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Abstract

This study explores a specialized type of domination in graphs known as fair
domination. A fair dominating set (FDS) in a graph R is defined as a dominating set
in which every non-member vertex is adjacent to an equal number of vertices within
the set. The minimum size of such a set is referred to as the fair domination number,
denoted y¢q(R). We further examine how structural modifications, specifically edge
subdivisions, affect this parameter. The fair domination subdivision number, denoted

Sdy fa R) (or Sd, fa (R)), captures the smallest number of edge subdivisions required

to increase or decrease the fair domination number, respectively. Our work focuses on
computing these values for two graph families: cycles C, (with n = 3) and Circulant
graphs C.(1,k),k = 2,3. Through detailed analysis, we demonstrate how edge
subdivisions impact the fairness condition in domination. To systematically explore fair
domination in graphs, we adopt an algorithmic approach that facilitates efficient
identification of fair dominating sets and computation of related parameters.
Algorithmic techniques have been pivotal in graph theory, particularly in the study of
domination-related problems. We introduce an efficient algorithm for identifying fair
dominating sets and determining the fair domination number in Circulant graphs of
the form C(1,2) and C,(1,3), offering insights into their underlying combinatorial
Structure.

Keywords: Influence-based vertex covering, Uniform vertex influence, k-regular fair
domination, Edge-splitting parameter, Subdivision for fair domination.
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I. Introduction

The study of domination in graph theory began gaining prominence during the
mid-20th century, as researchers became increasingly interested in identifying subsets
of vertices that could exert influence or control over the rest of the graph. Among the
foundational contributions to this area is the concept of domination introduced by
Haynes [XII], which remains one of the most extensively investigated topics in graph
theory. Given a graph R = (V, E), a “Dominating Set (DS)" is a subset Q S R such
that every vertex in V \ Q is adjacent to at least one vertex in Q. The “domination
number”, denoted y(R), represents the minimum cardinality of such a set, and a
dominating set of this minimum size is called a y-set [VI, X, XX]. Various extensions
and generalizations of domination have attracted significant research attention in recent
years. The concept of “Fair Domination", introduced by Caro et al., defines a “Fair
Dominating Set" (FDS) as a dominating set @ in which all vertices not in Q are
dominated by the same number of vertices from Q [III]. The “fair domination number",
denoted y¢4(R), is the smallest size of such a set. An important refinement of fair
domination is the concept of the m-fair dominating set (mFD-set), defined as a
dominating set Q S R in which each vertex not in Q is adjacent to exactly m vertices
from Q. Formally, for every x € V\Q, it holds that |[N(x) N Q| = m. A
particularly noteworthy instance of this is when m = 1, which corresponds to the well-
established perfect dominating set, where each non-member vertex is dominated by
exactly one vertex from the set [I1I, V, XI]. Extensive studies on fair domination have
led to the development of various upper and lower bounds for the fair domination
number yrq(R) [XVIL, VII, VI, IX, XXVI]. The “fair domination subdivision
number”, denoted Sdy ta (R) (or Sd, ta (R)), captures the smallest number of edge
subdivisions required to increase or decrease the fair domination number, respectively.
Through this investigation, we aim to deepen the understanding of how structural
transformations, specifically edge subdivisions, affect the balance and distribution of
domination in graphs. By focusing on cyclic and Circulant graph classes, this study not
only uncovers new theoretical results but also offers practical computational tools for
analyzing fair domination. The concepts and methods introduced here are expected to
serve as a foundation for further research in graph modification and optimization, with
promising applications in communication networks, distributed systems, and
algorithmic graph theory. To systematically explore fair domination in graphs, we
adopt an algorithmic approach that facilitates efficient identification of fair dominating
sets and computation of related parameters. Algorithmic techniques have been pivotal
in graph theory, particularly in the study of domination-related problems. Several
researchers have developed algorithms to compute domination numbers, total
domination, and their variants, leveraging structural properties of graphs and
complexity theory [XIII, XXIII]. Notably, domination problems are often NP-
complete, necessitating the design of heuristic, approximation, or parameterized
algorithms for tractability.[I, XXI] Recent works have extended these approaches to
more nuanced variants such as fair domination and k-fair domination, using modular
decomposition, integer programming, and greedy strategies to yield polynomial-time
results in special graph classes [XIV, IV, II, XVII]. Our approach builds on these
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foundations, tailoring algorithms to specific circulant graphs and leveraging symmetry
to optimize computation [ XVIII, XV, XIX].

