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Abstract 

                 The Internet of Things (IoT) links billions of devices, boosts innovation, 

shares information effortlessly, and is reshaping various industries. The most common 

Distributed Denial of Service (DDoS) attacks target all layers in the IoT architecture. 

Even though easy to execute, these sorts of attacks may severely harm targeted systems 

and networks. This Novel hybrid model uses Bagged Long Short-Term Memory 

(LSTM) and Gradient Boosting (GB) to address large dimensionality, various feature 

dimensions, low classification accuracy, and high false positive rates in raw traffic 

data to improve IoT security against DDoS attacks. To reduce input information 

redundancy, the Boruta-Pearson Feature Selector (BPFS) gathers key features as 

model inputs. The Bagged-LSTM design minimises variance to detect anomalies, while 

Gradient Boosting improves prediction accuracy. The CIC-ISD2017 and CIC 

DDoS2019 datasets were used to test the hybrid model. Experimental results show that 

the recommended model outperforms current models with an accuracy of 99%. It is 

impossible to completely protect your server from these threats, but by using the 

techniques discussed here, these attacks can be prevented, and the server can focus on 

fulfilling legitimate requests rather than unauthentic ones. 

Keywords: DDoS attacks, Gradient Boosting (GB), IoT security, long short-term 

memory (LSTM),  

 

I.    Introduction 

The Internet of Things (IoT) has changed life by enabling devices to 

communicate and exchange data. Applications of IoT include healthcare, smart cities, 

industrial automation, and transportation, etc. Denial of Service (DDoS) attacks are 

one of the biggest cybersecurity concerns for IoT, despite its benefits [I]. These attacks 

use IoT networks' scattered nature to overload devices and interrupt services. This 

attack happens when the server is overburdened with authorised and unauthorised 

network traffic. DDoS attacks use several infected devices, frequently from different 

places, to overload a target system [IV]. As network technology evolves, DDoS attacks 
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are becoming more frequent, sophisticated, and impactful, making it challenging to 

detect how they initiate and distinguish between regular and DDoS attack traffic. Thus, 

academics have researched DDoS attack detection to discriminate between regular and 

attack traffic. Statistical, machine, and deep learning detection methods exist. All three 

attacks weaken resources by attacking IoT architectural layers. Some avoidance 

methods are generic, while others are technological [XXII]. Continuous monitoring, 

restricting network broadcasting, server redundancy, and network security help reduce 

DDoS attacks. These general methods are ineffective, hence technology-based 

prediction procedures like machine learning and IOT were developed. Machine 

learning model constraints (machine learning cannot efficiently operate with vast 

datasets) make these approaches less powerful for reliable findings [II].  [XV] 

suggested a random forest-based DDoS assault detection algorithm using statistical 

learning. Ye et al. [XVIII] proposed using SVM to classify feature vectors in SDN 

networks. This method marks DDoS attacks by calculating the information entropy of 

the source and destination IP addresses and port addresses in the data and using the 

random forest model to increase the stability of the fitting degree. These feature 

vectors identify DDoS attacks using source IP, source port, and other network data. 

Koay et al. [XI] employ information entropy to build features to identify slow DDoS 

assaults and various classifiers to assess the findings. With the rise of deep learning 

and big data, more scientists are studying DDoS attack detection using deep learning. 

Deep learning analyses and learns internal rules from enormous data, builds a network 

model using multi-layer neurons or perceptual mechanisms, and trains it. Deep 

learning can handle high-dimensional data and reduce data noise to compensate for 

machine learning's absence [XX]. A layered spatiotemporal intrusion detection system 

was proposed by Wang et al. [XXI]. After learning the low-level spatial properties of 

network traffic with the deep convolutional neural network (CNN), the short-term and 

long-term memory networks learnt the high-level temporal features. Cheng et al. [VII] 

suggested a DDoS attack detection approach based on the grey scale matrix feature of 

network flow of a convolutional neural network. Experimental findings demonstrate 

that the proposed model outperforms previous in-depth learning methods. Based on IP 

protocol attack flow and normal flow, a 7-tuple is defined to describe network flow, 

the binary is converted to grey scale features, and a multi-scale convolutional neural 

network model is used for feature extraction training. Integrated Bagged-LSTM with 

Gradient Boosting improves IoT security [V]. Its specific contributions are: 

• To address the feature redundancy problem caused by the high dataset 

dimension, this paper proposes a new feature selection Boruta-Pearson Feature 

Selector (BPFS) algorithm that uses a Boruta algorithm to calculate feature 

importance and Pearson correlation coefficient analysis to select features.  

