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Abstract 

This study explores a specialized type of domination in graphs known as fair 

domination. A fair dominating set (FDS) in a graph ℜ is defined as a dominating set 

in which every non-member vertex is adjacent to an equal number of vertices within 

the set. The minimum size of such a set is referred to as the fair domination number, 

denoted 𝛾𝑓𝑑(ℜ). We further examine how structural modifications, specifically edge 

subdivisions, affect this parameter. The fair domination subdivision number, denoted 

𝑆𝑑𝛾𝑓𝑑
+ (ℜ) (or  𝑆𝑑𝛾𝑓𝑑

− (ℜ)), captures the smallest number of edge subdivisions required 

to increase or decrease the fair domination number, respectively. Our work focuses on 

computing these values for two graph families: cycles 𝐶𝔫 (with 𝔫 ≥ 3) and Circulant 

graphs 𝐶𝔫(1, 𝑘), 𝑘 = 2,3. Through detailed analysis, we demonstrate how edge 

subdivisions impact the fairness condition in domination. To systematically explore fair 

domination in graphs, we adopt an algorithmic approach that facilitates efficient 

identification of fair dominating sets and computation of related parameters. 

Algorithmic techniques have been pivotal in graph theory, particularly in the study of 

domination-related problems. We introduce an efficient algorithm for identifying fair 

dominating sets and determining the fair domination number in Circulant graphs of 

the form 𝐶𝔫(1,2) and 𝐶𝔫(1, 3), offering insights into their underlying combinatorial 

structure. 

Keywords: Influence-based vertex covering, Uniform vertex influence, 𝒌-regular fair 

domination, Edge-splitting parameter, Subdivision for fair domination. 
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I.    Introduction   

The study of domination in graph theory began gaining prominence during the 

mid-20th century, as researchers became increasingly interested in identifying subsets 

of vertices that could exert influence or control over the rest of the graph. Among the 

foundational contributions to this area is the concept of domination introduced by 

Haynes [XII], which remains one of the most extensively investigated topics in graph 

theory. Given a graph ℜ =  (𝕍, 𝔼), a “Dominating Set (DS)" is a subset ℚ ⊆  ℜ such 

that every vertex in 𝕍 \ ℚ is adjacent to at least one vertex in ℚ. The “domination 

number", denoted 𝛾(ℜ), represents the minimum cardinality of such a set, and a 

dominating set of this minimum size is called a 𝛾-set [VI, X, XX]. Various extensions 

and generalizations of domination have attracted significant research attention in recent 

years. The concept of “Fair Domination", introduced by Caro et al., defines a “Fair 

Dominating Set" (FDS) as a dominating set ℚ in which all vertices not in  ℚ  are 

dominated by the same number of vertices from ℚ [III]. The “fair domination number", 

denoted 𝛾𝑓𝑑(ℜ), is the smallest size of such a set. An important refinement of fair 

domination is the concept of the m-fair dominating set (mFD-set), defined as a 

dominating set ℚ ⊆ ℜ in which each vertex not in ℚ is adjacent to exactly 𝔪 vertices 

from ℚ. Formally, for every 𝔵 ∈  𝕍 \ ℚ, it holds that |𝒩(𝔵)  ∩  ℚ |  =  𝔪. A 

particularly noteworthy instance of this is when 𝔪 =  1, which corresponds to the well-

established perfect dominating set, where each non-member vertex is dominated by 

exactly one vertex from the set [III, V, XI]. Extensive studies on fair domination have 

led to the development of various upper and lower bounds for the fair domination 

number 𝛾𝑓𝑑(ℜ) [XVI, VII, VIII, IX, XXVI]. The “fair domination subdivision 

number”, denoted 𝑆𝑑𝛾𝑓𝑑
+ (ℜ) (or  𝑆𝑑𝛾𝑓𝑑

− (ℜ)), captures the smallest number of edge 

subdivisions required to increase or decrease the fair domination number, respectively. 

Through this investigation, we aim to deepen the understanding of how structural 

transformations, specifically edge subdivisions, affect the balance and distribution of 

domination in graphs. By focusing on cyclic and Circulant graph classes, this study not 

only uncovers new theoretical results but also offers practical computational tools for 

analyzing fair domination. The concepts and methods introduced here are expected to 

serve as a foundation for further research in graph modification and optimization, with 

promising applications in communication networks, distributed systems, and 

algorithmic graph theory. To systematically explore fair domination in graphs, we 

adopt an algorithmic approach that facilitates efficient identification of fair dominating 

sets and computation of related parameters. Algorithmic techniques have been pivotal 

in graph theory, particularly in the study of domination-related problems. Several 

researchers have developed algorithms to compute domination numbers, total 

domination, and their variants, leveraging structural properties of graphs and 

complexity theory [XIII, XXIII]. Notably, domination problems are often NP-

complete, necessitating the design of heuristic, approximation, or parameterized 

algorithms for tractability.[I, XXI] Recent works have extended these approaches to 

more nuanced variants such as fair domination and k-fair domination, using modular 

decomposition, integer programming, and greedy strategies to yield polynomial-time 

results in special graph classes [XIV, IV, II, XVII]. Our approach builds on these 
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foundations, tailoring algorithms to specific circulant graphs and leveraging symmetry 

to optimize computation [XVIII, XV, XIX]. 

