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Abstract

The Internet of Things (loT) links billions of devices, boosts innovation,
shares information effortlessly, and is reshaping various industries. The most common
Distributed Denial of Service (DDoS) attacks target all layers in the loT architecture.
Even though easy to execute, these sorts of attacks may severely harm targeted systems
and networks. This Novel hybrid model uses Bagged Long Short-Term Memory
(LSTM) and Gradient Boosting (GB) to address large dimensionality, various feature
dimensions, low classification accuracy, and high false positive rates in raw traffic
data to improve IloT security against DDoS attacks. To reduce input information
redundancy, the Boruta-Pearson Feature Selector (BPFS) gathers key features as
model inputs. The Bagged-LSTM design minimises variance to detect anomalies, while
Gradient Boosting improves prediction accuracy. The CIC-ISD2017 and CIC
DDoS2019 datasets were used to test the hybrid model. Experimental results show that
the recommended model outperforms current models with an accuracy of 99%. It is
impossible to completely protect your server from these threats, but by using the
techniques discussed here, these attacks can be prevented, and the server can focus on
fulfilling legitimate requests rather than unauthentic ones.

Keywords: DDoS attacks, Gradient Boosting (GB), IoT security, long short-term
memory (LSTM),

I. Introduction

The Internet of Things (IoT) has changed life by enabling devices to
communicate and exchange data. Applications of IoT include healthcare, smart cities,
industrial automation, and transportation, etc. Denial of Service (DDoS) attacks are
one of the biggest cybersecurity concerns for [oT, despite its benefits [I]. These attacks
use IoT networks' scattered nature to overload devices and interrupt services. This
attack happens when the server is overburdened with authorised and unauthorised
network traffic. DDoS attacks use several infected devices, frequently from different
places, to overload a target system [IV]. As network technology evolves, DDoS attacks
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are becoming more frequent, sophisticated, and impactful, making it challenging to
detect how they initiate and distinguish between regular and DDoS attack traffic. Thus,
academics have researched DDoS attack detection to discriminate between regular and
attack traffic. Statistical, machine, and deep learning detection methods exist. All three
attacks weaken resources by attacking loT architectural layers. Some avoidance
methods are generic, while others are technological [XXII]. Continuous monitoring,
restricting network broadcasting, server redundancy, and network security help reduce
DDoS attacks. These general methods are ineffective, hence technology-based
prediction procedures like machine learning and IOT were developed. Machine
learning model constraints (machine learning cannot efficiently operate with vast
datasets) make these approaches less powerful for reliable findings [II]. [XV]
suggested a random forest-based DDoS assault detection algorithm using statistical
learning. Ye et al. [XVIII] proposed using SVM to classify feature vectors in SDN
networks. This method marks DDoS attacks by calculating the information entropy of
the source and destination IP addresses and port addresses in the data and using the
random forest model to increase the stability of the fitting degree. These feature
vectors identify DDoS attacks using source IP, source port, and other network data.
Koay et al. [XI] employ information entropy to build features to identify slow DDoS
assaults and various classifiers to assess the findings. With the rise of deep learning
and big data, more scientists are studying DDoS attack detection using deep learning.
Deep learning analyses and learns internal rules from enormous data, builds a network
model using multi-layer neurons or perceptual mechanisms, and trains it. Deep
learning can handle high-dimensional data and reduce data noise to compensate for
machine learning's absence [ XX]. A layered spatiotemporal intrusion detection system
was proposed by Wang et al. [XXI]. After learning the low-level spatial properties of
network traffic with the deep convolutional neural network (CNN), the short-term and
long-term memory networks learnt the high-level temporal features. Cheng et al. [VII]
suggested a DDoS attack detection approach based on the grey scale matrix feature of
network flow of a convolutional neural network. Experimental findings demonstrate
that the proposed model outperforms previous in-depth learning methods. Based on IP
protocol attack flow and normal flow, a 7-tuple is defined to describe network flow,
the binary is converted to grey scale features, and a multi-scale convolutional neural
network model is used for feature extraction training. Integrated Bagged-LSTM with
Gradient Boosting improves [oT security [V]. Its specific contributions are:

* To address the feature redundancy problem caused by the high dataset
dimension, this paper proposes a new feature selection Boruta-Pearson Feature
Selector (BPFS) algorithm that uses a Boruta algorithm to calculate feature
importance and Pearson correlation coefficient analysis to select features.

