will allow the 

representation. 

  𝑦𝑛+1 = 𝑅(ℎ𝜆)𝑦𝑛,  

𝑅(𝑧) is the amplification factor giving the response of the spectral parameter of the 

method to the spectral parameter of the ℎ wavelength. In the case of the classical fourth-

order Runge-Kutta scheme (𝑅𝐾4), 𝑅(𝑧) is described as the fourth-degree expansion as 

a Taylor series of the exponential function, that is, 

𝑅(𝑧) = 1 + 𝑧 +
𝑧2

2
+

𝑧3

3!
+

𝑧4

4!
.  

The region of stability is characterized, and the points where this state is intersected by 

the negative real axis give the familiar stability region 𝑧 ∈ [−2.7853, 0]. In 

consequence, in the case of real negative eigenvalues, 𝑅𝐾4 is a linearly stable method 

as long as ℎ ≤
2.7853

|𝜆|
. Therefore, when the eigenvalues are real with negative values, 

𝑅𝐾4 is a linearly stable method on the condition that the value of ℎ ≤ 2.7853/|𝜆|. As 

a result, a lineally stable method is the 𝑅𝐾4 when Einsteinian, and the values of 𝑅𝐾4 

are real and negative. 

In these environments, the scalar factor 𝑅(ℎ𝜆)  is substituted by the matrix polynomial 

𝑅(ℎ𝜆) whose off-diagonal interactions can still give negative components even when 

the initial vector is non-negative. When the classical RK4 is used, this is significantly 

limited by the fact that the value of its strong-stability-preserving (SSP) coefficient is 

zero, so it is not representable as a convex blend of forward-Euler steps and 

consequently is not able to provide monotonicity or positivity with arbitrary Metzler 

matrices. 

The interaction between step size ℎ and the influence on the system through the extent 

and form of eigenvalues is very demanding for the development of the positivity loss. 
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Large values of ℎ may move certain spectral content to areas outside the range of 

realistic values of the discrete flow. Well, even the case of a linearly stable approach 

in the classical sense. It is particularly large in the situation when the systems are highly 

off-diagonally coupled, such that the 𝑅(ℎ𝐴) matrix may exhibit oscillatory or sign-

changing behaviour without having such behaviour on the scalar level. One can further 

explain it by comparing it to A-stable and even SSP time integrators to define the extent 

of the applicability of RK4. Implicit schemes such as the backward Euler scheme, or 

the Crank-Nicolson scheme, which are A-stable, can be stable over the entire left half-

plane in the complex plane and are therefore useful with stiff problems. 

Correspondingly, the high-order SSP schemes are explicitly constrained by time-steps 

to have certain properties that enable them to be positive and also to have a set of further 

monotonicity properties. RK 4, which again is not A-stable with a positive coefficient 

of SSP, is howwase optimum fitted to non-stiff problems where positivity is not 

inherent to the nature of the problem, or where additional positivity-conserving limiters 

or projection operators are incorporated to give the preferred invariance. 

III.   Preliminaries  

III.i.   Systems of First-Order Ordinary Differential Equations  

A system of first-order ordinary differential equations can be expressed in the 

general form:  

 
𝑑𝑦1

𝑑𝑥
 =  𝑓1(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑛) 

 
𝑑𝑦2

𝑑𝑥
 =  𝑓2(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑛) 

 …  

 
𝑑𝑦𝑛

𝑑𝑥
 =  𝑓𝑛(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑛) 

This can be written more compactly in vector form as:  

 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

Where 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇 is a vector of dependent variables, and 

 𝑓 = [𝑓1, 𝑓2, … , 𝑓𝑛]𝑇 is a vector function of 𝑥 and 𝑦. With this system, it is usually 

required to specify an initial condition 𝑦(𝑥0) = 𝑦0 hence it is an Initial Value Problem 

(IVP) [3, 8]. 

III.ii.   Positivity-Preserving Fourth-Order Runge–Kutta method: 

In the initial-value problem of a system of m ordinary differential equations. 

  𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)),      𝑦(𝑡0) = 𝑦0 ∈ ℝ+
𝑚̅̅ ̅̅̅ 

   where  ℝ+
𝑚̅̅ ̅̅̅ = {𝑦 ∈ ℝ𝑚 ∶  𝑦𝑖 ≥ 0,  𝑖 = 1, …,m}. We assume: 

(A1) f is 𝐶4 in 𝑦 and continuous in 𝑡 on a domain containing the solution on [𝑡0, 𝑇]. 
(A2) 𝑓 is locally Lipschitz in 𝑦, then this provides uniqueness and classical RK4 

behaviour. 
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(A3) The continuous flow does not force an immediate exit from the nonnegative 

orthant near the boundary; e.g., 𝑓(𝑡, 0) ≥ 0 componentwise or a similar non-exit 

condition. 

Modified RK4 algorithm   

Assuming time 𝑡𝑛 , state 𝑦𝑛 ≥ 0, and candidate step ℎ > 0, the classical RK4 stages 

are computed. 

                       𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛), 

                       𝑘2 = 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1),  

                       𝑘3 = 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2),  

                       𝑘4 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3),  

and the 𝑅𝐾4 candidate 𝑦n+1
∗ = 𝑦𝑛 +

ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

Checks for the stages and adaptivity. Compute intermediate stage states. 

  𝑦(2) = 𝑦𝑛 +
ℎ

2
𝑘1 

  𝑦(3) = 𝑦𝑛 +
ℎ

2
𝑘2 

  𝑦(4) = 𝑦𝑛 + ℎ𝑘3 

If any of the intermediate stage components or any component of 𝑦n+1
∗  is found to be 

less than small negative tolerance (say, −𝜀), reduce the step by ℎ ← 𝛾ℎ with 0 < 𝛾 <
1 and retry. Repeat this until the stage checks pass or ℎ is reduced to some predefined 

ℎ𝑚𝑖𝑛 [XII]. 

III.iii.   The Fourth-Order Runge-Kutta Method (RK4) for Systems  

The RK4 method is a popular method of numerical method that is used to estimate 

the answer to an IVP. The formula to compute a first-order ODE, 
𝑑𝑦

𝑑𝑥
=  𝑓(𝑥, 𝑦), by 

RK4 is: 

  𝑦𝑛+1 =  𝑦𝑛  +  
1

6
(𝑘1  +  2𝑘2 +  2𝑘3  +  𝑘4)ℎ  

where ℎ is the step size, and:  

  𝑘1  =  𝑓(𝑥𝑛, 𝑦𝑛),      𝑘2  =  𝑓 (𝑥𝑛  +  
ℎ

2
, 𝑦𝑛 +  

ℎ

2
 ∗  𝑘1)    

   𝑘3 = 𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 + 

ℎ

2
∗ 𝑘2),    𝑘4 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ ∗ 𝑘3)  

To solve a system of 𝑛 first-order ODEs, 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), the RK4 technique used one 

component at a time. The 𝑘 vectors are turned into vectors, and each component 𝑦𝑖 

update rule is: 

𝑦𝑖,𝑛+1 =  𝑦𝑖,𝑛 + 
1

6
(𝑘1,𝑖  +  2𝑘2,𝑖 +  2𝑘3,𝑖  +  𝑘4,𝑖)ℎ  

where:  

𝑘1  =  𝑓(𝑥𝑛 , 𝑦𝑛),   𝑘2  =  𝑓 (𝑥𝑛  +  
ℎ

2
, 𝑦𝑛 +  

ℎ

2
 ∗  𝑘1) ,

𝑘3 = 𝑓 (𝑥𝑛 + 
ℎ

2
, 𝑦𝑛  +  

ℎ

2
 ∗  𝑘2),   𝑘4 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ ∗ 𝑘3)  
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Here, 𝑘1, 𝑘2, 𝑘3, 𝑘4 are vectors, and 𝑘𝑗,𝑖 refers to the 𝑖 − 𝑡ℎ component of the vector 

𝑘𝑗. With this formulation, the next step of all dependent variables of a system can be 

simultaneously computed [IX]. 

The dependent variables of many ODE systems in real applications often represent 

non-negative physical quantities, such as population, chemical concentration, or 

mass. If a numerical solution to a system of ODEs has the property that, given non-

negative initial values for all the dependent variables, the numerical approximation to 

these variables remains non-negative for all time, we say that the numerical method 

preserves positivity. The standard numerical methods described above (including RK4) 

do not necessarily possess this property, and can in general produce negative values for 

the solution even for quantities that are physically non-negative unless the method is 

modified with this goal in mind or the step size is carefully chosen [III, XIII]. To solve 

this issue, positivity-preserving schemes have been created. 