II.     Notations 

Let ℜ = (𝕍, 𝔼) be a connected, simple graph with | 𝕍 |  =  𝔫. We adopt the 

graph-theoretic terminology established by Harary. For a vertex 𝛼 ∈  𝕍, its “open 

neighborhood” is defined as 𝒩ℜ(𝔳)  =  { 𝔲 ∈  𝕍: 𝔲𝔳 ∈  𝔼 }, while its “closed 

neighborhood” is given by 𝒩ℜ[𝔳]  =  𝒩ℜ(𝔳)  ∪  {𝔳}. For any subset  ℚ  ⊆  𝕍, the 

“open neighborhood” is 𝒩ℜ(ℚ)  =  ⋃ 𝒩ℜ(𝔳)𝔳∈ℚ , and the “closed neighborhood” is 

𝒩ℜ[ℚ]   =  𝒩ℜ(𝔳)  ∪  ℚ. The “private neighborhood” of a vertex 𝔳 ∈  ℚ, denoted 

𝑝𝑛(𝔳,ℚ), consists of all vertices in 𝕍 \ ℚ that are adjacent to exactly one vertex in ℚ, 

specifically 𝔳. Formally, 𝑝𝑛(𝔳,ℚ)  =  { 𝔲 ∈  𝕍 \ ℚ ∶  𝒩ℜ(𝔲) ∩  ℚ =  {𝔳} }. “A path is 

a finite sequence of distinct vertices connected by edges, with no vertex repeating 

except possibly the first and last. A cycle is a closed path, beginning and ending at the 

same vertex. A complete graph, denoted 𝐾𝔫, is an undirected graph where each pair of 

distinct vertices is connected by an edge. A graph is said to be vertex-transitive if for 

any pair of vertices, there exists an automorphism (a structure-preserving map from the 

graph to itself) that maps one vertex to the other. In essence, all vertices are structurally 

identical in terms of connectivity and degree.  A Circulant graph, denoted 𝐶𝔫(1, 𝑘), is 

a vertex-transitive graph of order 𝔫, where each vertex 𝔦 is connected to the vertices 𝔦 +
1 and 𝔦 + 𝑘, ∀ 1 ≤  𝔦 ≤  𝔫. These graphs are frequently used in the design of local area 

networks due to their symmetry and regularity. The distance between two vertices 𝔲 

and 𝔳 in a graph ℜ is denoted 𝒹(𝔲, 𝔳), while the distance between two edges 𝔢₁ and 𝔢₂ 
is denoted by 𝒹(𝔢₁, 𝔢₂).” 

 III.     Objective and novelty of the study 

This study pioneers a novel investigation into fair domination and its response to 

edge subdivisions in the cycle graph 𝐶𝔫, 𝑛 ≥ 3), Circulant graphs 𝐶𝔫(1, 2) and 𝐶𝔫(1, 3) 
introducing a fresh perspective to graph theory within the engineering domain. Fair 

domination, where every non-member vertex is adjacent to an equal number of vertices 

in the dominating set, is relatively underexplored, and this work uniquely examines the 

fair domination number, 𝛾𝑓𝑑(ℜ), alongside the fair domination subdivision numbers, 

𝑆𝑑𝛾𝑓𝑑
+ (ℜ) (or  𝑆𝑑𝛾𝑓𝑑

− (ℜ)) which quantify the minimum edge subdivisions needed to 

alter this parameter. The objectives are to compute these values for the specified graph 

families, analyze how edge subdivisions affect the fairness condition, and develop an 

efficient algorithm for identifying fair dominating sets and computing the fair 

domination number in  𝐶𝔫(1,2) and 𝐶𝔫(1, 3). By blending theoretical analysis with 

computational techniques, this study bridges abstract graph properties with practical 

applications, offering new insights into combinatorial structures relevant to network 

design and optimization in engineering contexts. 

IV.     Foundational Results 

In the development of our results, we make use of several known theorems 

from graph theory. The following foundational results play a crucial role in the 

formulation and analysis of our proposed concepts.  
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Theorem 4.1. [III] For a cycle 𝐶𝔫, 𝔫 ≥  3, 𝛾(𝐶𝔫)  =  ⌈
𝔫

3
⌉   

Theorem 4.2. [III] For a cycle 𝐶𝔫, 𝔫 ≥  3,  

 𝛾𝑓𝑑  (𝐶𝔫) = { 
⌈
𝔫

3
⌉ ,                𝔫 ≡ 0, 1, (𝑚𝑜𝑑 3)    

⌈
𝔫

3
⌉ + 1,         𝔫 ≡ 2 (𝑚𝑜𝑑 3)         

 

Theorem 4.3. [X] For any integer 𝔫 ≥  5,    𝛾(𝐶𝔫(1, 2))  =   ⌈
𝔫

5
⌉ 

Theorem 4.4. [XXII] For a Circulant graph 𝐶𝔫(1, 2), 𝔫 ≥  5,  

 𝛾𝑓𝑑  (𝐶𝔫(1,2)) = {  

𝔫

5
, 𝔫 ≡ 0 (𝑚𝑜𝑑 5) 

⌈
𝔫

3
⌉ , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 

Theorem 4.5. [XXV] For any integer 𝔫 ≥  5, 
  

 𝛾(𝐶𝔫(1,3)) = { 
⌈
𝔫

5
⌉ ,                𝔫 ≢ 4 (𝑚𝑜𝑑 5) 