The Bagged-LSTMSs are used to identify DDoS attacks. At the same time, the input
data's spatial and temporal features are extracted and learnt thoroughly. Classification
is done via a Gradient Boosting classifier. LSTM networks are chosen because of their
greater capacity to handle sequential data with temporal dependencies, their
robustness against RNN restrictions, and their performance in comparable
cybersecurity scenarios. This makes them ideal for DDoS attack detection testing and
model dependability and accuracy in real-world circumstances.

Preeti et al.

49



J. Mech. Cont. & Math. Sci., Vol.-20, No.-12, December (2025) pp 48-65

This study employs Bagged-LSTM and Gradient Boosting to improve IoT security.
Bagging aggregates predictions from several models to strengthen LSTM models,
whereas Gradient Boosting refines categorisation using residual patterns. The
remaining paper is organised as follows. Section Il summarises relevant work. Section
III suggests a better hybrid approach. Section IV presents the dataset, evaluation
metrics, and experiment outcomes. Finally, Section V closes the article.

II. Related Work
A. DDoS Attack Detection Using LSTM:

LSTM networks are esteemed for their capacity to capture temporal
relationships in sequential data, rendering them optimal for identifying harmful
patterns in network traffic. Recurrent Neural Networks (RNNs) excel in processing
sequential data; however, they are susceptible to gradient vanishing, gradient
explosion, and challenges related to long-term dependencies during training [XVIII].
The LSTM layers effectively address the long-term dependency issues inherent in
RNNs. The LSTM layers & Units (Cells) incorporate three gates (forgetting gate, input
gate, output gate) and one cell state update into the hidden layer of the RNN model,
as illustrated in Figure 1.
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Fig 1. Structure of the LSTM cycle. (Credits: https://d2].ai/chapter_recurrent-

modern/Istm.html)

The forgetting gate evaluates the state of the preceding layer of cells, retaining
pertinent information while discarding irrelevant data, computed as follows:

fi = oGwp - Thy — 1, x,1+ by) (1

The bias term of the forgetting gate, and ht—1, represents the output value of the
preceding LSTM layer. The o denotes the sigmoid activation function, while [,]
indicates the concatenation of two vectors into a single vector. The input gate assesses
the significance of the information, transmitting the pertinent data for the cell state
update, thereby completing the update process. This procedure comprises two
components: initially, the sigmoid function is employed to ascertain the new
information to be incorporated into the cell state; subsequently, the tanh function is
utilised to produce a new candidate vector [III]. The calculation process is delineated
in Formula (2).

Jfr=o(wg - [hy — 1. x; ]+ by)
¢; = tanh(w, - [y — 1, x;] + b.) )
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In this context, wi and bi represent the weights and biases of the inputs, whereas wc
and bc denote the weights and biases of the cell state. After the procedure, the
preceding cell state ct—1 is revised to the present cell state ct, as delineated in Formula
3).

Cy =j;*c‘r _— l + i:Z‘; (3)
The input gate regulates the output of the cell state of this layer to determine which
cell states are input to the next layer, where * denotes element multiplication, f * t ct—1
denotes deletion information, and it *ct denotes new information. Formula (4)
provides the calculation formula.

0r =Wy - [hy — 1, ] + by)
hy = o] tanh(c;) (4)

After the original detection data set is quantified, normalised, and standardised, the
LSTM-based DDoS attack detection method inputs the pre-processed data set into the
trained LSTM model. The classification results are then input into the Gradient
Boosting classifier. Since the one-way LSTM can only retain the previous context
information, this paper employs the LSTM network as the time feature extraction
model, which can learn the time feature of network traffic better [IV].

Table 1: DDoS Attack Detection Using LSTM-Based Techniques

LSTM- Architecture Perform Pros Cons
Based ance
Model

VanillaLST
\Y |

CNN-LSTM
[1X]

GRU-LSTM
[X]

Attention-
Based
LSTM
[ XIX]
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B. DDOS Attack Detection Method Based on Ensemble Techniques

Ensemble approaches are methodologies that integrate many algorithms to develop a
more resilient and precise prediction model [XVII]. These techniques encompass
bagging, boosting, and stacking. Bagging entails training numerous models on distinct
subsets of training data, whereas boosting emphasises sequential model training.
Stacking entails training many base models and utilising their predictions as input
characteristics for a superior model [XVI]. Ensemble approaches can markedly
improve DDoS attack detection by minimising misclassification rates, exhibiting
reduced susceptibility to overfitting, offering insights into feature significance, and
adapting to evolving assault patterns [XII]. Such as bootstrap aggregation, have been
applied to reduce variance and enhance model stability. Gradient Boosting algorithms,
including XGBoost, LightGBM, and CatBoost, are well-known for their efficiency in
handling complex datasets and improving classification accuracy [XIII].