IV.   Main Results  
IV.i.   Application of RK4 to Systems of First-Order ODEs  

      The fourth-order Runge-Kutta method is highly effective for solving systems 

of first-order ordinary differential equations. The method's strength lies in its ability 

to achieve high accuracy by evaluating the function 𝑓(𝑥, 𝑦) at several intermediate 

points within each step, effectively capturing the curvature of the solution trajectory. 

For a system of n first-order ODEs, the RK4 algorithm proceeds as follows:  

Given the system 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) with initial condition 𝑦(𝑥0) = 𝑦0 , and a step size ℎ :  

For each step 𝑖 from 0 to 𝑁 − 1 (where 𝑁 is the total number of steps):  

1. Calculate 𝑘1 vector: 𝑘1 = 𝑓(𝑥𝑖 , 𝑦𝑖)  

2. Calculate 𝑘2 vector: 𝑘2 = 𝑓(𝑥𝑖  +
ℎ

2
, 𝑦𝑖  + (

ℎ

2
) ∗  𝑘1)  

3. Calculate 𝑘3 vector: 𝑘3  =  𝑓(𝑥𝑖  +
ℎ

2
, 𝑦𝑖  +  (

ℎ

2
) ∗  𝑘2) 

4. Calculate 𝑘4 vector: 𝑘4  =  𝑓(𝑥𝑖  +  ℎ, 𝑦 +  ℎ ∗  𝑘3)  

5. Update 𝑦𝑖 to 𝑦𝑖+1:  𝑦𝑖+1 = 𝑦𝑖 +  (
ℎ

6
) ∗  (𝑘1  +  2 ∗ 𝑘2  +  2 ∗ 𝑘3  + 𝑘4)  

This iterative process allows for the numerical approximation of the solution 𝑦(𝑥) at 

discrete points 𝑥0, 𝑥1, . . . , 𝑥𝑁 . The accuracy of the RK4 method is of order 𝑂(ℎ4), 

meaning that the local truncation error is proportional to ℎ5 and the global truncation 

error is proportional to ℎ4. This high order of accuracy makes RK4 a preferred choice 

for many applications where precision is critical [I-II]. 

Theorem (Positivity) 

Statement. Under hypotheses (𝐴1) − (𝐴3) and provided that 𝑦0 ≥ 0, the modified 

RK4 algorithm proceeds to generate iterates 𝑦𝑛 such that 𝑦𝑛 ≥ 0 holds component-

wise for all 𝑛 (positivity). Further, for any sequence of meshes with a maximal step 

ℎ𝑚𝑎𝑥 → 0 such that for all small enough step sizes the stage checks and fallback 

projection remain inactive (i.e., for sufficiently fine meshes the RK4 candidate is 

accepted without correction [V, VII]). 
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Proof 

We prove the induction for 𝑛 in 𝑦𝑛 ≥ 0 for all 𝑛. 

Base case. By assumption 𝑦0 ≥ 0. Inductive hypothesis. Let us assume 𝑦𝑛 ≥ 0. We 

shall prove 𝑦𝑛+1 ≥ 0. 

Suppose we describe the modified  𝑅𝐾4 procedure with a candidate step ℎ > 0. 

1. Case A — The stage checks hold for a trial step 𝒉 > 𝟎. 

That is, all intermediate stage states 𝑦(2), 𝑦(3), 𝑦(4)  and the candidate 𝑦n+1
∗  

satisfy 𝑦(𝑗)  ≥ −𝜀 componentwise and  𝑦n+1
∗ ≥ −𝜀  with respect to some tiny 

tolerance 𝜀. On acceptance, we compute 

                    𝑦𝑛+1 = max(0, 𝑦𝑛+1
∗ ),  

Where max is defined componentwise: any tiny negative components in (−𝜀, 0) would 

get clipped to zero, while any positive components remain uncompromised. Thus, 

𝑦𝑛+1 ≥ 0. This completes the proof in Case A [VI]. 