⌈
𝔫

5
⌉ + 1, 𝔫 ≡ 4(𝑚𝑜𝑑 5) 

 

Theorem 4.6. [XXII] For a Circulant graph 𝐶𝔫(1, 3), 𝔫 ≥  5,  

 𝛾𝑓𝑑  (𝐶𝔫(1,3)) = {  
⌈
𝔫

5
⌉    , 𝔫 ≡ 0, 1, 3 (𝑚𝑜𝑑 5) 

⌈
𝔫

5
⌉ + 1, 𝔫 ≡ 2, 4 (𝑚𝑜𝑑 5)        

 

Observation 1.  For any graph ℜ, 𝛾(ℜ)  =   𝛾𝑓𝑑(ℜ) then 𝑆𝑑𝛾𝑓𝑑
− (ℜ) = 0  

Observation 2.  For any graph ℜ, 𝛾(ℜ)  <   𝛾𝑓𝑑  (ℜ) if and only if   𝑆𝑑𝛾𝑓𝑑
− (ℜ) ≥ 1 . 

V.     Main Results 

1. Algorithm to compute Fair Domination number for  𝑪𝖓(𝟏, 𝟐) 

Consider the graph 𝐶𝔫. By Theorem 4.4, we have 𝛾(𝐶𝔫(1, 2)) =   ⌈
𝔫

5
⌉, since 

𝛾(ℜ) ≤  𝛾𝑓𝑑  (ℜ), for any graph ℜ,  𝛾𝑓𝑑  (𝐶𝔫(1,2))  ≥
𝔫

5
 . We define the following 

algorithm to determine the fair domination set of 𝐶𝔫(1,2). 

Algorithm 1: Compute Fair Dominating Set for 𝑪𝖓(𝟏, 𝟐) 

Input: Integer 𝔫 ≥  5 

Output: A fair dominating set  ℚ′ ⊆  𝕍 (𝐶𝔫(1, 2)) and the fair domination number 

 𝛾𝑓𝑑(𝐶𝔫(1, 2)) 

1. Initialize an empty set  ℚ′ ← {∅} 

2. If 𝔫 ≡  0 (𝑚𝑜𝑑 5) then 

    a. For 𝑘 =  1 𝑡𝑜 𝔫 / 5 

        →  Add vertex 𝔳5𝑘−4 𝑡𝑜  ℚ′ 
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    b. Return  ℚ′ and  𝛾𝑓𝑑(𝐶𝔫(1, 2)) =
𝔫

5
 

3. Else 

    a. Initialize  ℚ′ ← {∅} 

    b. If  𝔫 ≡  0 𝑜𝑟 2 (𝑚𝑜𝑑 3) 

        i.   For 𝑘 =  1 𝑡𝑜 ⌈𝔫/3 ⌉ 

             →  Add vertex 𝔳{3𝑘−2} 𝑡𝑜  ℚ′ 

        ii.  Return ℚ′ and  𝛾𝑓𝑑(𝐶𝔫(1, 2)) = ⌈
𝔫

3
⌉ 

    c. Else if 𝔫 ≡  1 (𝑚𝑜𝑑 3) 

        i.   For 𝑘 =  1 𝑡𝑜 ⌈𝔫/3 ⌉ 

              → Add vertex 𝔳{3𝑘−2}  𝑎𝑛𝑑 𝔳{𝔫−1} 𝑡𝑜  ℚ′ 

        ii. Return  ℚ ′ and  𝛾𝑓𝑑(𝐶𝔫(1, 2)) = ⌈
𝔫

3
⌉ 

Explanation of the  algorithm: The proposed algorithm aims to determine a fair 

dominating set  ℚ′ ⊆  𝕍 (𝐶𝔫(1, 2)) and compute the fair domination number 

 𝛾𝑓𝑑(𝐶𝔫(1, 2)). The circulant graph 𝐶𝔫(1, 2) is defined on 𝔫 ≥  5 vertices, where each 

vertex 𝔳𝔦 is adjacent to 𝔳𝔦+1  and 𝔳𝔦+2. Initially, the algorithm begins by setting  ℚ′ to 

be an empty set. In the case when 𝔫 ≡ 0 (𝑚𝑜𝑑 5), the algorithm selects the vertex set 

 ℚ′ = { 𝔳5𝑘−4: 1 ≤ 𝑘 ≤ ⌈
𝔫

5
⌉} , which ensures that each vertex in the graph is either in 

 ℚ′ or adjacent to exactly one vertex in  ℚ ’. Thus, every vertex not in  ℚ’ is dominated 

by exactly one vertex of  ℚ’  satisfying the 1-fair domination condition. Consequently, 

the fair domination number is  𝛾𝑓𝑑(𝐶𝔫(1, 2)) =
𝔫

5
. When 𝔫 ≢ 0 (𝑚𝑜𝑑 5), the previous 

strategy does not yield a fair dominating set, as some vertices may be dominated by 

multiple vertices from  ℚ′, violating the fairness condition. In such cases, the algorithm 

constructs a new set  ℚ′  based on the value of 𝔫 𝑖𝑛 𝑡𝑒𝑟𝑚 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 3. If 𝔫 ≡

 0 𝑜𝑟 2 (𝑚𝑜𝑑 3), the algorithm defines  ℚ′ = { 𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌈
𝔫

3
⌉}}. This 

configuration ensures that each vertex not in  ℚ′ is dominated by exactly two vertices 

of  ℚ′, which forms a 2-fair dominating set. On the other hand, for  𝔫 ≡ 1 (𝑚𝑜𝑑 3), the 

set  ℚ′ is modified slightly to  ℚ′ = { 𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌈
𝔫

3
⌉    ∪  𝔳𝔫−1}, again 

guaranteeing that every vertex outside  ℚ′ is dominated by exactly two vertices of   ℚ′.  