Table 2: DDoS Attack Detection Using Ensemble Machine Learning Techniques

While LSTM and Gradient Boosting have been studied individually for DDoS
detection, combining these techniques into a unified framework for IoT security
remains underexplored. This study aims to bridge this gap by proposing a Bagged-
LSTM with Gradient Boosting hybrid model.

III. Research Methodology

In this paper, we construct a hybrid model of Bagged LSTM with Gradient
Boosting using a novel feature selection Boruta-Pearson Feature Selector (BPFS)
algorithm. The research methodology is depicted in Figure 2.
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Figure 2. The Bagged-LSTM Framework
A. Data Collection:

In the domain of DDoS attack detection, there exists a limited number of datasets
suitable for training deep learning systems. This paper utilised two publicly accessible
datasets obtained from the Canadian Institute of Cybersecurity (CIC) and Wireshark
in a simulated environment: CIC-IS2017 and CICDDo0S2019 [VIII] for evaluating the
performance of the Hybrid model. The two datasets were first created with two distinct
usage patterns and multi-level attacks, including different DoS and DDoS attacks. The
gathered traffic was pre-processed using the CICFlowMeter program to provide a CSV
file encompassing diverse DoS and DDoS traffic statistics. The CIC-IDS2017 dataset,
developed in 2017 by the Canadian Institute for Cybersecurity, employs 80
characteristics to monitor both benign and malicious attacks. The CIC-DD0S2019
dataset comprises 86 attributes of network traffic packets created by an open-source
application that creates network packets and gathers their information. Feature
selection techniques were employed to extract a total of 52-dimensional features,
including flow features, basic features, connection features, time features, general
characteristics, many more created features, and label features. After preprocessing,
the CIC DD0S2019 dataset retains 67-dimensional characteristics. Normal traffic is
denoted by 0, whereas DDoS attack traffic is denoted by 1. To verify the effectiveness
of the proposed model in detecting multi-class attacks, multi-class experiments were
conducted based on the CIC-DD0S2019 dataset.

TABLE 3. Dataset Distribution.

DataSed Traffic iype- Number of Properiien— total
BENIGN 2363510 80 8383
Dos 252661+ 8 6423
Portacan 1585350 5.3363
128027 43792
CIC IDS2017 TEESS SiT3E
3932 01343
36 G.001331
11 0000376
- 14365+ 00118 1217007+
DDoS/NTF~ 1202642 o 9881
CIC.DDoS2019/LDAF BENIGN 1612~ 00007 181542
DDeS/LDAP 21798930 o999

CIC DDoSI0LS/NTR

CIC-DDoS2019/SSDP- BENIGN- TH3e 00002 2611374
DDoS SSDP- 2610611 09997

CIC-DDoS201% Sym BENIGN 392 0.0002 1382681
Sya 1582289 [T

CICDDeSI019/ NetBIOS BENIGN 1707 00004 4054956~
DDoS NetBIOS 1093278 [ETTE
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B. Data Preprocessing:

The preprocessing process cleans the CIC-IDS2017 dataset, thereafter executing label
encoding and normalisation. The procedure is segmented into three stages. Data
cleaning guarantees that data is flawless, complete, and without errors. Data cleansing
mostly addresses anomalous data. This work uses the KNN Imputer technique from
Scikit-learn to address and impute missing values in instances of extensive missing
sample data. In instances with limited missing sample data, one may employ a filling
method such as the mode. This approach uses the Euclidean distance matrix to identify
the nearest neighbour and assist in estimating the missing values in the dataset. Label
Encoding is employed to handle the CIC IDS2017 dataset, converting symbolic
qualities into numerical ones to guarantee all data is numeric, hence facilitating the
learning of data characteristics. Dataset normalisation mitigates the volatility of traffic
characteristics within a certain range and diminishes the impact of outliers. The data
is encoded using Label encoding, then min-max normalisation is employed to scale
the values of the feature from a range between 0 and 1. As seen in Equation (4):

h; j — min(h; ;)

hij=

max(h; j) — min(h; ;)

(5)
where hi, j denotes the eigenvalues corresponding to row i and column j in the
dataset.