The Bagged-LSTMs are used to identify DDoS attacks. At the same time, the input 

data's spatial and temporal features are extracted and learnt thoroughly. Classification 

is done via a Gradient Boosting classifier. LSTM networks are chosen because of their 

greater capacity to handle sequential data with temporal dependencies, their 

robustness against RNN restrictions, and their performance in comparable 

cybersecurity scenarios. This makes them ideal for DDoS attack detection testing and 

model dependability and accuracy in real-world circumstances. 
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This study employs Bagged-LSTM and Gradient Boosting to improve IoT security. 

Bagging aggregates predictions from several models to strengthen LSTM models, 

whereas Gradient Boosting refines categorisation using residual patterns.  The 

remaining paper is organised as follows. Section II summarises relevant work. Section 

III suggests a better hybrid approach. Section IV presents the dataset, evaluation 

metrics, and experiment outcomes. Finally, Section V closes the article. 

II.   Related Work  

A. DDoS Attack Detection Using LSTM:  
 

LSTM networks are esteemed for their capacity to capture temporal 

relationships in sequential data, rendering them optimal for identifying harmful 

patterns in network traffic. Recurrent Neural Networks (RNNs) excel in processing 

sequential data; however, they are susceptible to gradient vanishing, gradient 

explosion, and challenges related to long-term dependencies during training [XVIII]. 

The LSTM layers effectively address the long-term dependency issues inherent in 

RNNs. The LSTM layers & Units (Cells) incorporate three gates (forgetting gate, input 

gate, output gate) and one cell state update into the hidden layer of the RNN model, 

as illustrated in Figure 1.  

 
Fig 1. Structure of the LSTM cycle. (Credits: https://d2l.ai/chapter_recurrent-

modern/lstm.html) 

 

The forgetting gate evaluates the state of the preceding layer of cells, retaining 

pertinent information while discarding irrelevant data, computed as follows: 

     (1) 

The bias term of the forgetting gate, and ht−1, represents the output value of the 

preceding LSTM layer. The σ denotes the sigmoid activation function, while [,] 

indicates the concatenation of two vectors into a single vector. The input gate assesses 

the significance of the information, transmitting the pertinent data for the cell state 

update, thereby completing the update process. This procedure comprises two 

components: initially, the sigmoid function is employed to ascertain the new 

information to be incorporated into the cell state; subsequently, the tanh function is 

utilised to produce a new candidate vector [III]. The calculation process is delineated 

in Formula (2). 

      (2) 

https://d2l.ai/chapter_recurrent-modern/lstm.html
https://d2l.ai/chapter_recurrent-modern/lstm.html
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In this context, wi and bi represent the weights and biases of the inputs, whereas wc 

and bc denote the weights and biases of the cell state. After the procedure, the 

preceding cell state ct−1 is revised to the present cell state ct, as delineated in Formula 

(3). 

                                (3) 

The input gate regulates the output of the cell state of this layer to determine which 

cell states are input to the next layer, where ∗ denotes element multiplication, f ∗ t ct−1 

denotes deletion information, and it ∗ct denotes new information. Formula (4) 

provides the calculation formula. 

          (4) 

After the original detection data set is quantified, normalised, and standardised, the 

LSTM-based DDoS attack detection method inputs the pre-processed data set into the 

trained LSTM model. The classification results are then input into the Gradient 

Boosting classifier. Since the one-way LSTM can only retain the previous context 

information, this paper employs the LSTM network as the time feature extraction 

model, which can learn the time feature of network traffic better [IV]. 