2.  Algorithm to compute Fair Domination number for  𝑪𝒏(𝟏, 𝟑) 

Algorithm 2: Compute Fair Dominating Set for 𝐶𝔫(1,3) 

Input: Integer 𝔫 ≥  5 

Output: A fair dominating set  ℚ′ ⊆  𝕍 (𝐶𝔫(1, 3)) and the fair domination number 

 𝛾𝑓𝑑(𝐶𝔫(1, 3)) 

1. Initialize an empty set  ℚ′ ← {∅} 
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2. If  𝔫 ≡  0 𝑜𝑟 3 (𝑚𝑜𝑑 5) then 

        i. For 𝑘 =  1 𝑡𝑜 ⌈𝔫 / 5⌉ 
              →  Add vertex 𝔳5𝑘−4 𝑡𝑜  ℚ′ 

        ii. Return  ℚ′ and  𝛾𝑓𝑑(𝐶𝔫(1, 3)) = ⌈
𝔫

5
⌉ 

3. a. Else if 𝔫 ≡  1 (𝑚𝑜𝑑 5) then 

        i. For 𝑘 =  1 𝑡𝑜 ⌊𝔫/5 ⌋ 
             →  Add vertex 𝔳{5𝑘−4}   𝑡𝑜  ℚ′ 

       ii.  Add vertex  𝔳{𝔫−2}   𝑡𝑜  ℚ′ 

       iii.  Return ℚ′ and  𝛾𝑓𝑑(𝐶𝔫(1, 3)) = ⌈
𝔫

5
⌉ 

   b. Else if  𝔫 ≡  2 (𝑚𝑜𝑑 5) 

        i.   For 𝑘 =  1 𝑡𝑜 
𝔫−7

5
 

              → Add vertex 𝔳{5𝑘−4}  𝑡𝑜  ℚ′ 

        ii. Add vertex  {𝔳{𝔫−2} , 𝔳{𝔫−5} , 𝔳{𝔫−8}} 𝑡𝑜  ℚ′ 

        iii. Return  ℚ ′ and  𝛾𝑓𝑑(𝐶𝔫(1, 3)) = ⌈
𝔫

5
⌉ + 1 

    c. Else if  𝔫 ≡  4 (𝑚𝑜𝑑 5) 

        i.   For 𝑘 =  1 𝑡𝑜 
𝔫−4

5
 

              → Add vertex 𝔳{5𝑘−4}  𝑡𝑜  ℚ′ 

        ii. Add vertex {𝔳{𝔫−2} , 𝔳{𝔫−5} } 𝑡𝑜  ℚ′ 

        iii. Return  ℚ ′ and  𝛾𝑓𝑑(𝐶𝔫(1, 3)) = ⌈
𝔫

5
⌉ + 1 

Explanation of the algorithm: The algorithm aims to determine a fair dominating set 

ℚ′ ⊆ 𝕍(𝐶𝔫(1,3)) and the fair domination number 𝛾𝑓𝑑(𝐶𝔫(1,3)), where 𝐶𝔫(1,3) is a 

Circulant graph with 𝔫 vertices. In this graph, each vertex 𝔳𝑖 is adjacent to vertices at 

distances 1 and 3 (i.e., 𝔳𝔦±1 and 𝔳𝔦±3, with indices taken modulo 𝔫). A fair dominating 

set is defined as a subset of vertices such that every vertex not in the set is adjacent to 

exactly one vertex in it, and the set has the minimum possible size. The algorithm works 

by selecting vertices in a periodic pattern, specifically, those at positions 5𝑘 − 4, where 

𝑘 ranges from 1 to ⌈𝔫/5⌉. This selection covers most of the graph fairly. When 𝔫 ≡ 0 

or 3 mod 5, this pattern alone suffices to fairly dominate all vertices, and the fair 

domination number is simply ⌈𝔫/5⌉. However, for other values of 𝔫 (mod 5), there are 

leftover vertices that are not dominated. If 𝔫 ≡ 1 mod 5, the algorithm includes an 

additional vertex 𝔳𝔫−2 to dominate the extra vertex, maintaining 𝛾𝑓𝑑 = ⌈𝔫/5⌉. When 

𝔫 ≡ 2 mod 5, three additional vertices 𝔳𝔫−2, 𝔳𝔫−5, and 𝔳𝔫−8 are added to the set to 

ensure fair domination, increasing the fair domination number to ⌈𝔫/5⌉ + 1. Similarly, 

for 𝔫 ≡ 4 mod 5, two extra vertices 𝔳𝔫−2 and 𝔳𝔫−5 are added, and the fair domination 

number is also ⌈𝔫/5⌉ + 1. This approach ensures a minimum-sized fair dominating set 

that satisfies the fair domination condition for all values of 𝔫 ≥ 5.  