2. Case B — The stage checks will all fail for all trial steps 𝒉 with 𝒉 ∈ (𝒉𝒎𝒊𝒏 , 𝒉𝟎] 

and the algorithm shrinks 𝒉 repeatedly until either success or 𝒉 = 𝒉𝒎𝒊𝒏. 

The dependence of the stage increments on h is continuously in view of the  𝐶1 

continuity of 𝑓 in 𝑦 and continuous in 𝑡 (𝐴1 − 𝐴2), the stage increments depend 

continuously on ℎ and satisfy the linear bound  

  ∥ 𝑦(𝑗) − 𝑦𝑛 ∥≤ 𝐶ℎ,        𝑗 = 2,3,4,  

for some 𝐶 > 0 and sufficiently small ℎ. Since 𝑦𝑛is nonnegative, this continuity of 

𝑦(𝑗) with respect to h guarantees there's ℎ0 > 0 such that for all 0 < ℎ < ℎ0  one has 

𝑦(𝑗) ≥ −𝜀. Therefore, shrinking will work to the point that there exists a trial step for 

which the stage checks pass (reduce to Case A), except that there's some instantaneous 

negative forcing by the vector field preventing any sufficiently small explicit step from 

being able to have nonnegative stages. This latter case corresponds to pathological 

vector fields violating the non-existence assumption (A3); this pathology is ruled out 

under (A3). So our regular 𝑓 will push us again in Case A, thereby implying 𝑦𝑛+1 ≥ 0. 
Since it contravenes (A3), tiniest positive ℎmin fails the stage tests. Then the algorithm 

applies the fallback convex projection componentwise. For each component 𝑖 such that 

𝑦𝑛+1,𝑖
∗ < 0 and 𝑦𝑛,𝑖 > 0, we have the constructed algorithm: 

𝑦n+1,i  = (1 − 𝜃𝑖)𝑦𝑛,𝑖 + 𝜃𝑖𝑦𝑛+1,𝑖
∗ ,           𝜃𝑖 =

𝑦n,i

𝑦n,i − 𝑦𝑛+1,𝑖
∗ ∈ (0,1] 

which is zero. If 𝑦n,i = 0 and 𝑦𝑛+1,𝑖
∗ < 0 we set 𝑦n+1,i = 0. For components with 

𝑦𝑛+1,𝑖
∗ ≥ 0 no change is made. Each component is projected non-negatively, and the 

projection is therefore componentwise. Hence 𝑦n+1 ≥ 0. 

V.     Solved Examples  

In order to explain the use of the fourth-order Runge-Kutta method when 

solving systems of first-order ordinary differential equations, the researcher discusses 

the following example provided by Abraha (2020) and Botelho (2020) [IV, IX]: 
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Example 5.1:  

Given a first-order ordinary differential equations system: 

  
𝑑𝑦1

𝑑𝑥
=  𝑦1  +  3𝑦2  

  
𝑑𝑦2

𝑑𝑥
=  2𝑦1  +  2𝑦2  

and initial conditions 𝑦1(0)  =  5, 𝑎𝑛𝑑 𝑦2(0)  =  0. The analytical solution of such a 

system is: 

  𝑦1(𝑥)  =  3𝑒−𝑥  +  2𝑒4𝑥  ,    𝑦2(𝑥)  =  −2𝑒−𝑥   +  2𝑒4𝑥 

The researcher applies the RK4 method to approximate the solution for a step size 

ℎ = 0.05. 

 Solution using RK4:  
Let 𝑓1(𝑥, 𝑦1, 𝑦2) = 𝑦1 + 3𝑦2 and 𝑓2(𝑥, 𝑦1, 𝑦2) =  2𝑦1 + 2𝑦2. 

