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Abstract

The Runge-Kutta method, and especially its fourth-order variant (RK4), is perhaps
the most widely adopted method for solving ordinary differential equations (ODEs)
and their systems. This paper deals specifically with the RK4 method to explain a
system of first-order differential equations, and the ability of the method to converge
and stabilize positive solutions. It is well known that standard RK4 is both accurate
and stable, but to particularly maintain positivity of solutions, where the model
represents physical quantities that must be non-negative, such as populations or
concentrations, often requires extra techniques.

This paper discusses theoretically the RK4 method and systems, their execution, the
need for retention of positivity, and methodologies for retention of positivity. Several
illustrative examples are included to demonstrate the application of the method and the
difficulty of maintaining positivity as well.

Keywords: Runge-Kutta method, fourth-order, systems of first-order differential
equations, positive solutions.

I. Introduction

Applying the concepts of engineering and science disciplines often results in
systems of ordinary differential equations (ODEs) when multiple variables interact
with one another. Such systems can describe population dynamics, electrical circuits,
or even chemical reactions. Complex or nonlinear systems tend to require numerical
methods rather than analytical solutions, which are preferable but not achievable in
most cases [, XIV].
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For ODEs, RK is one of the most popular methods due to its ease of use, stability, and
accuracy. RK4 is widely used in many disciplines, due to a good trade-off between
computational cost and accuracy [I-I1]. Unlike multistep methods, a single-step method
increases the simplicity of RK4’s application.

This paper is concerned with the RK4 method for systems of first-order differential
equations with respect to "positive solutions". In many scenarios, the dependent
variables are physical entities that must be non-negative: populations, concentrations,
or mass. Therefore, the numerical procedures adopted must not only approximate the
solution with enough accuracy, but also preserve both the physical nature and the non-
negativity of these quantities throughout the whole simulation. Many standard
numerical schemes, some RK methods, and stiff systems with large step sizes tend to
produce non-physical negative values [III, XIII]. This paper aims to comprehensively
analyze the RK4 method concerning systems of first-order ODEs, address the issue of
positivity preservation in numerical solutions, and explain modifications and strategies
of RK4 aimed at preserving positive solutions. The researcher documents the
positivity-preserving frameworks and foundational concepts alongside the outcomes
relevant to their application. In addition, completely solved examples will be given for
the practical application of the RK4 method, and the techniques that are needed to
ensure that all solutions are positive will be discussed as well.

II. Literature Review

The Runge-Kutta methods, as a family of iterative numerical techniques for
estimating the solution of ordinary differential equations, are attributed to Carl Runge
and Martin Kutta. Until recently, with the emergence of newer methods, the fourth-
order Runge-Kutta method, also referred to as RK4, was one of the most prevalent and
celebrated methods due to its reasonable accuracy for many problems. It came into
existence over a century ago and to this day, is heavily relied on in the field of numerical
analysis for resolving initial value problems (IVPs).

As for the initial works of the Runga-Kutta methods, most of the research was focused
on the single ODEs and designed systems of first-order ODEs, which form the key to
the construction of multi-component systems. It is possible to construct RK4 in such a
way that it can perform parallelized integration for a system of many dependent
variables. This makes RK4 a general-purpose method that can be employed across
multiple disciplines in science and engineering [I, IX]. For instance, Abraha (2020)
analyzed multiple numerical approaches, including the classical fourth-order Runge-
Kutta method for solving systems of first-order ordinary differential equations, and
remarked that RK4 provided the best accuracy among all tested methods when
benchmarked against analytical solutions [IX]. Likewise, Islam (2015) researched the
practical effectiveness and accuracy of the fourth-order Runge-Kutta method for
solving initial value problems (IVPs) and discussed its practical effectiveness through
multiple case studies [I].