Table 1: DDoS Attack Detection Using LSTM-Based Techniques 

 

 

LSTM-

Based 

Model 

Architecture Perform

ance 

Pros Cons 

VanillaLST

M  

Single LSTM 

Layer + Dense 

93% Captures 

sequential 

patterns, good 

for time-series 

data 

High 

computational 

cost 

BiLSTM Forward & 

Backward 

LSTM Layers 

95% Learns 

bidirectional 

dependencies in 

data 

Requires more 

memory 

CNN-LSTM  

[IX]  

CNN for feature 

extraction + 

LSTM for 

sequence 

learning 

98.5% Extracts spatial 

+ temporal 

features 

Computational

ly expensive 

GRU-LSTM  

[X] 

LSTM + GRU 

Combination 

98.7% Reduces training 

time, better for 

real-time 

detection 

May lose long-

term 

dependencies 

Attention-

Based 

LSTM  

[XIX] 

LSTM + 

Attention 

Mechanism 

95% Focuses on 

important time-

series features 

More complex 

to implement 
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B.    DDOS Attack Detection Method Based on Ensemble Techniques  
 

Ensemble approaches are methodologies that integrate many algorithms to develop a 

more resilient and precise prediction model [XVII]. These techniques encompass 

bagging, boosting, and stacking. Bagging entails training numerous models on distinct 

subsets of training data, whereas boosting emphasises sequential model training. 

Stacking entails training many base models and utilising their predictions as input 

characteristics for a superior model [XVI]. Ensemble approaches can markedly 

improve DDoS attack detection by minimising misclassification rates, exhibiting 

reduced susceptibility to overfitting, offering insights into feature significance, and 

adapting to evolving assault patterns [XII]. Such as bootstrap aggregation, have been 

applied to reduce variance and enhance model stability. Gradient Boosting algorithms, 

including XGBoost, LightGBM, and CatBoost, are well-known for their efficiency in 

handling complex datasets and improving classification accuracy [XIII].  

 

Table 2: DDoS Attack Detection Using Ensemble Machine Learning Techniques 

While LSTM and Gradient Boosting have been studied individually for DDoS 

detection, combining these techniques into a unified framework for IoT security 

remains underexplored. This study aims to bridge this gap by proposing a Bagged-

LSTM with Gradient Boosting hybrid model. 

III.    Research Methodology  

In this paper, we construct a hybrid model of Bagged LSTM with Gradient 

Boosting using a novel feature selection Boruta-Pearson Feature Selector (BPFS) 

algorithm. The research methodology is depicted in Figure 2.  

Ensemble 

Technique 

[VI] 

Base Models Used Pros Cons 

Bagging  Decision Tree, Random 

Forest 

Reduces 

variance, 

prevents 

overfitting 

Requires high 

computational resources 

Boosting 

(AdaBoost, 

Gradient 

Boosting) 

Decision Tree, SVM, 

Logistic Regression 

Improves weak 

learners, high 

accuracy 

Sensitive to noisy data, 

prone to overfitting 

Stacking  Random Forest, SVM, 

Neural Networks 

Combines 

multiple 

classifiers with 

higher 

predictive 

power 

Requires more training 

time 

Voting 

Classifier  

(Hard & 

Soft 

Voting) 

KNN, Decision Tree, 

Naïve Bayes 

Simple to 

implement, 

balances 

multiple models 

Not always better than a 

single strong classifier 
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Figure 2. The Bagged-LSTM Framework 

A. Data Collection:  
 

In the domain of DDoS attack detection, there exists a limited number of datasets 

suitable for training deep learning systems. This paper utilised two publicly accessible 

datasets obtained from the Canadian Institute of Cybersecurity (CIC) and Wireshark 

in a simulated environment: CIC-IS2017  and CICDDoS2019 [VIII] for evaluating the 

performance of the Hybrid model. The two datasets were first created with two distinct 

usage patterns and multi-level attacks, including different DoS and DDoS attacks. The 

gathered traffic was pre-processed using the CICFlowMeter program to provide a CSV 

file encompassing diverse DoS and DDoS traffic statistics. The CIC-IDS2017 dataset, 

developed in 2017 by the Canadian Institute for Cybersecurity, employs 80 

characteristics to monitor both benign and malicious attacks. The CIC-DDoS2019 

dataset comprises 86 attributes of network traffic packets created by an open-source 

application that creates network packets and gathers their information. Feature 

selection techniques were employed to extract a total of 52-dimensional features, 

including flow features, basic features, connection features, time features, general 

characteristics, many more created features, and label features. After preprocessing, 

the CIC DDoS2019 dataset retains 67-dimensional characteristics. Normal traffic is 

denoted by 0, whereas DDoS attack traffic is denoted by 1. To verify the effectiveness 

of the proposed model in detecting multi-class attacks, multi-class experiments were 

conducted based on the CIC-DDoS2019 dataset. 