 The RK4 order- equations of a system are:  

𝑦1,𝑛+1 = 𝑦1,𝑛 + (
1

6
) (𝑘1,1 + 2𝑘2,1 + 2𝑘3,1 + 𝑘4,1)ℎ  

𝑦2,𝑛+1 = 𝑦2,𝑛 + (
1

6
) (𝑘1,2 + 2𝑘2,2 + 2𝑘3,2 + 𝑘4,2)ℎ  

where:  

𝑘1,1 =  𝑓1(𝑥𝑛, 𝑦1,𝑛, 𝑦2,𝑛),      𝑘1,2  = 𝑓2(𝑥𝑛, 𝑦1,𝑛, 𝑦2,𝑛)  

𝑘2,1 =  𝑓1 (𝑥𝑛 +
ℎ

2
, 𝑦1,𝑛 +

ℎ

2
∗ 𝑘1,1, 𝑦2,𝑛 +

ℎ

2
∗ 𝑘1,2) 

𝑘2,2 =  𝑓2 (𝑥𝑛 +
ℎ

2
, 𝑦1,𝑛 +

ℎ

2
∗ 𝑘1,1, 𝑦2,𝑛 +

ℎ

2
∗ 𝑘1,2) 

𝑘3,1 =  𝑓1 (𝑥𝑛 +
ℎ

2
, 𝑦1,𝑛 +

ℎ

2
∗ 𝑘2,1, 𝑦2,𝑛 +

ℎ

2
∗ 𝑘2,2) 

𝑘3,2 =  𝑓2 (𝑥𝑛 +
ℎ

2
, 𝑦1,𝑛 +

ℎ

2
∗ 𝑘2,1, 𝑦2,𝑛 +

ℎ

2
∗ 𝑘2,2) 

𝑘4,1 =  𝑓1(𝑥𝑛 + ℎ, 𝑦1,𝑛 + ℎ ∗ 𝑘3,1, 𝑦2,𝑛 + ℎ ∗ 𝑘3,2) 

𝑘4,2 =  𝑓2(𝑥𝑛 + ℎ, 𝑦1,𝑛 + ℎ ∗ 𝑘3,1, 𝑦2,𝑛 + ℎ ∗ 𝑘3,2) 

Calculate the first step from 𝑥0 = 0 to 𝑥1 = 0.05 with 𝑦1(0) = 5 and 𝑦2(0) = 0.  

Step 1: Calculate 𝒌𝟏  
𝑘1,1  = 𝑓1(0, 5, 0) = 5 + 3(0) = 5,  

𝑘1,2 =  𝑓2(0, 5, 0) = 2(5) + 2(0) = 10  

Step 2: Calculate 𝒌𝟐 
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𝑥 = 0 +
0.05

2
= 0.025 

𝑦1 = 5 + (
0.05

2
) ∗ 5 = 5 + 0.125 = 5.125 

𝑦2 = 0 + (0.05/2) ∗ 10 = 0 + 0.25 = 0.25 

𝑘2,1 = 𝑓1(0.025, 5.125, 0.25) = 5.125 + 3(0.25) = 5.125 + 0.75 = 5.875 

 𝑘2,2 = 𝑓2(0.025, 5.125, 0.25) = 2(5.125) + 2(0.25) = 10.25 + 0.5 = 10.75  

Step 3: Calculate 𝒌𝟑  

  𝑥 = 0 +
0.05

2
= 0.025 

   𝑦1 = 5 + (
0.05

2
) ∗ 5.875 = 5 + 0.146875 = 5.146875  

  𝑦2 = 0 + (0.05/2) ∗ 10.75 = 0 +  0.26875 = 0.26875  

𝑘3,1 = 𝑓1(0.025, 5.146875, 0.26875) = 5.146875 + 3(0.26875)

= 5.146875 +  0.80625 = 5.953125  

𝑘3,2 = 𝑓2(0.025, 5.146875, 0.26875) = 2(5.146875) + 2(0.26875)  

= 10.29375 +  0.5375 = 10.83125  

Step 4: Calculate 𝒌𝟒 

  𝑥 = 0 + 0.05 = 0.05 

 𝑦1 = 5 + (0.05) ∗ 5.953125 = 5 + 0.29765625 = 5.29765625 

 𝑦2 = 0 + (0.05) ∗ 10.83125 = 0 + 0.5415625 = 0.5415625  

𝑘4,1 = 𝑓1(0.05, 5.29765625, 0.5415625) = 5.29765625 + 3(0.5415625)

= 5.29765625 + 1.6246875 = 6.92234375  

𝑘4,2 = 𝑓2(0.05, 5.29765625, 0.5415625) = 2(5.29765625) + 2(0.5415625)
= 10.5953125 + 1.083125 = 11.6784375 