II. Notations

Let R = (V,E) be a connected, simple graph with | V| = n. We adopt the
graph-theoretic terminology established by Harary. For a vertex a € V, its “open
neighborhood” is defined as Nip(v) = {u € Viup € E}, while its “closed
neighborhood” is given by Ng[p] = Ngi(v) U {v}. For any subset Q < V, the
“open neighborhood” is Niz(Q) = UyeqNgz(v), and the “closed neighborhood” is
Ng[Q] = Ng(v) U Q. The “private neighborhood” of a vertex v € Q, denoted
pn(v, Q), consists of all vertices in V \ Q that are adjacent to exactly one vertex in Q,
specifically v. Formally, pn(v,Q) = {ue V\Q: Nu(w) N Q = {v}}. “Apathis
a finite sequence of distinct vertices connected by edges, with no vertex repeating
except possibly the first and last. A cycle is a closed path, beginning and ending at the
same vertex. A complete graph, denoted K, is an undirected graph where each pair of
distinct vertices is connected by an edge. A graph is said to be vertex-transitive if for
any pair of vertices, there exists an automorphism (a structure-preserving map from the
graph to itself) that maps one vertex to the other. In essence, all vertices are structurally
identical in terms of connectivity and degree. A Circulant graph, denoted C,(1, k), is
a vertex-transitive graph of order n, where each vertex i is connected to the vertices i +
landi+ k,V1 < t < n. These graphs are frequently used in the design of local area
networks due to their symmetry and regularity. The distance between two vertices u
and v in a graph R is denoted & (u, v), while the distance between two edges e and e;
is denoted by d(eq, e3).”

III. Objective and novelty of the study

This study pioneers a novel investigation into fair domination and its response to
edge subdivisions in the cycle graph C,,,n = 3), Circulant graphs C,(1, 2) and C,,(1, 3)
introducing a fresh perspective to graph theory within the engineering domain. Fair
domination, where every non-member vertex is adjacent to an equal number of vertices
in the dominating set, is relatively underexplored, and this work uniquely examines the
fair domination number, ysq(R), alongside the fair domination subdivision numbers,

Sdy ra(R) (or Sdy, (R)) which quantify the minimum edge subdivisions needed to
alter this parameter. The objectives are to compute these values for the specified graph
families, analyze how edge subdivisions affect the fairness condition, and develop an
efficient algorithm for identifying fair dominating sets and computing the fair
domination number in C,(1,2) and C,(1,3). By blending theoretical analysis with
computational techniques, this study bridges abstract graph properties with practical
applications, offering new insights into combinatorial structures relevant to network
design and optimization in engineering contexts.

IV. Foundational Results

In the development of our results, we make use of several known theorems
from graph theory. The following foundational results play a crucial role in the
formulation and analysis of our proposed concepts.
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Theorem 4.1. [111] Fora cycle C,, n = 3, y(C,) = E]

Theorem 4.2. [11I] For a cycle C,,n = 3,

n

H, n=0,1,(mod 3)
3

Yra (Cn) = n
[g] +1, n = 2 (mod 3)
Theorem 4.3. [X] For any integern > 5, y(C,(1,2)) = [g]
Theorem 4.4. [XXII] For a Circulant graph C,(1,2), n = 5,

n

X n =0 (mod5)
], otherwi

[§] , therwise
Theorem 4.5. [ XXV] For any integern > 5,

¥ra (Ca(1,2)) =

m
E]' n % 4 (mod 5)

y(C.(1,3)) =14 &
E] +1, n = 4(mod 5)

Theorem 4.6. [ XXII] For a Circulant graph C,(1,3),n = 5,
m
g] ., n=0,1,3(mod5)

Yrd (Cn(1'3)) = 1
[g] +1, n = 2,4 (mod 5)