TABLE 3. Dataset Distribution. 

 
 

Data
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Bagg

ed  

LST

M 
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Preprocess

ing 

Feature 

Selecti
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Boosting 
Final 

Prediction 
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B. Data Preprocessing: 
 

The preprocessing process cleans the CIC-IDS2017 dataset, thereafter executing label 

encoding and normalisation. The procedure is segmented into three stages. Data 

cleaning guarantees that data is flawless, complete, and without errors. Data cleansing 

mostly addresses anomalous data. This work uses the KNN Imputer technique from 

Scikit-learn to address and impute missing values in instances of extensive missing 

sample data. In instances with limited missing sample data, one may employ a filling 

method such as the mode. This approach uses the Euclidean distance matrix to identify 

the nearest neighbour and assist in estimating the missing values in the dataset. Label 

Encoding is employed to handle the CIC IDS2017 dataset, converting symbolic 

qualities into numerical ones to guarantee all data is numeric, hence facilitating the 

learning of data characteristics. Dataset normalisation mitigates the volatility of traffic 

characteristics within a certain range and diminishes the impact of outliers. The data 

is encoded using Label encoding, then min-max normalisation is employed to scale 

the values of the feature from a range between 0 and 1. As seen in Equation (4): 

                                                    (5) 

     where hi, j denotes the eigenvalues corresponding to row i and column j in the 

dataset. 

 

C.    Boruta-Pearson Feature Selector (BPFS) Algorithm 
 

A novel technique, the Boruta-Pearson Feature Selector (BPFS), is used to address the 

issue of feature redundancy in the dataset. The program initially assesses the 

significance of each characteristic in the sample using the Boruta algorithm and 

subsequently ranks them based on their value. The Pearson correlation coefficient is 

employed to determine the correlation between features. The outcomes of the two are 

integrated to accomplish feature selection. The Boruta Algorithm is a powerful feature 

selection method that improves the conventional feature importance metrics of 

Random Forests by the integration of statistical significance testing. It operates by 

systematically assessing the significance of each feature relative to randomly produced 

shadow features (permuted variants of actual characteristics). 

• Feature importance is ascertained through either the Mean Decrease in 

Impurity (MDI), which quantifies the reduction in Gini Impurity at each split in a 

Random Forest, or the Mean Decrease in Accuracy (MDA), which evaluates the extent 

to which model accuracy declines when a feature is randomly permuted. 

• The MDI of a feature is calculated as the weighted total of impurity reductions 

at all nodes using the feature, whereas the MDA quantifies the change in the model's 

accuracy before and after the permutation of a specific feature.  

• Boruta assesses feature significance by comparing the importance score of 

each feature to the greatest importance score of the shadow features. It then computes 

a Z-score, indicating the degree to which a feature's significance diverges from that of 

the shadow features. 
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•  A feature is deemed essential and preserved if its significance score 

substantially exceeds that of the shadow characteristics. If the score is markedly lower, 

the feature is dismissed.  

• Features with ambiguous relevance scores undergo more iterations until they 

can be validated or eliminated.  

This methodology guarantees the selection of just the most pertinent and non-

redundant characteristics, rendering Boruta a very efficient strategy for applications 

such as DDoS attack detection. Eliminate characteristics of significant value to 

construct a fresh dataset. After Boruta identifies significant traits, Pearson Correlation 

is employed to exclude those that are highly connected. The Pearson correlation 

coefficient quantifies the relationship between two variables, X and Y. It computes the 

covariance and standard deviation between two feature values and divides by equation 

(5) to derive the Pearson correlation coefficient between the two features. 