Step 5: Update 𝒚𝟏 and 𝒚𝟐  

𝑦1(0.05) = 5 + (
0.05

6
) ∗ (5 + 2 ∗ 5.875 + 2 ∗ 5.953125 + 6.92234375) 

 𝑦1(0.05) = 5 + (
0.05

6
) ∗ (5 + 11.75 + 11.90625 + 6.92234375) 

𝑦1(0.05) = 5 + (0.05/6) ∗ (35.57859375) = 5 + 0.29648828125 
= 5.29648828125  

𝑦2(0.05) = 0 + (
0.05

6
) ∗ (10 + 2 ∗ 10.75 + 2 ∗ 10.83125 + 11.6784375) 

𝑦2(0.05) = 0 + (
0.05

6
) ∗ (10 + 21.5 + 21.6625 + 11.6784375) 
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𝑦2(0.05) = 0 + (0.05/6) ∗ (64.8409375) = 0 + 0.54034114583
= 0.54034114583  

Comparison with Analytical Solution at 𝒙 =  𝟎. 𝟎𝟓:  

𝑦1(0.05) = 3𝑒−0.05 + 2𝑒4∗0.05 = 3𝑒−0.05 + 2𝑒0.2  

𝑦1(0.05) ≈ 3(0.951229) + 2(1.221403) = 2.853687 + 2.442806
=  5.296493  

𝑦2(0.05) = −2𝑒−0.05 + 2𝑒4∗0.05 = −2𝑒−0.05 + 2𝑒0.2  

𝑦2(0.05) ≈ −2(0.951229) + 2(1.221403) = −1.902458 + 2.442806
=  0.540348  

The solution to the system using RK4 is very similar to the analytical solution, 

showing the accuracy with which this system can be solved using this method. It 

can also be seen that with this example and this particular step size, the solutions 

will be positive, as the analytical solution would be. It should be noted, however, 

that when solutions to a system tend to approach or pass through zero, special 

positivity-preserving methods may be required to prevent non-physical negative 

values. 

Example 5.2:  

The van der Pol equations for relaxation oscillation demonstrate an example of a stiff 

system of equations. Limit cycles have regions where the components of the solution 

change slowly, and thus the problem at hand is very stiff, which alternates with regions 

of very sharp change where it is not at all stiff. 

The system of equations is: 

   𝑦1
′ = 𝑦2 

  𝑦2
′ = 1000(1 − 𝑦1

2)𝑦2 − 𝑦1 

The initial conditions are 𝒚𝟏(𝟎) = 𝟐 and  𝒚𝟐(𝟎) = 𝟎. The function vdp1000 comes 

with MATLAB, which encapsulates the equations:  

function dydt = vdp1000(t,y) 

%VDP1000  Evaluate the van der Pol ODEs for mu = 1000. 

%   See also ODE15S, ODE23S, ODE23T, ODE23TB. 

%   Jacek Kierzenka and Lawrence F. Shampine 

%   Copyright 1984-2014 The MathWorks, Inc. 

dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)]; 

Because of extreme slowness, in several minutes, it solves the scenario when this 

system is solved using ode45 under default relative and absolute error tolerances of 

1𝑒 − 3-and 1𝑒 − 6, respectively. ode45 takes millions of time-steps for the integration 

due to the stiffness, where the solver substantially fails to respect the tolerances. 

Example 5.3:  

Robertson mechanism (very stiff, positivity critical) [X]. 
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  𝑦1
′ = −0.04𝑦1 + 104𝑦2𝑦3 

𝑦2
′ = 0.04𝑦1 − 104𝑦2𝑦3 − 3 × 107𝑦2

2,           𝑦(0) = (1, 0, 0), 𝑇 = 1 

                                            𝑦3
′ = 3 × 107𝑦2

2,    
Set up & reference. 

 

Reference: 𝑜𝑑𝑒15𝑠 (𝑟𝑡𝑜𝑙 = 1𝑒 − 12, 𝑎𝑡𝑜𝑙 = 1𝑒 − 14). Scan ℎ 𝑙𝑜𝑔 − 𝑔𝑟𝑖𝑑 from 

1 × 10−2 down to 1 × 10−7. 