The RK4 method is useful for a wide range of problems; however, there is a
fundamental issue with systems whose dependent variables must be strictly positive.
This is particularly important in population studies, epidemiology, chemical kinetics,
and finance, where variables such as population, concentrations, or even stock prices
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are expected to be non-negative values. Generally, most numerical methods, including
the classical RK4, do not guarantee preservation of positivity. Such non-physical
results are common when using sufficiently large step sizes or when the system is stiff
[III, XII]. As an illustration, Redmann and Riedel (n.d.) study the Runge-Kutta
methods in [4] have tried to solve rough differential equations that are capable of
solving stochastic differential equations, thereby indicating the implicit need for
methods that preserve certain attributes of the solution. Most directly, research has
focused on positivity-preserving adaptive Runge-Kutta methods, where the method
weights are adjusted to enforce bounds and ensure positivity [III, XIII]. Most of these
modifications incorporate the use of flux limiters, non-negative steps, or component-
wise non-negativity preserving formulations. Developing such methods is important
for dependable simulations of phenomena where physically constrained solutions are
needed.

The challenge associated with the failure to preserve positivity has given rise to adapted
or modified Runge-Kutta methods, which aim to ensure that the numerical solutions
are consistent with the domain of interest.

A linear stability analysis of the numerical method requires one to start with the
classical test equation y' = Ay, where any one-step scheme will allow the
representation.

Yn+1 = R(hA)yn,

R(z) is the amplification factor giving the response of the spectral parameter of the

method to the spectral parameter of the h wavelength. In the case of the classical fourth-

order Runge-Kutta scheme (RK4), R(z) is described as the fourth-degree expansion as
a Taylor series of the exponential function, that is,

z2  z3 ozt

R(Z) =1 +Z+7+§+Z'

The region of stability is characterized, and the points where this state is intersected by

the negative real axis give the familiar stability region z € [—2.7853,0]. In

consequence, in the case of real negative eigenvalues, RK4 is a linearly stable method
2.7853

4]
RK4 is a linearly stable method on the condition that the value of h < 2.7853/|4]|. As
a result, a lineally stable method is the RK4 when Einsteinian, and the values of RK4
are real and negative.

as long as h < . Therefore, when the eigenvalues are real with negative values,

In these environments, the scalar factor R(hA) is substituted by the matrix polynomial
R(hA) whose off-diagonal interactions can still give negative components even when
the initial vector is non-negative. When the classical RK4 is used, this is significantly
limited by the fact that the value of its strong-stability-preserving (SSP) coefficient is
zero, so it is not representable as a convex blend of forward-Euler steps and
consequently is not able to provide monotonicity or positivity with arbitrary Metzler
matrices.

The interaction between step size h and the influence on the system through the extent
and form of eigenvalues is very demanding for the development of the positivity loss.
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Large values of h may move certain spectral content to areas outside the range of
realistic values of the discrete flow. Well, even the case of a linearly stable approach
in the classical sense. It is particularly large in the situation when the systems are highly
off-diagonally coupled, such that the R(hA) matrix may exhibit oscillatory or sign-
changing behaviour without having such behaviour on the scalar level. One can further
explain it by comparing it to A-stable and even SSP time integrators to define the extent
of the applicability of RK4. Implicit schemes such as the backward Euler scheme, or
the Crank-Nicolson scheme, which are A-stable, can be stable over the entire left half-
plane in the complex plane and are therefore useful with stiff problems.
Correspondingly, the high-order SSP schemes are explicitly constrained by time-steps
to have certain properties that enable them to be positive and also to have a set of further
monotonicity properties. RK 4, which again is not A-stable with a positive coefficient
of SSP, is howwase optimum fitted to non-stiff problems where positivity is not
inherent to the nature of the problem, or where additional positivity-conserving limiters
or projection operators are incorporated to give the preferred invariance.

III. Preliminaries
ILi. Systems of First-Order Ordinary Differential Equations

A system of first-order ordinary differential equations can be expressed in the
general form:

d
% = 106y Y2, 0 Yn)

dy
d_xz = f2( Y1, Y2, s Yn)
dyn
dx = fn(x'}’pJ’z' ---'yn)
This can be written more compactly in vector form as:
dy _
dx f(x' }’)
Where y = [y1, V5, ..., ¥,]” is a vector of dependent variables, and

f=1fifo - fa]" is a vector function of x and y. With this system, it is usually
required to specify an initial condition y(xy) = y, hence it is an Initial Value Problem
(IVP) [3, 8].