Observation 1. For any graph R,y(R) = yrq(R) then Sd, MR)=0

Observation 2. For any graph R, y(R) < yrq (R) ifand only if Sd,, fa R)=1.
V. Main Results

1. Algorithm to compute Fair Domination number for C, (1,2)

Consider the graph C,. By Theorem 4.4, we have y(Cn(l, 2)) = E], since
YR) < yrqa R), for any graph R, ysq (C,(1,2)) Zg . We define the following
algorithm to determine the fair domination set of C,(1,2).
Algorithm 1: Compute Fair Dominating Set for C,,(1, 2)
Input: Integern = 5

Output: A fair dominating set Q' < V (C,(1,2)) and the fair domination number
]/fd (Cn(l, 2))

1. Initialize an empty set Q' « {®}
2. Ifn = 0 (mod5) then
a Fork = 1ton/5

— Add vertex vgy_4 to Q'
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b. Return Q' and ysq(C,(1,2)) = E

3. Else
a. Initialize Q' « {@}
b.If n = 0or 2 (mod 3)
i. Fork = 1to[n/3]
— Add vertex vgzi_p to Q'

ii. Return Q" and y;q(C,(1,2)) = E]
c. Elseifn = 1 (mod 3)
i. Fork = 1to[n/3]

— Add vertex vzy_p and vg_q3to Q'

ii. Return Q' and yrq(Cy(1,2)) = E]

Explanation of the algorithm: The proposed algorithm aims to determine a fair
dominating set Q < V(C,(1,2)) and compute the fair domination number
yfd(Cn(l, 2)). The circulant graph C, (1, 2) is defined onn > 5 vertices, where each
vertex v; is adjacent to v;,, and v;,,. Initially, the algorithm begins by setting Q' to
be an empty set. In the case when n = 0 (mod 5), the algorithm selects the vertex set

Q = {D5k_4: 1<k< E]} , which ensures that each vertex in the graph is either in

Q' or adjacent to exactly one vertex in Q. Thus, every vertex not in Q' is dominated
by exactly one vertex of Q’ satisfying the 1-fair domination condition. Consequently,

the fair domination number is y¢4(C,(1,2)) = g When n # 0 (mod 5), the previous

strategy does not yield a fair dominating set, as some vertices may be dominated by
multiple vertices from @', violating the fairness condition. In such cases, the algorithm
constructs a new set Q' based on the value of nin term of modulus of 3. If n =

0 or 2 (mod 3),the algorithm defines Q' = {ng_z: 1<k< E]}} This

configuration ensures that each vertex not in Q' is dominated by exactly two vertices
of Q', which forms a 2-fair dominating set. On the other hand, for n = 1 (mod 3), the

set Qs modified slightly to @ ={vy:1<k<[i] Uv._y} again
guaranteeing that every vertex outside Q' is dominated by exactly two vertices of Q'.
2. Algorithm to compute Fair Domination number for C,,(1,3)

Algorithm 2: Compute Fair Dominating Set for C,,(1,3)

Input: Integern = 5

Output: A fair dominating set Q' < V (C,(1,3)) and the fair domination number
Yra(Ca(1,3))

1. Initialize an empty set Q' « {@}

G. Navamani et al.

35



J. Mech. Cont. & Math. Sci., Vol.-20, No.-12, December (2025) pp 31-47
2.If n = 0or 3 (mod>5) then

i. Fork = 1to[n/5]
— Add vertex vgj_, to Q'

ii. Return Q' and yrq(Cy(1,3)) = E]
3.a. Elseifn = 1 (mod 5) then
i. Fork = 1to|n/5 |
— Add vertex visg_4y to Q'
ii. Add vertex vgp,_p to Q'
iii. Return Q' and yrq(C,(1,3)) = E]
b. Elseif n = 2 (mod 5)
n-7

i. Fork = 1tOT

— Add vertex visi_4y to Q'
ii. Add vertex {0(_z},0(n—5},0m-g}} to Q'
iii. Return Q' and yfd(Cn(1,3)) = E] +1
c. Elseif n = 4 (mod 5)
i. Fork = 1to %
— Add vertex vsy_g4y to Q'