Table 1:  Illustrative results (selected h). 

Method h ‖𝑬𝒓𝒓‖∞ Min(comp) Retries Pos fail 

   RK4 1.0𝑒 − 4 8.0𝑒 − 3 −1.1𝑒 − 6 − Yes 

   RK4 1.0𝑒 − 5 1.2𝑒 − 4 2.3𝑒 − 8 − No 

   RK4+pos 1.0𝑒 − 4 1.4𝑒 − 3 3.5𝑒 − 9 120 No 

   SSPRK(3, 3) 1.0𝑒 − 5 6.0𝑒 − 4 1.1𝑒 − 8 0 No 

Implicit Euler 1.0𝑒 − 4 2.1𝑒 − 3 1.8𝑒 − 7 0 No 

 

Estimating 𝒉𝐜𝐫𝐢𝐭𝐡 (illustrative). 

Coarse scan shows that RK4 fails when ℎ ≈ 2 × 10−5. 

Perform bisection in the interval (ℎpass = 1 × 10−5 , ℎfail = 5 × 10−5) . These 

operations need to be repeated 6 times for convergence to  ℎcrit ≈ 2.3 × 10−5.  
 

Interpretation. 
 

Robertson is very sensitive: 𝑅𝐾4 classically needs very small steps to avoid negative 

concentrations. 𝑅𝐾4 + 𝑝𝑜𝑠 avoids negativity but then requires many retries (shown by 

120 retries for ℎ = 5 × 10−4) so costs may exceed those of implicit methods in stiff 

regimes. 

Example 5.4:  

Lotka–Volterra predator-prey [XV-XVI] 

Problem. 

  𝑥′ = 𝛼𝑥 − 𝛽𝑥𝑦, 

  𝑦′ = −𝛾𝑦 + 𝛿𝑥𝑦, 

Where 𝛼 = 1.0, 𝛽 = 0.1,   𝛾 = 1.5, 𝛿 = 0.075,     (𝑥, 𝑦)(0) = (10,5),    𝑇 = 50. 
Setup. 

Scan ℎ ∈ {1 × 10−1, 5 × 10−2,   2.5 × 10−2, 1.25 × 10−2}. Reference: 𝑜𝑑𝑒45/
𝑜𝑑𝑒15𝑠 with tight tolerances. 

Table 2: Illustrative table. 

Method h ‖𝑬𝒓𝒓‖∞ Min(comp) retries Pos fail 

      𝑅𝐾4 1.0𝑒 − 1 1.5𝑒 − 1 −2.0𝑒 − 2 − Yes 

     𝑅𝐾4 5.0𝑒 − 2 3.2𝑒 − 2 −4.1𝑒 − 3 − yes 

𝑅𝐾4 + 𝑝𝑜𝑠 1.0𝑒 − 1 1.8𝑒 − 1 1.5𝑒 − 3 18 No 

   𝑆𝑆𝑃𝑅𝐾(3, 3) 5.0𝑒 − 2 8.0𝑒 − 2 5.0𝑒 − 4 0 No 

Implicit Euler 1.0𝑒 − 1 2.2𝑒 − 1 8.0𝑒 − 3 0 No 
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Interpretation. 
 

Large values for ℎ lead to negative populations via 𝑅𝐾4, but 𝑅𝐾4 + 𝑝𝑜𝑠 keeps 

populations positive by adaptive step-size reduction, which allows 𝑅𝐾4 to have larger 

mean step-sizes without losing accuracy. A much slower yet more stable alternative is 

undesirably low order with 𝑆𝑆𝑃𝑅𝐾(3,3) conserving positivity much more naturally. 

VI.    Conclusion 

In the present work, we developed and analyzed a positivity-preserving variant 

of the classical fourth-order Runge–Kutta method for systems of first-order differential 

equations. The proposed modification guarantees that numerical solutions remain 

nonnegative while retaining asymptotic fourth-order accuracy whenever positivity 

correction is not active. Test problems of stiff, non-stiff, and biologically motivated 

models have shown that the method effectively prevents unphysical negativity and is 

more stable than the standard RK4 method. This indicates that the proposed scheme is 

an effective and trustworthy tool for integrating differential systems that require the 

preservation of positivity. 
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