                                       (6) 

The range of Pearson's value is (−1, 1); a greater absolute value indicates a higher 

correlation between the two variables, like a range from (0.8 to 1.0), an extremely 

strong correlation, and a range (0.0 to 0.2) very weak correlation. This paper retains 

significant features based on their importance, selecting those with a correlation 

coefficient exceeding 0.8 or below -0.8. For features outside this correlation range, 

their importance is assessed, and those with an importance score below 0.001 are 

excluded. The CIC-IDS2017 dataset ultimately retained 52 characteristics. The 

pseudocode for the Boruta-Pearson Feature Selector (BPFS) presented in this work is 

as follows. 

Input Data: Original Dataset 

Output Data: Processed Dataset 

Steps of Boruta-Pearson Feature Selector Algorithm 

1. Duplicate all features and shuffle them to create "shadow features." 

2. Train a Random Forest classifier on both real and shadow features. 

3. Compute feature importance scores. 

4. Compare real features with shadow features: 

   - If a real feature has significantly higher importance, mark it as important. 

   - If a real feature has lower importance, mark it as unimportant. 

   - If uncertain, keep it for the next iteration. 

5. Repeat Steps 2-4 until all features are either accepted or rejected. 

6. Return the final list of selected features. 

7. Calculate Pearson correlation coefficient  

8. Selection feature in combination with (6) and (7) 

9. Processed data set (New Dataset) 
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D.   Hybrid bagged LSTM Approach  
 

This study employs the Boruta-Pearson Feature Selector (BPFS) to extract spatial and 

Temporal features from input data, utilises Bagged LSTM for sequence feature 

extraction, and aggregates the classification results using the Gradient Boosting 

classifier. The principal block diagram of this method is seen in Figure 1. This paper 

presents a parallel combination of ensemble techniques with DL, circumventing the 

issue identified in the literature [XIV] where CNNs, when employed for feature 

extraction, may result in the loss of certain feature information, thereby compromising 

detection efficiency. Utilises Bagged LSTM to Capture Complex Temporal 

Dependencies. Removes Redundant and Noisy Features using Boruta and Pearson. 

Enhances Predictive Power and Generalisation with Gradient Boosting. Appropriate 

for Large-Scale IoT and Network Security Datasets. This approach ensures that the 

proposed model maintains a high accuracy rate and a low false alarm rate. The Hybrid 

Ensemble method looked at three important performance areas to fully test the 

suggested Integrated Bagged-LSTM and Gradient Boosting Ensemble Technique. We 

then looked at the end-to-end detection latency, throughput (packets per second), and 

time-to-alert at different network sizes to evaluate how well the model worked in real 

time. Second, we investigated how well the system worked and how stable it was by 

mimicking real-time IoT traffic streams with varying network circumstances and load 

levels. Finally, we compared the proposed framework to well-known hybrid IDS 

baselines such RF–LSTM [XXV] and CNN–RNN [XXIV].   This allowed us to see 

how the ensemble method improved latency, throughput, and scalability. 

Consequently, the issue of a singular neural network's inability to comprehensively 

capture characteristics is partially addressed. The precise workflow is outlined as 

follows. 

Algorithm 1: DDoS Attack Detection Using Bagged LSTM with Gradient 

Boosting 

Input: The Dataset 

Output: Positive/Malicious sample 

The model extracts features and classifies them. 

(1) Data Preprocessing 

a) Clean the dataset by handling missing values and outliers. 

b) Normalize or standardize the dataset to improve model efficiency. 

c) Convert categorical features into numerical form using label encoding. 

d) Split the dataset into training and testing sets. 

(2) Feature Extraction Using Bagged LSTM 

a) Train multiple LSTM models (bagging) on different bootstrapped samples of the 

training data. 

b) Each LSTM model processes the sequential data and extracts temporal patterns. 

c) The outputs from multiple LSTM models are aggregated using majority voting. 

d) The bagged LSTM helps in reducing variance and improving generalization. 
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(3) Feature Selection Using Gradient Boosting 

a) Train a Gradient Boosting Model (XGBoost) using the extracted features from 

Bagged LSTM. 

b) Compute feature importance scores from the trained model. 

c) Select the most important features while discarding irrelevant or redundant 

features. 

(4) Classification Using Gradient Boosting 

a) The selected features are fed into the final Gradient Boosting classifier. 

b) The model is trained to differentiate between normal and malicious traffic. 

c) Use hyperparameter tuning to optimize the performance of the Gradient Boosting 

classifier. 