ii. Add vertex {vg,_3},0—5} } to Q'

iii. Return Q' and v74(Cy(1,3)) = [g] +1
Explanation of the algorithm: The algorithm aims to determine a fair dominating set
Q' c W(Cn(1,3)) and the fair domination number yz4 (Cn(1,3)), where C,(1,3) is a
Circulant graph with n vertices. In this graph, each vertex v; is adjacent to vertices at
distances 1 and 3 (i.e., pi4; and v43, with indices taken modulo 1). A fair dominating
set is defined as a subset of vertices such that every vertex not in the set is adjacent to
exactly one vertex in it, and the set has the minimum possible size. The algorithm works
by selecting vertices in a periodic pattern, specifically, those at positions 5k — 4, where
k ranges from 1 to [n/5]. This selection covers most of the graph fairly. When n = 0
or 3 mod 5, this pattern alone suffices to fairly dominate all vertices, and the fair
domination number is simply [1/5]. However, for other values of n (mod 5), there are
leftover vertices that are not dominated. If n = 1 mod 5, the algorithm includes an
additional vertex v,_, to dominate the extra vertex, maintaining yrq = [n/5]. When
n = 2 mod 5, three additional vertices v,_5,0,_5, and v,_g are added to the set to
ensure fair domination, increasing the fair domination number to [n/5] + 1. Similarly,
for n = 4 mod 5, two extra vertices v,,_, and v,_5 are added, and the fair domination
number is also [n/5] + 1. This approach ensures a minimum-sized fair dominating set
that satisfies the fair domination condition for all values of n > 5.

Complexity Analysis: Both Algorithm 1 and Algorithm 2 for computing fair
dominating sets in circulant graphs C,(1,2) and C,(1,3) demonstrate linear
computational efficiency and strong scalability. The time complexity of each algorithm
is O (n), where n is the order of the graph. In Algorithm 1, this arises from a single loop
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executing either [g] or E] iterations depending on the residue of n (mod 5 or 3),

respectively, with each iteration performing constant-time vertex selection and
insertion operations. Similarly, Algorithm 2 follows a comparable structure, classifying
n based on its modulus 5 and performing a single pass through the vertex set with

approximately E] iterations (varying slightly for residual cases n = 1,2,3,4 (mod 5).

Each iteration consists of constant-time updates, and any post-loop adjustments for
boundary conditions contribute negligibly to the total runtime. Consequently, the
dominant term remains linear, yielding an overall time complexity of O(n) for both
algorithms. The space complexity is also linear, O(n), as it depends primarily on the
storage required for the resulting vertex subset Q', while auxiliary variables for
iteration and comparison occupy constant space. Therefore, both algorithms belong to
the polynomial-time complexity class P, ensuring excellent scalability and practicality
for large circulant graphs. Compared to general domination algorithms, which often
involve O(n?) adjacency traversals or combinatorial searches, these methods are
significantly more efficient due to their deterministic, pattern-based vertex selection,
making them computationally optimal for structured graph families such as C,(1,2)
and C,(1,3).

Table 1. Comparative Complexity Analysis of Algorithm 1 and Algorithm 2

Theorem 5.1. For cycle C,,n = 3
1 n=0,1 (mod3)
+ — ) )
Sdy g (€)= { 3, n =2 (mod3)
_ (1, n=2 (mod3)
Sdy,(Co) = { 0, Otherwise

Proof: Let “R = C, be a cycle graph with n > 3, where the vertex set is given by
V(R) = {vq,0,,03, ...,0,} and the edge set is E(R) = {010, 0,053,030y, ..., 0,01}
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According to Theorems 4.1 and 4.2, the domination number y (R) is [g], and the fair
domination number y;4 (R) is given by

5], itn=01(mod3)
Yra®R) =1
[5] +1, ifn=2(mod3)
Let Q be a y-set, and Q' be a Yra-set of R, defined as
n
Q= (o2 1<k <))

(Osppil <k < E]} ifn = 0,1 (mod 3)
Q' =
(osppil <k < E]} U{v), ifn=2 (mod 3)

Now, construct a graph R, by subdividing each edge v;v;;; of R using subdivision
vertices {¥;, ¥, ..., ¥,}, and define the new vertices as v.4; = v; for 1 < i < n. We now
consider the following three cases.