C. Boruta-Pearson Feature Selector (BPFS) Algorithm

A novel technique, the Boruta-Pearson Feature Selector (BPFS), is used to address the
issue of feature redundancy in the dataset. The program initially assesses the
significance of each characteristic in the sample using the Boruta algorithm and
subsequently ranks them based on their value. The Pearson correlation coefficient is
employed to determine the correlation between features. The outcomes of the two are
integrated to accomplish feature selection. The Boruta Algorithm is a powerful feature
selection method that improves the conventional feature importance metrics of
Random Forests by the integration of statistical significance testing. It operates by
systematically assessing the significance of each feature relative to randomly produced
shadow features (permuted variants of actual characteristics).

o Feature importance is ascertained through either the Mean Decrease in
Impurity (MDI), which quantifies the reduction in Gini Impurity at each split in a
Random Forest, or the Mean Decrease in Accuracy (MDA), which evaluates the extent
to which model accuracy declines when a feature is randomly permuted.

o The MDI of a feature is calculated as the weighted total of impurity reductions
at all nodes using the feature, whereas the MDA quantifies the change in the model's
accuracy before and after the permutation of a specific feature.

o Boruta assesses feature significance by comparing the importance score of
each feature to the greatest importance score of the shadow features. It then computes
a Z-score, indicating the degree to which a feature's significance diverges from that of
the shadow features.
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o A feature is deemed essential and preserved if its significance score
substantially exceeds that of the shadow characteristics. If the score is markedly lower,
the feature is dismissed.

o Features with ambiguous relevance scores undergo more iterations until they
can be validated or eliminated.

This methodology guarantees the selection of just the most pertinent and non-
redundant characteristics, rendering Boruta a very efficient strategy for applications
such as DDoS attack detection. Eliminate characteristics of significant value to
construct a fresh dataset. After Boruta identifies significant traits, Pearson Correlation
is employed to exclude those that are highly connected. The Pearson correlation
coefficient quantifies the relationship between two variables, X and Y. It computes the
covariance and standard deviation between two feature values and divides by equation
(5) to derive the Pearson correlation coefficient between the two features.
cov(X,Y) E[(X — puXNY — pnY)]

pX,Y = =
oXol oXo¥t

(6)
The range of Pearson's value is (—1, 1); a greater absolute value indicates a higher
correlation between the two variables, like a range from (0.8 to 1.0), an extremely
strong correlation, and a range (0.0 to 0.2) very weak correlation. This paper retains
significant features based on their importance, selecting those with a correlation
coefficient exceeding 0.8 or below -0.8. For features outside this correlation range,
their importance is assessed, and those with an importance score below 0.001 are
excluded. The CIC-IDS2017 dataset ultimately retained 52 characteristics. The
pseudocode for the Boruta-Pearson Feature Selector (BPFS) presented in this work is
as follows.

Input Data: Original Dataset
Output Data: Processed Dataset
Steps of Boruta-Pearson Feature Selector Algorithm
1. Duplicate all features and shuffle them to create "shadow features."
2. Train a Random Forest classifier on both real and shadow features.
3. Compute feature importance scores.
4. Compare real features with shadow features:
- If a real feature has significantly higher importance, mark it as important.
- If a real feature has lower importance, mark it as unimportant.
- If uncertain, keep it for the next iteration.
5. Repeat Steps 2-4 until all features are either accepted or rejected.
6. Return the final list of selected features.
7. Calculate Pearson correlation coefficient
8. Selection feature in combination with (6) and (7)
9. Processed data set (New Dataset)
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D. Hybrid bagged LSTM Approach