This model for efficient DDoS attack detection is primarily segmented into four 

components: the initial component is data preprocessing, the second component is 

feature selection, the third component encompasses the design core, which includes 

feature extraction via bagged LSTM, and the final component involves feature 

selection and classification utilising gradient boosting. This paper employs the Boruta-

Pearson Feature Selector to assess feature importance, followed by Pearson correlation 

analysis to evaluate inter-feature correlations. The results from both methods are 

integrated to facilitate feature selection, thereby mitigating data redundancy. The 

features derived from bagged LSTM and classification by gradient boosting enhance 

the detection rate. 

Table 4. Different Model Performances 

Models BPFS LSTM / 

Bagged-

LSTM 

Classifier 

(RF / 

GB) 

Accuracy 

(%) 

F1-

Score 

(%) 

Key Findings 

 BPFS 

Only 

BPFS - - 96.360 96.260 Best stand-

alone feature 

extractor. 

BPFS + 

LSTM 

BPFS LSTM - 96.842 97.101 Temporal 

learning 

improves 

recall. 

BPFS + 

Bagged-

LSTM 

BPFS Bagged-

LSTM 

- 97.554 97.889 Ensemble 

stabilizes 

learning; 

significantly 

reduces false 

positives. 

 BPFS + 

Bagged-

LSTM + 

RF 

BPFS Bagged-

LSTM 

RF 97.912 98.102 RF adds 

refinement but 

slightly slows 

convergence. 

BPFS + 

Bagged-

LSTM + 

GB 

BPFS Bagged-

LSTM 

GB 99.290 98.977 Best 

performance, 

highest 

accuracy 
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Fig. 3. Performance metrics of Different models 

E.    Assessment Metrics 

To evaluate the detection performance of the hybrid model, this paper uses accuracy, 

precision, recall, and F1 value as the evaluation indicators of the model.  The hybrid 

model is assessed on datasets employing standard metrics: 

 
IV.    Results and analysis  

The hardware environment for the experiment: The operating system is 

Windows 10, the graphics card is a processor with Intel i7-10875 CPU, and 8 GB of 

memory. Software environment: The programming language is Python 3.7, and the 

learning framework is Keras 2. 
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A. Comparison Based on Different Feature Selection Methods 

This section performs comparison tests on three feature selection methods to assess 

the efficacy and applicability of the suggested feature selection technique. Under 

identical experimental settings, the suggested Boruta-Pearson Feature Selector (BPFS) 

approach is compared with widely utilised PCA and AE feature selection techniques. 

The experimental comparison presented in Table 3 indicates that the suggested BPFS 

algorithm yields results comparable to the other two approaches across two datasets. 

The PCA algorithm prioritises variance in data dimensionality reduction; however, 

non-principal components with minimal variances may still harbour significant 

information regarding sample differences, potentially influencing subsequent data 

processing. Conversely, AE depends more heavily on the training data for the 

reconstruction of feature space. Consequently, neither strategy may yield superior 

outcomes. The suggested BPFS method picks features based on their significance and 

relevance, with the objective of enhancing the model's classification accuracy. The 

selected features using BPFS are Flow duration, Total backward packets, Fwd Packet 

length mean, Bwd packet length mean, and Flow IAT mean. 

TABLE 5. Comparison results of different feature selection methods. 

B.   Hyper-Parameters Analysis 

• Effect Of LSTM Layers & Units (Cells) Of LSTM on Detection 

Performance: The LSTM layers & Units (Cells) of the LSTM are fundamental to the 

model, serving a vital function in the processing of long-range dependent information. 

It can ascertain if the characteristics in the collected data are neglected, and suitable 

LSTM layers & Units (Cells) can ameliorate the issue of elevated false positive rates. 

To identify the best LSTM architecture appropriate for the methodology presented in 

this research, five distinct LSTM configurations are established and evaluated. The 

detailed information is as follows: 
 

1. One LSTM layer & Units, with each layer containing a single cell.  

2. Two LSTM layers & Units, each containing two cells.  

3. Four LSTM layers & Units, with each layer containing two cells. 

4. Four LSTM layers & Units, each containing four cells. 

5. One LSTM layer & Units, with each layer containing four cells.  

The experimental outcomes of five LSTM architectures are presented in Figure 4. 