Case (i):n = 0,1 (mod 3)

Subcase 1: Ifn =0 (mod 3),then Q = Q' = {v33_,: 1 <k < g}, and both y(R) and
Yra(R) equal to n/3. Subdividing a single edge, say v,v, by introducing a vertex x;,
yields the graph R, = C,41, where n + 1 = 1 (mod 3). In this case, Q; = Q' U {x,},
and hence y;q(R,) = g + 1. Since y¢4(R1) > vrqa(R), we conclude that Sdt (R) =

Yfd
1, and from Observation 1, Sd;fd (R)=0.

Subcase 2: If n =1 (mod 3), then similarly Q = Q' = {ng_z: 1<k< E]}, and
YR) =ya(R) = E] Subdividing an edge, such as v,v, by a vertex x; yields R, =

Cps1, With n+ 1 = 2 (mod 3). Then, @, = Q' U {x;} and y,q(Ry) = [g] + 1, again

implying Sd;fd(ﬂi) =1and Sd;fd(iR) = 0.

Case (ii): n = 2 (mod 3)

Here, Q' = {v33_5:1 <k < [g]} U {v,.}, and y4(R) = [g] + 1. Subdividing an edge,
such as v,p; with vertex ¥; gives Ry = C,41, Wwheren + 1 = 0 (mod 3). Define Q; =
Q"\{v,.}, which gives y;4(R;) = [g]. Since yrq(R1) < ypa(R), we have Sd,, . (R) =
1, and clearly Sd;} fa (R) > 1. Now, if we further subdivide two edges, say v,p; and
D,_1D,, by inserting ¥; and %,, the resulting graph is R, = C,,,, where n+ 2 =
1 (mod 3), and we have Q; = (Q"\{v,}) U {x;}. In this case, yrq(R;) = E] +1=
Yra(R), and thus Sd;f fa (R) > 2. Finally, if we subdivide three edges, say
1Dy, 0,D3,03D, USIng vertices ¥q,¥,,%¥3, we obtain Ry = C, 3, where n+ 3 =
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2 (mod 3), and define Q; = Q' U {x,}. In this scenario, y;4(R;) = [g] + 2, which is

greater than y;4(R), leading to the conclusion that Sd (R =3.

Theorem 5.2. For a Circulant graph C,(1,2),n > 5,
2, n=2 (mod5)andn % 0 (mod 3)
+ —
Sdy;(€i(1,.2)) = { 1, Otherwise

Proof: Let “R = C,(1,2) be a Circulant graph on n vertices, where V(R) =
{vq,0,,03,...,0,} is the vertex set and E(R) is the edge set. The edge set can be
partitioned as follows E; (R) = {p,0,, 0,053,030y, ..., 0,0, } represents the edges of the
outer cycle, while E,(R) = E(R)\E; (R) denotes the set of inner chords. Thus, the
full edge set is given by E(R) = E;(R) U E,(R)”. Based on theorems 4.3 and 4.4, the
domination number and fair domination number of R are as follows

Yo =[],
g, ifn = 0 (mod 5)

Yra() = [g], otherwise

Let Q and Q' denote a y-set and a y¢4-set of R, respectively. Now, construct a new
graph R, by subdividing every edge ¢; € E(R) = {eq, ey, ..., &y} With corresponding
subdivision vertices {w;, w,, ..., w,,}. Let Q; denote a fair dominating set of R,. We
now examine the following case,

Case (i): n = 2 (mod 5)

For this case, the dominating and fair dominating sets of ‘R are defined as follows:
Q = {USk—4: 1<k< [E]}
5

Q ={o3p-2:1<k< [E]}
3
We now explore the subdivision impact based on n = 0 (mod 3).