This study employs the Boruta-Pearson Feature Selector (BPFS) to extract spatial and
Temporal features from input data, utilises Bagged LSTM for sequence feature
extraction, and aggregates the classification results using the Gradient Boosting
classifier. The principal block diagram of this method is seen in Figure 1. This paper
presents a parallel combination of ensemble techniques with DL, circumventing the
issue identified in the literature [XIV] where CNNs, when employed for feature
extraction, may result in the loss of certain feature information, thereby compromising
detection efficiency. Utilises Bagged LSTM to Capture Complex Temporal
Dependencies. Removes Redundant and Noisy Features using Boruta and Pearson.
Enhances Predictive Power and Generalisation with Gradient Boosting. Appropriate
for Large-Scale [oT and Network Security Datasets. This approach ensures that the
proposed model maintains a high accuracy rate and a low false alarm rate. The Hybrid
Ensemble method looked at three important performance areas to fully test the
suggested Integrated Bagged-LSTM and Gradient Boosting Ensemble Technique. We
then looked at the end-to-end detection latency, throughput (packets per second), and
time-to-alert at different network sizes to evaluate how well the model worked in real
time. Second, we investigated how well the system worked and how stable it was by
mimicking real-time IoT traffic streams with varying network circumstances and load
levels. Finally, we compared the proposed framework to well-known hybrid IDS
baselines such RF—LSTM [XXV] and CNN-RNN [XXIV]. This allowed us to see
how the ensemble method improved Ilatency, throughput, and scalability.
Consequently, the issue of a singular neural network's inability to comprehensively
capture characteristics is partially addressed. The precise workflow is outlined as
follows.

Algorithm 1: DDoS Attack Detection Using Bagged LSTM with Gradient
Boosting

Input: The Dataset

Output: Positive/Malicious sample

The model extracts features and classifies them.
(1) Data Preprocessing

a) Clean the dataset by handling missing values and outliers.

b) Normalize or standardize the dataset to improve model efficiency.

c¢) Convert categorical features into numerical form using label encoding.
d) Split the dataset into training and testing sets.

(2) Feature Extraction Using Bagged LSTM

a) Train multiple LSTM models (bagging) on different bootstrapped samples of the
training data.

b) Each LSTM model processes the sequential data and extracts temporal patterns.
¢) The outputs from multiple LSTM models are aggregated using majority voting.
d) The bagged LSTM helps in reducing variance and improving generalization.
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(3) Feature Selection Using Gradient Boosting

a) Train a Gradient Boosting Model (XGBoost) using the extracted features from
Bagged LSTM.

b) Compute feature importance scores from the trained model.

¢) Select the most important features while discarding irrelevant or redundant
features.

(4) Classification Using Gradient Boosting

a) The selected features are fed into the final Gradient Boosting classifier.

b) The model is trained to differentiate between normal and malicious traffic.

¢) Use hyperparameter tuning to optimize the performance of the Gradient Boosting
classifier.

This model for efficient DDoS attack detection is primarily segmented into four
components: the initial component is data preprocessing, the second component is
feature selection, the third component encompasses the design core, which includes
feature extraction via bagged LSTM, and the final component involves feature
selection and classification utilising gradient boosting. This paper employs the Boruta-
Pearson Feature Selector to assess feature importance, followed by Pearson correlation
analysis to evaluate inter-feature correlations. The results from both methods are
integrated to facilitate feature selection, thereby mitigating data redundancy. The
features derived from bagged LSTM and classification by gradient boosting enhance
the detection rate.

Table 4. Different Model Performances

Preeti et al.

57



J. Mech. Cont. & Math. Sci., Vol.-20, No.-12, December (2025) pp 48-65

100.0 =

Metric
99,5 mm Accuracy (%)
99.29 = Fl-Score (%)

00.0 98.98

9.5
9 98.10
7 980 97.89 91.91
5 97.55
& 975

97.10

97.0 96.84

96.5 96.36 96.26

- [

M Q3 & & &
‘70 & & X x
& % & & o
% & $ ¥
Q@ o & &
o* oL $
& F o
L X k3
& &
& &

Fig. 3. Performance metrics of Different models
E. Assessment Metrics
To evaluate the detection performance of the hybrid model, this paper uses accuracy,

precision, recall, and F1 value as the evaluation indicators of the model. The hybrid
model is assessed on datasets employing standard metrics:
e Recall (Sensitivity, True Positive Rate): Measures the proportion of actual positives

correctly identified.

True Positives (TP)
True Positives (TP) + False Negatives (FN)

Recall =

e Precision (Positive Predictive Value): Measures the proportion of predicted positives
that are actual positives.
True Positives (TP)

Precision =
TECISION = e Positives (TP) + False Positives (FP)

e Accuracy: Measures the proportion of correctly classified instances (both positives and
negatives) out of all instances.