Complexity Analysis: Both Algorithm 1 and Algorithm 2 for computing fair 

dominating sets in circulant graphs 𝐶𝔫(1,2) and 𝐶𝔫(1,3) demonstrate linear 

computational efficiency and strong scalability. The time complexity of each algorithm 

is 𝑂(𝔫), where 𝔫 is the order of the graph. In Algorithm 1, this arises from a single loop 



 

 

 

 

 

J. Mech. Cont. & Math. Sci., Vol.-20, No.-12, December (2025)  pp 31-47 

G. Navamani  et al. 

 

 

37 
 

executing either ⌈
𝔫

5
⌉ 𝑜𝑟 ⌈

𝔫

3
⌉ iterations depending on the residue of 𝔫 (𝑚𝑜𝑑 5 𝑜𝑟 3), 

respectively, with each iteration performing constant-time vertex selection and 

insertion operations. Similarly, Algorithm 2 follows a comparable structure, classifying 

𝔫 based on its modulus 5 and performing a single pass through the vertex set with 

approximately ⌈
𝔫

5
⌉ iterations (varying slightly for residual cases 𝔫 ≡ 1,2,3,4 (𝑚𝑜𝑑 5). 

Each iteration consists of constant-time updates, and any post-loop adjustments for 

boundary conditions contribute negligibly to the total runtime. Consequently, the 

dominant term remains linear, yielding an overall time complexity of 𝑂(𝔫) for both 

algorithms. The space complexity is also linear, 𝑂(𝔫), as it depends primarily on the 

storage required for the resulting vertex subset ℚ′, while auxiliary variables for 

iteration and comparison occupy constant space. Therefore, both algorithms belong to 

the polynomial-time complexity class P, ensuring excellent scalability and practicality 

for large circulant graphs. Compared to general domination algorithms, which often 

involve 𝑂(𝔫2) adjacency traversals or combinatorial searches, these methods are 

significantly more efficient due to their deterministic, pattern-based vertex selection, 

making them computationally optimal for structured graph families such as 𝐶𝔫(1,2) 
and 𝐶𝔫(1,3). 

Table 1. Comparative Complexity Analysis of Algorithm 1 and Algorithm 2 

Aspect 
Algorithm 1 

𝑪𝒏(𝟏, 𝟐) 
Algorithm 2  

𝑪𝒏(𝟏, 𝟑) 
Comparison 

Loop Structure 
Single loop with  ⌈

𝔫

5
⌉ 

or ⌈
𝔫

3
⌉ iterations 

Single loop with  

⌈
𝔫

5
⌉ iterations 

(depending on 

residue) 

Both perform a single 

pass through the 

vertex sequence 

Time 

Complexity 
𝑂(𝔫)  𝑂(𝔫) 

Identical; both scale 

linearly with graph 

order 

Space 

Complexity 

𝑂(𝔫)  
(for storing ℚ′) 

𝑂(𝔫)  
(for storing ℚ′) 

Identical space 

requirements 

Dominant 

Operations 

Constant-time 

vertex insertion 

within each iteration 

Constant-time 

operations 

No asymptotic 

difference 

Scalability 
Excellent for large 

circulant graphs 

Excellent for large 

circulant graphs 

Both are optimal for 

structured graphs 

Computational 

Class 
Polynomial-time (P) Polynomial-time (P) 

Same complexity 

class 

Theorem 5.1. For cycle 𝐶𝔫, 𝔫 ≥  3  

𝑆𝑑𝛾𝑓𝑑
+ (𝐶𝔫) = {

1,           𝔫 ≡ 0, 1  (𝑚𝑜𝑑 3)  
   3,           𝔫 ≡ 2  (𝑚𝑜𝑑 3)         

 

𝑆𝑑𝛾𝑓𝑑
− (𝐶𝔫) = {

1,            𝔫 ≡ 2  (𝑚𝑜𝑑 3)  
   0,            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 

 

Proof: Let “ℜ ≅ 𝐶𝔫 be a cycle graph with 𝔫 ≥ 3, where the vertex set is given by 

𝕍(ℜ) = {𝔳1, 𝔳2, 𝔳3, … , 𝔳𝔫} and the edge set is 𝔼(ℜ) = {𝔳1𝔳2, 𝔳2𝔳3, 𝔳3𝔳4, … , 𝔳𝔫𝔳1}”. 
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According to Theorems 4.1 and 4.2, the domination number 𝛾(ℜ) is ⌈
𝔫

3
⌉, and the fair 

domination number 𝛾𝑓𝑑(ℜ) is given by 

𝛾𝑓𝑑(ℜ) = {
⌈
𝔫

3
⌉ , if 𝔫 ≡ 0,1 (mod 3)

⌈
𝔫

3
⌉ + 1, if 𝔫 ≡ 2 (mod 3)

 

Let ℚ be a 𝛾-set, and ℚ′ be a 𝛾𝑓𝑑-set of ℜ, defined as 

ℚ = {𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌈
𝔫

3
⌉} 

ℚ′ = {
{𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌈

𝔫

3
⌉}, if 𝔫 ≡ 0,1 (mod 3)

{𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌈
𝔫

3
⌉} ∪ {𝑣𝔫}, if 𝔫 ≡ 2 (mod 3)

 

Now, construct a graph ℜ1 by subdividing each edge 𝔳𝔦𝔳𝔦+1 of ℜ using subdivision 

vertices {𝔵1, 𝔵2, … , 𝔵𝔫}, and define the new vertices as 𝔳𝔫+𝔦 = 𝔳𝔦 for 1 ≤ 𝔦 ≤ 𝔫. We now 

consider the following three cases. 