IILii. Positivity-Preserving Fourth-Order Runge—Kutta method:
In the initial-value problem of a system of m ordinary differential equations.
Y'® =f(ty®), ¥(t)=yo€RY
where R ={y ER™: y; >0, i = 1,..,m}. We assume:

(A1) fis C* in y and continuous in t on a domain containing the solution on [t,, T].
(A2) f is locally Lipschitz in y, then this provides uniqueness and classical RK4
behaviour.
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(A3) The continuous flow does not force an immediate exit from the nonnegative
orthant near the boundary; e.g., f(t,0) = 0 componentwise or a similar non-exit
condition.

Modified RK4 algorithm

Assuming time t,, , state y, = 0, and candidate step h > 0, the classical RK4 stages
are computed.

ki = f(tn, ¥n)s
ky = fta + 5,90 + 5 ko),
ks = f(tn + 5,90 + 5 ka),
ky = f(tn + h,yn + hks),
and the RK4 candidate .y = Yy + 3 (ks + 2k + 2ks + ky)
Checks for the stages and adaptivity. Compute intermediate stage states.
y® =y, +2k,
y® =y, + 2k,
y® =y, + hks
If any of the intermediate stage components or any component of y;,, ; is found to be
less than small negative tolerance (say, —¢), reduce the step by h « yh with 0 <y <

1 and retry. Repeat this until the stage checks pass or h is reduced to some predefined
homin [XI].

IILiii. The Fourth-Order Runge-Kutta Method (RK4) for Systems

The RK4 method is a popular method of numerical method that is used to estimate
the answer to an IVP. The formula to compute a first-order ODE, Z—z = f(x,y), by
RK4 is:

Yur1 = Yu + 5Ok + 2y + 2ks + kgdh

where h is the step size, and:
h h
kl = f(xn'yn): k2 = f(xn + E,yn+ E * kl)
h h
ks =f(xn+§,}’n+ ;*kz), ky=f(xy+h vy, +hxk3)

To solve a system of n first-order ODEs, Z—z = f(x,y), the RK4 technique used one

component at a time. The k vectors are turned into vectors, and each component y;
update rule is:

1
Yin+1 = Yin + g(ku + 2ky; + 2ks; + kyi)h

where:
h h
ki = fnym), ky = f(xn ot g kl),
h h
ks =f(xn+ E:yn + P * kz), ky=f(x,+hy, + h=ks3)
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Here, kq, k3, k3, k4 are vectors, and k;; refers to the i — th component of the vector
k;. With this formulation, the next step of all dependent variables of a system can be
simultaneously computed [IX].

The dependent variables of many ODE systems in real applications often represent
non-negative physical quantities, such as population, chemical concentration, or
mass. If a numerical solution to a system of ODEs has the property that, given non-
negative initial values for all the dependent variables, the numerical approximation to
these variables remains non-negative for all time, we say that the numerical method
preserves positivity. The standard numerical methods described above (including RK4)
do not necessarily possess this property, and can in general produce negative values for
the solution even for quantities that are physically non-negative unless the method is
modified with this goal in mind or the step size is carefully chosen [III, XIII]. To solve
this issue, positivity-preserving schemes have been created.

IV. Main Results
IV.i. Application of RK4 to Systems of First-Order ODEs

The fourth-order Runge-Kutta method is highly effective for solving systems
of first-order ordinary differential equations. The method's strength lies in its ability
to achieve high accuracy by evaluating the function f(x,y) at several intermediate
points within each step, effectively capturing the curvature of the solution trajectory.
For a system of n first-order ODEs, the RK4 algorithm proceeds as follows:

Given the system Z—iZ = f(x,y) with initial condition y(x,) = y, , and a step size h :

For each step i from 0 to N — 1 (where N is the total number of steps):