True Positives (TP) + True Negatives (TN)

Aceuracy = < TPopulation (TP + TN + FP + FN)

e F1-Score: Harmonic mean of Precision and Recall, balancing the two metrics.

Precision x Recall

F1-Score = 2 x ——— ———————
Precision + Recall

IV. Results and analysis

The hardware environment for the experiment: The operating system is
Windows 10, the graphics card is a processor with Intel i7-10875 CPU, and 8 GB of

memory. Software environment: The programming language is Python 3.7, and the
learning framework is Keras 2.
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A. Comparison Based on Different Feature Selection Methods

This section performs comparison tests on three feature selection methods to assess
the efficacy and applicability of the suggested feature selection technique. Under
identical experimental settings, the suggested Boruta-Pearson Feature Selector (BPFS)
approach is compared with widely utilised PCA and AE feature selection techniques.
The experimental comparison presented in Table 3 indicates that the suggested BPFS
algorithm yields results comparable to the other two approaches across two datasets.
The PCA algorithm prioritises variance in data dimensionality reduction; however,
non-principal components with minimal variances may still harbour significant
information regarding sample differences, potentially influencing subsequent data
processing. Conversely, AE depends more heavily on the training data for the
reconstruction of feature space. Consequently, neither strategy may yield superior
outcomes. The suggested BPFS method picks features based on their significance and
relevance, with the objective of enhancing the model's classification accuracy. The
selected features using BPFS are Flow duration, Total backward packets, Fwd Packet
length mean, Bwd packet length mean, and Flow IAT mean.

TABLE 5. Comparison results of different feature selection methods.

B. Hyper-Parameters Analysis

° Effect Of LSTM Layers & Units (Cells) Of LSTM on Detection
Performance: The LSTM layers & Units (Cells) of the LSTM are fundamental to the
model, serving a vital function in the processing of long-range dependent information.
It can ascertain if the characteristics in the collected data are neglected, and suitable
LSTM layers & Units (Cells) can ameliorate the issue of elevated false positive rates.
To identify the best LSTM architecture appropriate for the methodology presented in
this research, five distinct LSTM configurations are established and evaluated. The
detailed information is as follows:

One LSTM layer & Units, with each layer containing a single cell.
Two LSTM layers & Units, each containing two cells.

Four LSTM layers & Units, with each layer containing two cells.
Four LSTM layers & Units, each containing four cells.

One LSTM layer & Units, with each layer containing four cells.

Nk

The experimental outcomes of five LSTM architectures are presented in Figure 4.
Given that LSTM may regulate the retention of certain properties, its architecture
significantly influences the false alarm rate. When there is one LSTM layer & Units
(Cells) with two cells each, the accuracy rate is at its lowest. With two LSTM layers
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& Units (Cells)s, each containing two cells, the false positive rate reaches its peak.
Conversely, with four LSTM layers & Units (Cells)s, each comprising two cells, the
false positive rate is minimised while the accuracy rate is optimal. In summary, optimal
experimental results are attained when there are 4 LSTM layers & Units (Cells)s, each
containing 2 cells. The experimental findings are illustrated in Figure 3.

BN Accuracy
I False_alarm

1/1 2/2 a2 a4 &4
Memory module/Mumsber of ca .

Fig. 4. The Effect of LSTM layers & Units (Cells) number on detection
performance

o Optimization using Hyperparameter Tuning

Hyperparameter tuning is crucial for improving accuracy, reducing overfitting, and
optimizing training time. The LSTM model used in this study is configured with 50
units per layer, allowing it to effectively capture temporal dependencies in sequential
data. To mitigate overfitting, a dropout rate of 0.245 is applied, ensuring that the model
generalizes well to unseen data. The training process is optimized using a batch size
of 32, which balances computational efficiency and model convergence. The model is
trained for 10 epochs, providing sufficient iterations for learning patterns without
excessive training time. Additionally, the Adam optimizer is employed, leveraging
adaptive learning rates to enhance model performance and accelerate convergence.