Case (i): 𝔫 ≡ 0,1 (𝑚𝑜𝑑 3) 

Subcase 1: If 𝔫 ≡ 0 (mod 3), then ℚ = ℚ′ = {𝔳3𝑘−2: 1 ≤ 𝑘 ≤
𝔫

3
}, and both 𝛾(ℜ) and 

𝛾𝑓𝑑(ℜ) equal to 𝔫/3. Subdividing a single edge, say 𝔳𝔫𝔳1, by introducing a vertex 𝔵1, 

yields the graph ℜ1 ≅ 𝐶𝔫+1, where 𝔫 + 1 ≡ 1 (mod 3). In this case, ℚ1 = ℚ′ ∪ {𝔵1}, 

and hence 𝛾𝑓𝑑(ℜ1) =
𝔫

3
+ 1. Since 𝛾𝑓𝑑(ℜ1) > 𝛾𝑓𝑑(ℜ), we conclude that 𝑆𝑑𝛾𝑓𝑑

+ (ℜ) =

1, and from Observation 1,    𝑆𝑑𝛾𝑓𝑑
− (ℜ) = 0. 

Subcase 2: If 𝔫 ≡ 1 (mod 3), then similarly ℚ = ℚ′ = {𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌈
𝔫

3
⌉}, and 

𝛾(ℜ) = 𝛾𝑓𝑑(ℜ) = ⌈
𝔫

3
⌉. Subdividing an edge, such as 𝔳𝔫𝔳1 by a vertex 𝔵1 yields ℜ1 ≅

𝐶𝔫+1, with 𝔫 + 1 ≡ 2 (mod 3). Then, ℚ1 = ℚ
′ ∪ {𝔵1} and 𝛾𝑓𝑑(ℜ1) = ⌈

𝔫

3
⌉ + 1, again 

implying 𝑆𝑑𝛾𝑓𝑑
+ (ℜ) = 1 and 𝑆𝑑𝛾𝑓𝑑

− (ℜ) = 0. 

Case (ii): 𝔫 ≡ 2 (𝑚𝑜𝑑 3) 

Here, ℚ′ = {𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌈
𝔫

3
⌉} ∪ {𝔳𝔫}, and 𝛾𝑓𝑑(ℜ) = ⌈

𝔫

3
⌉ + 1. Subdividing an edge, 

such as 𝔳𝔫𝔳1 with vertex 𝔵1 gives ℜ1 ≅ 𝐶𝔫+1, where 𝔫 + 1 ≡ 0 (mod 3). Define ℚ1 =

ℚ′\{𝔳𝔫}, which gives 𝛾𝑓𝑑(ℜ1) = ⌈
𝔫

3
⌉. Since 𝛾𝑓𝑑(ℜ1) < 𝛾𝑓𝑑(ℜ), we have 𝑆𝑑𝛾𝑓𝑑

− (ℜ) =

1, and clearly 𝑆𝑑𝛾𝑓𝑑
+ (ℜ) > 1. Now, if we further subdivide two edges, say 𝔳𝔫𝔳1 and 

𝔳𝔫−1𝔳𝔫, by inserting 𝔵1 and 𝔵2, the resulting graph is ℜ1 ≅ 𝐶𝔫+2, where 𝔫 + 2 ≡

1 (mod 3), and we have ℚ1 = (ℚ′\{𝔳𝔫}) ∪ {𝔵1}. In this case, 𝛾𝑓𝑑(ℜ1) = ⌈
𝔫

3
⌉ + 1 = 

𝛾𝑓𝑑(ℜ), and thus 𝑆𝑑𝛾𝑓𝑑
+ (ℜ) > 2. Finally, if we subdivide three edges, say 

𝔳1𝔳2, 𝔳2𝔳3, 𝔳3𝔳4 using vertices 𝔵1, 𝔵2, 𝔵3, we obtain ℜ1 ≅ 𝐶𝔫+3, where 𝔫 + 3 ≡
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2 (mod 3), and define ℚ1 =  ℚ′ ∪ {𝔵2}. In this scenario, 𝛾𝑓𝑑(ℜ1) = ⌈
𝔫

3
⌉ + 2, which is 

greater than 𝛾𝑓𝑑(ℜ), leading to the conclusion that 𝑆𝑑𝛾𝑓𝑑
+ (ℜ) = 3. 

Theorem 5.2. For a Circulant graph 𝐶𝔫(1, 2), 𝔫 ≥  5,  

𝑆𝑑𝛾𝑓𝑑
+ (𝐶𝔫(1,2)) = {

 2,            𝔫 ≡ 2  (𝑚𝑜𝑑 5) 𝑎𝑛𝑑 𝔫 ≢  0 (𝑚𝑜𝑑 3)  
 1,            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                

 

Proof: Let  “ℜ ≅ 𝐶𝔫(1,2) be a Circulant graph on 𝔫 vertices, where 𝕍(ℜ) =
{𝔳1, 𝔳2, 𝔳3, … , 𝔳𝔫} is the vertex set and 𝔼(ℜ) is the edge set. The edge set can be 

partitioned as follows 𝔼1(ℜ) = {𝔳1𝔳2, 𝔳2𝔳3, 𝔳3𝔳4, … , 𝔳𝔫𝔳1} represents the edges of the 

outer cycle, while 𝔼2(ℜ) = 𝔼(ℜ)\𝔼1(ℜ) denotes the set of inner chords. Thus, the 

full edge set is given by 𝔼(ℜ) = 𝔼1(ℜ) ∪ 𝔼2(ℜ)”. Based on theorems 4.3 and 4.4, the 

domination number and fair domination number of ℜ are as follows  

   𝛾(ℜ) = ⌈
𝔫

5
⌉ ,  

   𝛾𝑓𝑑(ℜ) = {

𝔫

5
, if 𝔫 ≡ 0 (mod 5)