1. Calculate k; vector: ky = f(x;,v;)

2. Calculate k, vector: k, = f(x; +%:)’i + (g) * ki)
h

3. Calculate k3 vector: k3 = f(x; +%,yi + (5) * ky)

4. Calculate k4 vector: ky, = f(x; + h, y + h * k3)

h
5. Update y; to ¥i11: Vi1 =Y + (g) * (ky + 2xky + 2%k + ky)

This iterative process allows for the numerical approximation of the solution y(x) at
discrete points xg,xy,...,Xy . The accuracy of the RK4 method is of order O(h*),
meaning that the local truncation error is proportional to h° and the global truncation
error is proportional to h*. This high order of accuracy makes RK4 a preferred choice
for many applications where precision is critical [I-I1].

Theorem (Positivity)

Statement. Under hypotheses (A1) — (43) and provided that y, = 0, the modified
RK4 algorithm proceeds to generate iterates y, such that y,, = 0 holds component-
wise for all n (positivity). Further, for any sequence of meshes with a maximal step
Rmax — 0 such that for all small enough step sizes the stage checks and fallback
projection remain inactive (i.e., for sufficiently fine meshes the RK4 candidate is
accepted without correction [V, VII]).
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Proof
We prove the induction for n in y,, = 0 for all n.

Base case. By assumption y, = 0. Inductive hypothesis. Let us assume y,, = 0. We
shall prove y,,1 = 0.

Suppose we describe the modified RK4 procedure with a candidate step h > 0.

1. Case A — The stage checks hold for a trial step h>0.
That is, all intermediate stage states y®,y®), y™®) and the candidate y;,,
satisfy y/) > —& componentwise and y;;,; = —& with respect to some tiny
tolerance €. On acceptance, we compute

Y1 = max(0, ypi1),
Where max is defined componentwise: any tiny negative components in (—¢, 0) would
get clipped to zero, while any positive components remain uncompromised. Thus,
Vn+1 = 0. This completes the proof in Case A [VI].

2. Case B— The stage checks will all fail for all trial steps h with h € (hyu, , hgl
and the algorithm shrinks h repeatedly until either success or h = hy,j,.

The dependence of the stage increments on h is continuously in view of the C?
continuity of f in y and continuous in t (A1 — A2), the stage increments depend
continuously on h and satisfy the linear bound

|y —y, IS Ch, j=234,

for some C > 0 and sufficiently small h. Since y,is nonnegative, this continuity of
yU) with respect to h guarantees there's hy > 0 such that for all 0 < h < h, one has
y) > —¢. Therefore, shrinking will work to the point that there exists a trial step for
which the stage checks pass (reduce to Case A), except that there's some instantaneous
negative forcing by the vector field preventing any sufficiently small explicit step from
being able to have nonnegative stages. This latter case corresponds to pathological
vector fields violating the non-existence assumption (A3); this pathology is ruled out
under (A3). So our regular f will push us again in Case A, thereby implying y,,.1 = 0.
Since it contravenes (A3), tiniest positive hy,;, fails the stage tests. Then the algorithm
applies the fallback convex projection componentwise. For each component i such that
Yn+1,i < 0and y,; > 0, we have the constructed algorithm:
yn,i

Yni = Yn+i
which is zero. If y,; =0 and y,,,; <0 we set y,,q1; = 0. For components with
Yn+1i = 0 no change is made. Each component is projected non-negatively, and the
projection is therefore componentwise. Hence y,,,; = 0.

Yn+ri = A= 0D)yn; + 0:Yni1s i € (0,1]

V. Solved Examples

In order to explain the use of the fourth-order Runge-Kutta method when
solving systems of first-order ordinary differential equations, the researcher discusses
the following example provided by Abraha (2020) and Botelho (2020) [IV, IX]:
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Example 5.1:

Given a first-order ordinary differential equations system:

d
%: y1i + 3y

d
%: 2y; + 2y,

and initial conditions y;(0) = 5,and y,(0) = 0. The analytical solution of such a
system is:

1(X) = 3e™ + 2e*, y,(x) = —2e7¥ + 2e**
y Y

The researcher applies the RK4 method to approximate the solution for a step size
h = 0.05.