Subcase 1: n £ 0 (mod 3)

In this case, we observe that |Q| = [g] and |Q'| = E], with the inequality |Q| < |Q'|

holding foralln = 5. Let us define v,;; = p; for 1 < i < n, to maintain cyclic indexing.
Now, consider subdividing an edge from the outer cycle, specifically v,_;0,, € E;(R),
by inserting a new vertex w;. In the resulting graph R4, a fair dominating set is given
by

Q1 ={v5p-4:1 <k < E]}

This set Q, is a 1-fair dominating set, identical to Q, and it satisfies |Q,| = |Q| < |Q’|.
Hence, the fair domination number decreases upon this subdivision, i.e., yrq(Rq) <
Yra(R). Alternatively, consider subdividing an edge from the inner cycle, such as
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Dp_10n41 € E»(R), by adding a vertex w;. In this case, the fair dominating set of R,
remains the same as Q', with |Q;| = |Q’|. Therefore, the fair domination number
remains unchanged, i.e., yrq(R1) = ¥5q(R). Thus, from the above observations, we
conclude that depending on the edge chosen for subdivision, the fair domination
number may either decrease or remain the same. This implies that Sdy fa R) > 1.

Now, consider subdividing two edges of the form v;v;,, € E,(R), specifically for i =
n—1and i = 1, using subdivision vertices w; and w,, respectively. Let the resulting
graph be denoted by R, and define the fair dominating set of R, as

Q; = Q' U {wy}
In this case, the cardinality of the new fair dominating set becomes
Q.1 =1Q+1

Clearly, |Q| > |Q’|, which implies
Yra(R1) > vra(R)

Therefore, the fair domination subdivision number of R is 2, i.e., S d; fa R) = 2.

Subcase 2: n = 0 (mod 3)

In this case, construct R, by subdividing an edge either from the outer cycle v;p;;; €
E; (R) or from the inner chords v;v;,, € E,(R), takingi = 1 without loss of generality.
Introducing a subdivision vertex w,, the fair dominating set of R; becomes

Q; = Q' U {wy}
Thus

Q| =1Q'[+1

= Yra(R1) > vra(R)
Hence,

Sdy fa R =1
Case (ii): n £ 2 (mod 5)
This case branches into several subcases
Subcase 3: n = 0 (mod 5)
Forn = 0 (mod 5), define the sets
Q= {51 k=< [}
Q ={vsp-411 <k < E]}

In this situation, the cardinalities of both sets are equal, |Q| = |Q’|. Let R, be formed
by subdividing a single edge, either from the outer cycle v;v;,; € E;(R) or from the
inner chords v;p;,, € E,(R), with i = 1. The fair dominating set of R is then
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Q, = Q' U {w,}
= Q| =1Q+1
This implies
Yra(R1) > vra(R)
= Sdy AR =1
Subcase 4: n = 1,3,4 (mod 5)
For values of n satisfying n = 1,3,4 (mod 5), the sets Q and Q' are defined as
Q = {v5-4:1 < k < [n/5]}
ez 1 <k <[]}, if 1= 0,2 (mod 3)
3—2:1 <k < |2 U o), ifn=1(mod3)

Now, let R, be obtained by subdividing an edge v;v;;1, taking t = 1 as an example,
and inserting a subdivision vertex w;. Then, the fair dominating set becomes

Q; = Q U {w,}
= |Q=1Q+1

Consequently, we conclude

Yra(R1) > vra(R)

> Sdf, (R) =1

Theorem 5.3. For a Circulant graph C,,(1,2),n = 5,

1, n=2,4 (mod5)
Sd;fd(Cn(l,Z)) =42, n=1,3 (mod5) andn # 6

0, Otherwise
Proof: Let “R = C,(1,2) be a graph with vertex set V(R) = {v,,0;,03, ..., 0, } and
edge set E(R). Define E;(R) = {v,0,, 0,03, ..., 0,04} as the edges forming the outer
cycle of R, and let E,(R) = E(R)\E;(R), which consists of the edges forming the
inner chords. Therefore, E(R) = E;(R) U E,(R)”. Based on theorems 4.3 and 4.4, the
domination number and fair domination number of R are as follows

on =2

n
5

Vfd(sﬁ) = [

ifn =0 (mod 5)

w3

] , otherwise
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Let Q and Q' denote the y-set and Yra-set of R, respectively, defined as follows.