⌈
𝔫

3
⌉ , otherwise

 

Let ℚ and ℚ′ denote a 𝛾-set and a 𝛾𝑓𝑑-set of ℜ, respectively. Now, construct a new 

graph ℜ1 by subdividing every edge 𝔢𝔦 ∈ 𝔼(ℜ) = {𝔢1, 𝔢2, … , 𝔢𝔪} with corresponding 

subdivision vertices {𝔴1, 𝔴2, … ,𝔴𝔪}. Let ℚ1 denote a fair dominating set of ℜ1. We 

now examine the following case, 

Case (i): 𝔫 ≡ 2 (𝑚𝑜𝑑 5) 

For this case, the dominating and fair dominating sets of ℜ are defined as follows: 

ℚ = {𝔳5𝑘−4: 1 ≤ 𝑘 ≤ ⌈
𝔫

5
⌉} 

ℚ′ = {𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌈
𝔫

3
⌉} 

We now explore the subdivision impact based on 𝔫 ≡ 0 (mod 3). 

Subcase 1: 𝔫 ≢ 0 (𝑚𝑜𝑑 3) 

In this case, we observe that |ℚ| = ⌈
𝔫

5
⌉ and |ℚ′| = ⌈

𝔫

3
⌉, with the inequality |ℚ| ≤ |ℚ′| 

holding for all 𝔫 ≥ 5. Let us define 𝔳𝔫+𝔦 = 𝔳𝔦 for 1 ≤ 𝔦 ≤ 𝔫, to maintain cyclic indexing. 

Now, consider subdividing an edge from the outer cycle, specifically 𝔳𝔫−1𝔳𝔫 ∈ 𝔼1(ℜ), 
by inserting a new vertex 𝔴1. In the resulting graph ℜ1, a fair dominating set is given 

by 

 ℚ1 = {𝔳5𝑘−4: 1 ≤ 𝑘 ≤ ⌈
𝔫

5
⌉} 

This set ℚ1 is a 1-fair dominating set, identical to ℚ, and it satisfies |ℚ1| = |ℚ| < |ℚ′|. 
Hence, the fair domination number decreases upon this subdivision, i.e., 𝛾𝑓𝑑(ℜ1) <

𝛾𝑓𝑑(ℜ). Alternatively, consider subdividing an edge from the inner cycle, such as 
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𝔳𝔫−1𝔳𝔫+1 ∈ 𝔼2(ℜ), by adding a vertex 𝔴1. In this case, the fair dominating set of ℜ1 

remains the same as ℚ′, with |ℚ1| = |ℚ′|. Therefore, the fair domination number 

remains unchanged, i.e., 𝛾𝑓𝑑(ℜ1) = 𝛾𝑓𝑑(ℜ). Thus, from the above observations, we 

conclude that depending on the edge chosen for subdivision, the fair domination 

number may either decrease or remain the same. This implies that 𝑆𝑑𝛾𝑓𝑑
+ (ℜ) > 1. 

Now, consider subdividing two edges of the form 𝔳𝔦𝔳𝔦+2 ∈ 𝔼2(ℜ), specifically for 𝔦 =
𝔫 − 1 and 𝔦 = 1, using subdivision vertices 𝔴1 and 𝔴2, respectively. Let the resulting 

graph be denoted by ℜ1, and define the fair dominating set of ℜ1 as 

  ℚ1 = ℚ′ ∪ {𝔴2} 

In this case, the cardinality of the new fair dominating set becomes 

  |ℚ1| = |ℚ′| + 1 

Clearly, |ℚ| > |ℚ′|, which implies 

  𝛾𝑓𝑑(ℜ1) > 𝛾𝑓𝑑(ℜ) 

Therefore, the fair domination subdivision number of ℜ is 2, i.e., 𝑆𝑑𝛾𝑓𝑑
+ (ℜ) = 2. 

Subcase 2: 𝔫 ≡ 0 (𝑚𝑜𝑑 3) 

In this case, construct ℜ1 by subdividing an edge either from the outer cycle 𝔳𝔦𝔳𝔦+1 ∈
𝔼1(ℜ) or from the inner chords 𝔳𝔦𝔳𝔦+2 ∈ 𝔼2(ℜ), taking 𝔦 = 1 without loss of generality. 