Solution using RK4:
Let f1(x,y1,¥2) = y1 + 3y, and fo(x, y1,¥2) = 2y1 + 2y,.

The RK4 order- equations of a system are:

1
Vint1 = Yin T (g) (k1,1 + 2ky 4 + 2k3q + k4,1)h

1
Yon+1 = Yon T (g) (k1,2 + 2ky 5 + 2ks, + k4,2)h

where:
ki, = fl(xn'yl,anZ,n)' ki, = fz(xn'}’1,n’3’2,n)

h h h
korv= f1 (xn + E'yl,n + > * ki1, Y20+ 5* kl,Z)

h h h
koo = f2 (xn + E;}’Ln + 5* ki1, Y2n + > * k1,2>

h h h
ksi= f1 (xn + E'yl,n + > * ko1, yon + 5* kz,z)

h h h
ks, = f; (xn + E!yl,n + 5 *kyq,Yon + 5 * kz,z)

kyq = fl(xn +hyinth* ks, Yon+hx k3,2)
ko = fz(xn +hyint+h*ksy,yon+h* k3,2)

Calculate the first step from x, = 0 to x; = 0.05 with y;(0) = 5 and y,(0) = 0.
Step 1: Calculate k4

kl,l = fl(O, 5, 0) = 5 + 3(0) = 5,
ki, = £2(0,5,0) = 2(5) + 2(0) = 10
Step 2: Calculate ko
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0.05
x=0 +T = 0.025

0.0
y1=5+ ( >
y, = 0+ (0.05/2) * 10 = 0 + 0.25 = 0.25
k1 = £,(0.025,5.125,0.25) = 5.125 + 3(0.25) = 5.125 + 0.75 = 5.875
ky = £,(0.025,5.125,0.25) = 2(5.125) + 2(0.25) = 10.25 + 0.5 = 10.75

Step 3: Calculate k3

x=0+%=0.025

5
)*5 = 540125 = 5125

y1 =5+ (%2) 5.875 = 5 + 0.146875 = 5.146875

y, = 0+ (0.05/2) * 10.75 = 0 + 0.26875 = 0.26875

ks = f,(0.025,5.146875,0.26875) = 5.146875 + 3(0.26875)
= 5.146875 + 0.80625 = 5.953125

ks, = f(0.025,5.146875,0.26875) = 2(5.146875) + 2(0.26875)
=10.29375 + 0.5375 = 10.83125

Step 4: Calculate k4
x =0+0.05=0.05
y1 =54 (0.05) *5.953125 = 5 + 0.29765625 = 5.29765625
¥, =0+ (0.05) * 10.83125 = 0 + 0.5415625 = 0.5415625

ka1 = £,(0.05,5.29765625,0.5415625) = 5.29765625 + 3(0.5415625)
= 5.29765625 + 1.6246875 = 6.92234375

ks = f>(0.05,5.29765625,0.5415625) = 2(5.29765625) + 2(0.5415625)
= 10.5953125 + 1.083125 = 11.6784375

Step 5: Update y4 and y,

0.0
9,(0.05) = 5 +( -

5
) (5 + 2 *5.875 + 2 % 5.953125 + 6.92234375)

0.05
7,(0.05) = 5 + ( - ) « (5 + 11.75 + 11.90625 + 6.92234375)

,(0.05) = 5 + (0.05/6) * (35.57859375) = 5 + 0.29648828125
= 5.29648828125

0.0
v,(0.05) = 0 +( -

5
) * (10 4+ 2+ 10.754+ 2 *10.83125 + 11.6784375)

0.05
7,(0.05) = 0 + ( -

) * (10 + 21.5 + 21.6625 + 11.6784375)
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,(0.05) = 0 + (0.05/6) * (64.8409375) = 0 + 0.54034114583
= 0.54034114583

Comparison with Analytical Solution at x = 0.05:
¥1(0.05) = 3e7005 4 2£%0:05 = 327005 4 202

,(0.05) ~ 3(0.951229) + 2(1.221403) = 2.853687 + 2.442806
= 5.296493

y,(0.05) = —2¢7005 4 24005 = _2p=0.05 } 202

,(0.05) ~ —2(0.951229) + 2(1.221403) = —1.902458 + 2.442806
= 0.540348

The solution to the system using RK4 is very similar to the analytical solution,
showing the accuracy with which this system can be solved using this method. It
can also be seen that with this example and this particular step size, the solutions
will be positive, as the analytical solution would be. It should be noted, however,
that when solutions to a system tend to approach or pass through zero, special
positivity-preserving methods may be required to prevent non-physical negative
values.