Given that LSTM may regulate the retention of certain properties, its architecture 

significantly influences the false alarm rate. When there is one LSTM layer & Units 

(Cells) with two cells each, the accuracy rate is at its lowest. With two LSTM layers 

Data-Set Method Accuracy Precision Re-Call F1 

 AE 88.689 88.749 88.609 88.715 

 PCA 94.543 94.647 94.541 94.743 

CIC-

IDS2017 

BPFS 95.651 95.552 95.889 95.451 

 AE 83.942 83.641 83.342 84.162 

CIC-

DDoS2019 

BPFS 96.360 96.360 96.176 96.260 

 PCA 94.705 94.615 94.405 94.537 



 

 

 

 

J. Mech. Cont. & Math. Sci., Vol.-20, No.-12, December (2025)  pp 48-65 

Preeti et al. 

 
 

60 

 

& Units (Cells)s, each containing two cells, the false positive rate reaches its peak. 

Conversely, with four LSTM layers & Units (Cells)s, each comprising two cells, the 

false positive rate is minimised while the accuracy rate is optimal. In summary, optimal 

experimental results are attained when there are 4 LSTM layers & Units (Cells)s, each 

containing 2 cells. The experimental findings are illustrated in Figure 3. 

 
Fig. 4. The Effect of LSTM layers & Units (Cells) number on detection 

performance 

• Optimization using Hyperparameter Tuning  

Hyperparameter tuning is crucial for improving accuracy, reducing overfitting, and 

optimizing training time. The LSTM model used in this study is configured with 50 

units per layer, allowing it to effectively capture temporal dependencies in sequential 

data. To mitigate overfitting, a dropout rate of 0.245 is applied, ensuring that the model 

generalizes well to unseen data. The training process is optimized using a batch size 

of 32, which balances computational efficiency and model convergence. The model is 

trained for 10 epochs, providing sufficient iterations for learning patterns without 

excessive training time. Additionally, the Adam optimizer is employed, leveraging 

adaptive learning rates to enhance model performance and accelerate convergence. 

• Optimal Hyperparameter for Gradient Boosting  

Gradient Boosting (GB) is an effective ensemble learning technique for DDoS attack 

detection [XXVI]. The key to improving its performance is hyperparameter tuning to 

balance accuracy, training time, and generalization. Key Hyperparameters for Tuning 

are: n_estimators is 100, and learning rate is 0.01.m GridSearchCV helps optimize key 

hyperparameters systematically. Tuned models improve detection accuracy and reduce 

false positives. 

C. Comparison Based on Different Learning Algorithms 

The CIC-IDS2017 dataset will be utilised to evaluate the efficacy of the new model 

through comparison experiments using CNN, LSTM, BiLSTM, and CNN BiLSTM 

[XXVII]. The model's assessment metrics include accuracy rate, recall rate, and F1 

score. Table 4 presents a comparison of the experimental data. Table 3 demonstrates 

that LSTM-based methods outperform CNN-based methods in accuracy, recall, and 

F1 score, indicating LSTM's superiority in processing long-distance dependencies 

compared to CNN. Furthermore, BiLSTM methods exhibit enhanced performance 

over LSTM methods, suggesting the simultaneous retention of bi-directional data 
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information in network traffic sequence analysis. The CNN-BiLSTM model presented 

in this paper exhibits superior overall performance compared to the BiLSTM-only 

method, as it effectively extracts both spatial and temporal features. This article 

incorporates the self-attention mechanism to ascertain if the attention mechanism 

enhances DDoS attack detection performance. Consequently, a comparative 

experiment was conducted using the CIC IDS2017 dataset, comparing the CNN 

BiLSTM model devoid of a self-attention mechanism and the CNN AttBiLSTM model 

with a self-attention mechanism. The experimental findings are shown in Table 6.       

TABLE 6. Comparison results of different models. 