. Optimal Hyperparameter for Gradient Boosting

Gradient Boosting (GB) is an effective ensemble learning technique for DDoS attack
detection [ XX VI]. The key to improving its performance is hyperparameter tuning to
balance accuracy, training time, and generalization. Key Hyperparameters for Tuning
are: n_estimators is 100, and learning rate is 0.01.m GridSearchCV helps optimize key
hyperparameters systematically. Tuned models improve detection accuracy and reduce
false positives.

C. Comparison Based on Different Learning Algorithms

The CIC-IDS2017 dataset will be utilised to evaluate the efficacy of the new model
through comparison experiments using CNN, LSTM, BiLSTM, and CNN BiLSTM
[XXVII]. The model's assessment metrics include accuracy rate, recall rate, and F1
score. Table 4 presents a comparison of the experimental data. Table 3 demonstrates
that LSTM-based methods outperform CNN-based methods in accuracy, recall, and
F1 score, indicating LSTM's superiority in processing long-distance dependencies
compared to CNN. Furthermore, BiILSTM methods exhibit enhanced performance
over LSTM methods, suggesting the simultaneous retention of bi-directional data
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information in network traffic sequence analysis. The CNN-BiLSTM model presented
in this paper exhibits superior overall performance compared to the BiLSTM-only
method, as it effectively extracts both spatial and temporal features. This article
incorporates the self-attention mechanism to ascertain if the attention mechanism
enhances DDoS attack detection performance. Consequently, a comparative
experiment was conducted using the CIC IDS2017 dataset, comparing the CNN
BiLSTM model devoid of a self-attention mechanism and the CNN AttBiLSTM model
with a self-attention mechanism. The experimental findings are shown in Table 6.

TABLE 6. Comparison results of different models.

Table 7. Performances of Models

The model can handle 8,950 packets/sec, which means it can handle more network
traffic without slowing down. This shows that it is more scalable. The time-to-alert of
28.6 ms shows that there is very little delay in communication between the detection
and alerting modules. The CNN—GRU and CNN-LSTM baselines had higher latency
(23.4 ms and 20.1 ms) and lower throughput (7,850 and 7,420 packets/sec). The
proposed model also had a faster time-to-alert (28.6 ms) than the current standards
(CNN-GRU, CNN-LSTM). These results show that the proposed hybrid ensemble
greatly improves responsiveness, throughput stability, and scalability.

Preeti et al.

61



J. Mech. Cont. & Math. Sci., Vol.-20, No.-12, December (2025) pp 48-65

Confusion Matrix

25000 Receiver Operating Characteristic (ROC) Curve
10 —
2 20000 L
4 195 -
3 08 -~
o -
15000 4 e
2 06 ~
H e
- 10000 H -
E 04 L
4 - 124 o
- 5000 02 ~
o = ROC Curve (AUC = 0.9998)
00

Class 0 Class 1 0.0 0.2 04 06 0.8 10
Predicted Label False Pasitive Rate

True Label

Class 1

(@) (b)
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TABLE 8. Strengths and Weaknesses of Methods
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V. Conclusion & Future Directions

This paper proposes a hybrid Bagged-LSTM with Gradient Boosting model
to enhance IoT security against DDoS attacks. By leveraging the temporal learning
capability of LSTMs and the residual learning power of Gradient Boosting, the model
achieves high detection accuracy and robustness. At the beginning, Boruta-Pearson
Feature Selector (BPFS) feature selection is carried out using the algorithm, and then
LSTM networks are used to simultaneously extract spatial and temporal features. The
extracted spatiotemporal features are ““parallel” fused. Finally, use a gradient boosting
classifier for traffic classification. Future work will focus on lightweight model
adaptations for resource-constrained loT devices and on integrating explainable Al for
improved transparency and trust in predictions. The experimental results show that
when tested using the CIC-ISDS2017 and CIC-DDo0S2019 datasets, the proposed
method outperforms similar published methods in four performance evaluation
indicators, with the highest accuracy, recall, and F1 values 0f 99.290%, 99.002%, and
99.002% respectively. This proves that the model constructed using the new method
can effectively detect and accurately distinguish multiple types of DDoS attacks. In
the subsequent research work, the research team will improve the performance of
DDoS attack traffic detection while also adding a real-time analysis function of
network traffic, hoping to explore detection models and methods with higher accuracy,
lower error rate, and more stable performance. The Experimental results examined the
hybrid model provide the best detection accuracy as well as achieve low end-to-end
latency and high throughput, in terms of real-time responsiveness and scalability.
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