Example 5.2:

The van der Pol equations for relaxation oscillation demonstrate an example of a stiff
system of equations. Limit cycles have regions where the components of the solution
change slowly, and thus the problem at hand is very stiff, which alternates with regions
of very sharp change where it is not at all stiff.

The system of equations is:

!

Yi=DY2

3 = 10001 = ¥)y; = »
The initial conditions are y4(0) = 2 and y,(0) = 0. The function vdp1000 comes
with MATLAB, which encapsulates the equations:
function dydt = vdp1000(t,y)

%VDP1000 Evaluate the van der Pol ODEs for mu = 1000.
% See also ODE15S, ODE23S, ODE23T, ODE23TB.

% Jacek Kierzenka and Lawrence F. Shampine

% Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); 1000*(1-y(1)*2)*y(2)-y(D];

Because of extreme slowness, in several minutes, it solves the scenario when this
system is solved using ode45 under default relative and absolute error tolerances of
le — 3-and le — 6, respectively. ode45 takes millions of time-steps for the integration
due to the stiffness, where the solver substantially fails to respect the tolerances.

Example 5.3:

Robertson mechanism (very stiff, positivity critical) [X].
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y1 = —0.04y; + 10%y,y;

y5 = 0.04y; — 10*y,y; — 3 x 107y3, y(0)=(1,0,0), T=1
y5 =3 x107y2,
Set up & reference.

Reference: odel5s (rtol = 1e — 12,atol = 1e — 14). Scan h log — grid from
1x 1072 downto1x 1077,

Table 1: Illustrative results (selected h).

Estimating hpy (illustrative).

Coarse scan shows that RK4 fails when h =~ 2 x 1075,
Perform bisection in the interval (hpass = 1% 107, heyy = 5% 107°) . These
operations need to be repeated 6 times for convergence to gy = 2.3 X 1075,

Interpretation.

Robertson is very sensitive: RK4 classically needs very small steps to avoid negative
concentrations. RK4 + pos avoids negativity but then requires many retries (shown by
120 retries for h = 5 X 10™%) so costs may exceed those of implicit methods in stiff
regimes.

Example 5.4:

Lotka—Volterra predator-prey [XV-XVI]

Problem.
x' = ax — Bxy,
y'=—-yy+dxy,

Wherea = 1.0,  =0.1, y =15, § =0.075, (x,¥)(0) = (10,5), T = 50.
Setup.

Scan h€{1x1071,5x1072, 2.5x107%1.25 x 1072}. Reference: ode45/
odel5s with tight tolerances.

Table 2: Illustrative table.
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Interpretation.

Large values for h lead to negative populations via RK4, but RK4 + pos keeps
populations positive by adaptive step-size reduction, which allows RK4 to have larger
mean step-sizes without losing accuracy. A much slower yet more stable alternative is
undesirably low order with SSPRK (3,3) conserving positivity much more naturally.

VI. Conclusion

In the present work, we developed and analyzed a positivity-preserving variant
of the classical fourth-order Runge—Kutta method for systems of first-order differential
equations. The proposed modification guarantees that numerical solutions remain
nonnegative while retaining asymptotic fourth-order accuracy whenever positivity
correction is not active. Test problems of stiff, non-stiff, and biologically motivated
models have shown that the method effectively prevents unphysical negativity and is
more stable than the standard RK4 method. This indicates that the proposed scheme is
an effective and trustworthy tool for integrating differential systems that require the
preservation of positivity.
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