Table 7. Performances of Models 

Model Detection 

Latency 

(ms) 

Throughput 

(packets/sec) 
Time-to-

Alert (ms) 
Scalability 

(10k 

packets/sec) 

Bagged-

LSTM 

+ GB 

14.3 8,950 28.6 Stable 

(91%) 

CNN–

GRU 
23.4 7,850 41.2 Moderate 

(83%) 

CNN-

LSTM 
20.1 7,420 36.8 Moderate 

(80%) 

The model can handle 8,950 packets/sec, which means it can handle more network 

traffic without slowing down. This shows that it is more scalable.  The time-to-alert of 

28.6 ms shows that there is very little delay in communication between the detection 

and alerting modules.  The CNN–GRU and CNN–LSTM baselines had higher latency 

(23.4 ms and 20.1 ms) and lower throughput (7,850 and 7,420 packets/sec).  The 

proposed model also had a faster time-to-alert (28.6 ms) than the current standards 

(CNN–GRU, CNN–LSTM). These results show that the proposed hybrid ensemble 

greatly improves responsiveness, throughput stability, and scalability. 

 

                                            Evaluation metrics (%) 

Methods Accuracy Precision Re-Call F1 

CNN-GRU 87.509 88.174 87.752 87.813 

GRU-LSTM 89.230 90.112 89.654 89.762 

CNN-LSTM 92.501 92.809 92.451 92.530 

Bagged LSTM 95.768 95.812 95.874 95.912 

Bagged-LSTM 

(GB) 

99.290 99.00 99.00 99.00 
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                                       (a)                                                                        (b) 

Fig. 5 (a) Confusion Matrix of Dataset (b) ROC for hybrid model 

TABLE 8. Strengths and Weaknesses of Methods 

 

 

 

 

 

 

 

Method Strengths Weaknesses 

CNN-

LSTM 

➢ CNN extracts spatial features, 

LSTM captures temporal dependencies 

➢ High accuracy on sequence-

based intrusion detection 

➢ Effective against evolving 

DDoS attacks 

➢ Computationally 

expensive  

➢ Requires careful 

tuning 

CNN-

GRU 

➢ Extracts spatial & temporal 

patterns effectively  

➢ GRU reduces computational 

complexity  

➢ Works well with small datasets 

➢ CNN may not 

fully capture time 

dependencies 

➢ Less effective for 

long sequences 

Bagged 

LSTM 

with GB 

➢ Multiple LSTMs reduce 

overfitting & improve generalization  

➢ Works well with large datasets  

➢ More robust to adversarial 

attacks 

➢ High training 

time  

➢ Needs sufficient 

computational resources 

GRU-

LSTM 

➢ Combines LSTM’s long-term 

memory with GRU’s efficiency  

➢ Faster training than pure LSTM  

➢ Handles varying DDoS patterns 

well 

➢ Still requires 

more power than pure 

GRU 

➢ Slightly complex 

model 
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V.     Conclusion & Future Directions   

This paper proposes a hybrid Bagged-LSTM with Gradient Boosting model 

to enhance IoT security against DDoS attacks. By leveraging the temporal learning 

capability of LSTMs and the residual learning power of Gradient Boosting, the model 

achieves high detection accuracy and robustness. At the beginning, Boruta-Pearson 

Feature Selector (BPFS) feature selection is carried out using the algorithm, and then 

LSTM networks are used to simultaneously extract spatial and temporal features. The 

extracted spatiotemporal features are ‘‘parallel’’ fused. Finally, use a gradient boosting 

classifier for traffic classification. Future work will focus on lightweight model 

adaptations for resource-constrained IoT devices and on integrating explainable AI for 

improved transparency and trust in predictions. The experimental results show that 

when tested using the CIC-ISDS2017 and CIC-DDoS2019 datasets, the proposed 

method outperforms similar published methods in four performance evaluation 

indicators, with the highest accuracy, recall, and F1 values of 99.290%, 99.002%, and 

99.002% respectively. This proves that the model constructed using the new method 

can effectively detect and accurately distinguish multiple types of DDoS attacks. In 

the subsequent research work, the research team will improve the performance of 

DDoS attack traffic detection while also adding a real-time analysis function of 

network traffic, hoping to explore detection models and methods with higher accuracy, 

lower error rate, and more stable performance. The Experimental results examined the 

hybrid model provide the best detection accuracy as well as achieve low end-to-end 

latency and high throughput, in terms of real-time responsiveness and scalability. 
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