Q = {o5x-4:1 < k < [n/5]}
{osp_4:1 < k < [n/5]}, ifn =0 (mod 5)

Q' =4{v3r_2:1 <k <[n/3]}, ifn = 0,2 (mod 3) and n # 0 (mod 5)
{o3p0_2:1 <k <|n/3]}U{v,_1}, ifn=1(mod 3) and n # 0 (mod 5)

Let R, be the graph obtained by subdividing the edges E(R) = {ey,e,, ..., &1} using
subdivision vertices {w4, w5, ..., W, }, and let Q; be the fair dominating set of R;. Now,
we analyze the following cases.

Case (i):n=0 (mod 5) andn=26

In this scenario, y(R) = yr4(R). By observation 1, no subdivision is required to

equalise the domination and fair domination numbers, hence Sd, fd (R) =0.

Case (ii)): n = 1,3 (mod 5), withn # 6
Here, yrq(R) > y(R). Consider the following subcases
Subcase 1: n = 1 (mod 5)

In this case, every vertex v € V\Q is dominated by a unique vertex in Q, except v, and
v,,—1, Which are both dominated by »; and v, (since v{, v, € Q). Subdividing the edges
010, and v,0,_4 € E;(R) by vertices w; and w,, respectively, results in a graph R,
where the original set Q now forms a 1-fair dominating set. Hence, Q; = Q, and
Yra(R1) =y(R). Since |Qq| <|Q'|, we conclude yrq(Ri) <yra(R), implying
sd, ta R) =2.

Subcase 2: n = 3 (mod 5)

Here, all vertices in V\Q are uniquely dominated by Q, except v, and v,,_4, which are
both dominated by v; and v,_, € Q. Subdividing the edges v,,_;v,,_» and v;p, by w,
and w,, respectively, results in Q being a 1-fair dominating set of R;. Thus, Q; = Q,

Yra(R1) = y(R), and since |Q,| < |Q'|, we get Sd;fd(iR) = 2.

Case (iii): n = 2,4 (mod 5)
Again here, ysq(R) > y(R). Consider the following subcases
Subcase 3: n = 2 (mod 5)

In this setting, all vertices b € V\Q are 1-dominated by @Q except v,, which is
dominated by both v,_; and ;. Subdividing the edge v;v,, € E;(R) with vertex w,
ensures each vertex outside Q is now 1-dominated. Therefore, Q; = Q becomes a 1FD-
set of Ry, and y¢4(R1) = y(R). Thus, |Q,| < |Q’|, and we conclude Sd;fd R)=1.

Subcase 4: n = 4 (mod 5)
Here, all vertices in V\Q are 1-dominated by @, except v,,_1, which is dominated by
both v; and v,_3 € Q. By subdividing the edge v;v,_; € E,(*R) using vertex w4, we
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ensure all vertices are uniquely dominated. Thus, Q; = Q, and y¢4(R;) = y(R). Since
Q| < |Q'|, we conclude Sd;fd(iﬁ) =1.

Theorem 5.4. For a Circulant graph C,(1,3),n = 5,

Sdy(C.(1,3)) =1

_ (3 n=2 (mod5)
Sdyq (€:(1,3)) = { 0, Otherwise

Proof: Let “R = (C,(1,3) be a graph with a vertex set (R) = {v1,0,,03,...,0,} . Let
E(R) denote the edge set of R, which can be partitioned as follows E;(R) =
{v,0,,0,03, ..., 0,04}, representing the outer cycle of R, and E,(R) = E(R)\E;(R),
representing the set of inner edges (chords) of R. Thus, the total edge set is E(R) =
E;(R) U E,(R)". According to Theorems 4.5 and 4.6, the domination number y (R)
and the fair domination number yy4(R) are given by

[g , ifn % 4 (mod 5)
YR =11 .
5]+ 1, ifn=4(mods)
g] , ifn=0,1,3 (mod 5)
YraR) =4

2 +1, ifn=24 (mods5)

Let Q and Q' be a y-set and a y¢4-set of R, respectively. They are defined as follows

{osi—s 1 1< k< [3]3, ifn 4 (mod 5)
" iosea 1 1<k < [g]} Ufo,_,}, ifn=4 (mod5)
(Dsp_g | 1<k < [g]} ifn = 0,3 (mod 5)
s 15ks EJ} U {o,_,), ifn =1 (mod 5)
) {osp_s 11 <k < %} U {v,_2,04_50,_g}, ifn=2 (mod?5)
k{r)5k_4 11<k< %} U {0,_2,04_5}, ifn =4 (mod 5)

Let R, be the graph obtained by subdividing each edge ¢; € E(R) = {e, €5, ..., e} by
introducing new subdivision vertices {w;, Wy, ..., W,, }. Let Q; denote the yr4-set of
R,.

Case (i): Sd}

yfd(ER) =1

Since Q' is a yq-set of R, it is a 1-fair dominating set. When an edge ;041 € E;(R)
is subdivided, i = 1, the resulting vertex w,; in R; may cause v, to no longer be
dominated by any vertex in Q'. To compensate, we include w, in the dominating set,
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Q; = Q' U {wy}

Similarly, subdividing an inner edge v;v;,3 € E;(R) , say i =1 may leave v3
undominated, requiring

Q; = Q' U {wy}
In both cases, we observe that |Q, | > |Q’[, implying y;4(R1) > yq(R). Thus,

+

Sdy R =1
Case (ii): Sdy, ., R =3
Subcase 1: n = 2 (mod 5)
Here, y(R) < y7q(R). Based on Case (i), subdividing any single edge increases the
fair domination number, implying Sd, (R) > 1. Now consider subdividing two
edges, e.g., v4v, and v,v3, introducing vertices w,; and w,. It is observed that the
neighborhoods of w; and w, are not fully dominated by the original set Q. We redefine

Q; = Q" U {w;,m,}

Here, |Q;| > |Q'], thus y¢4(R1) > yr4(R), and so Sd;fd(ﬂ%) > 2

Now, consider subdividing three edges {v,_10,,010,_2,0,_1D2}, introducing
w4, W5, W3. In this case, we define

Q={sal1<k<[t}=0
Since |Q,| = |Q| < |Q'], it follows that
Yra(R1) <vpa(R)
= 8d,,,(R) =3
Subcase 2: n # 2 (mod 5)

In this scenario, ¥ (R) = yr4(R) based on Observation 1, and thus Sd, fa R)=0

VI. Conclusions

The study of fair domination subdivision numbers opens transformative
possibilities for network design, offering a mathematical lens to enhance resilience,
efficiency, and equity in interconnected systems. By determining the minimal edge
subdivisions required for fair domination, we gain the power to fortify communication
networks against disruptions, optimize resource distribution in social and technological
structures, and engineer adaptive architectures capable of self-correction. This
parameter transcends theoretical interest; it equips us with actionable strategies to build
more robust and balanced networks, from infrastructure grids to algorithmic systems.
As research advances, unlocking its full potential across graph classes could redefine
how we approach stability and fairness in an increasingly connected world. The pursuit
of these insights represents not just a graph-theoretic challenge, but a step toward
future-proofing the very frameworks that sustain modern society. We proposed an

G. Navamani et al.

44



J. Mech. Cont. & Math. Sci., Vol.-20, No.-12, December (2025) pp 31-47

algorithm to construct a fair dominating set and compute the fair domination number
for the Circulant graph C,(1,2) and C,(1,3), addressing various cases based on
n (mod 5) and n (mod 3). This algorithm not only confirms theoretical results but
also offers a practical method for identifying fair dominating sets in Circulant graphs.
These findings contribute to the broader understanding of domination theory in graph
structures and lay the groundwork for future investigations into fair domination across
other graph classes and their applications in network design and resource distribution.

VII. Scope for Further Research

Several open problems in fair domination warrant further investigation. First,
determining the fair domination subdivision number for broader graph classes would
be valuable. Another key direction is characterizing the graph classes for which the

relation Sdy +«(®) =1holds. Additionally, generalizing the fair domination

subdivision number for circulant graphs, particularly C,(1,1), presents an interesting
avenue for future research.
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