Introducing a subdivision vertex 𝔴1, the fair dominating set of ℜ1 becomes 

  ℚ1 = ℚ′ ∪ {𝔴1} 

Thus 

  |ℚ1| = |ℚ
′| + 1 

  ⇒ 𝛾𝑓𝑑(ℜ1) > 𝛾𝑓𝑑(ℜ) 

Hence, 

  𝑆𝑑𝛾𝑓𝑑
+ (ℜ) = 1 

Case (ii): 𝔫 ≢ 2 (𝑚𝑜𝑑 5) 

This case branches into several subcases 

Subcase 3: 𝔫 ≡ 0 (𝑚𝑜𝑑 5) 

For 𝔫 ≡ 0 (mod 5), define the sets 

  ℚ = {𝔳5𝑘−4: 1 ≤ 𝑘 ≤ ⌈
𝔫

5
⌉}  

  ℚ′ = {𝔳5𝑘−4: 1 ≤ 𝑘 ≤ ⌈
𝔫

5
⌉} 

In this situation, the cardinalities of both sets are equal, |ℚ| = |ℚ′|. Let ℜ1 be formed 

by subdividing a single edge, either from the outer cycle 𝔳𝔦𝔳𝔦+1 ∈ 𝔼1(ℜ) or from the 

inner chords 𝔳𝔦𝔳𝔦+2 ∈ 𝔼2(ℜ), with 𝔦 = 1. The fair dominating set of ℜ1 is then 
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  ℚ1 = ℚ
′ ∪ {𝔴1} 

  ⇒ |ℚ1| = |ℚ′| + 1 

This implies 

  𝛾𝑓𝑑(ℜ1) > 𝛾𝑓𝑑(ℜ) 

  ⇒ 𝑆𝑑𝛾𝑓𝑑
+ (ℜ) = 1 

Subcase 4: 𝔫 ≡ 1,3,4 (𝑚𝑜𝑑 5) 

For values of 𝔫 satisfying 𝔫 ≡ 1,3,4 (mod 5), the sets ℚ and ℚ′ are defined as 

   ℚ = {𝔳5𝑘−4: 1 ≤ 𝑘 ≤ ⌈𝔫/5⌉} 

  ℚ′ = {
{𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌈

𝔫

3
⌉}, if 𝔫 ≡ 0,2 (mod 3)

{𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌊
𝔫

3
⌋} ∪ {𝔳𝔫−1}, if 𝔫 ≡ 1 (mod 3)

 

Now, let ℜ1 be obtained by subdividing an edge 𝔳𝔦𝔳𝔦+1, taking 𝔦 = 1 as an example, 

and inserting a subdivision vertex 𝔴1. Then, the fair dominating set becomes 

  ℚ1 = ℚ
′ ∪ {𝔴1} 

  ⇒ |ℚ1| = |ℚ′| + 1 

Consequently, we conclude 

  𝛾𝑓𝑑(ℜ1) > 𝛾𝑓𝑑(ℜ) 

  ⇒ 𝑆𝑑𝛾𝑓𝑑
+ (ℜ) = 1 

Theorem 5.3. For a Circulant graph 𝐶𝔫(1, 2), 𝔫 ≥  5,  

 𝑆𝑑𝛾𝑓𝑑
− (𝐶𝔫(1,2)) = {

 1, 𝔫 ≡ 2, 4  (𝑚𝑜𝑑 5)                       
2, 𝔫 ≡ 1, 3  (𝑚𝑜𝑑 5)  𝑎𝑛𝑑 𝔫 ≠ 6 
 0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     

 

Proof:  Let “ℜ ≅ 𝐶𝔫(1,2) be a graph with vertex set 𝕍(ℜ) = {𝔳1, 𝔳2, 𝔳3, … , 𝔳𝔫} and 

edge set 𝔼(ℜ). Define 𝔼1(ℜ) = {𝔳1𝔳2, 𝔳2𝔳3, … , 𝔳𝔫𝔳1} as the edges forming the outer 

cycle of ℜ, and let 𝔼2(ℜ) = 𝔼(ℜ)\𝔼1(ℜ), which consists of the edges forming the 

inner chords. Therefore, 𝔼(ℜ) = 𝔼1(ℜ) ∪ 𝔼2(ℜ)”. Based on theorems 4.3 and 4.4, the 

domination number and fair domination number of ℜ are as follows 

  𝛾(ℜ) = ⌈
𝔫

5
⌉  

  𝛾𝑓𝑑(ℜ) = {

𝔫

5
, if 𝔫 ≡ 0 (mod 5)

⌈
𝔫

3
⌉ , otherwise
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Let ℚ and ℚ′ denote the 𝛾-set and 𝛾𝑓𝑑-set of ℜ, respectively, defined as follows. 

   ℚ = {𝔳5𝑘−4: 1 ≤ 𝑘 ≤ ⌈𝔫/5⌉} 

ℚ′ = {

{𝔳5𝑘−4: 1 ≤ 𝑘 ≤ ⌈𝔫/5⌉}, if 𝔫 ≡ 0 (mod 5)
{𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌈𝔫/3⌉}, if 𝔫 ≡ 0,2 (mod 3) and 𝔫 ≢ 0 (mod 5)
{𝔳3𝑘−2: 1 ≤ 𝑘 ≤ ⌊𝔫/3⌋} ∪ {𝔳𝔫−1}, if 𝔫 ≡ 1 (mod 3) and 𝔫 ≢ 0 (mod 5)

 

Let ℜ1 be the graph obtained by subdividing the edges 𝔼(ℜ) = {𝔢1, 𝔢2, … , 𝔢𝔪} using 

subdivision vertices {𝔴1, 𝔴2, … ,𝔴𝔪}, and let ℚ1 be the fair dominating set of ℜ1. Now, 

we analyze the following cases. 

Case (i): 𝔫 ≡ 0 (𝑚𝑜𝑑 5) and 𝔫 = 6 

In this scenario, 𝛾(ℜ) = 𝛾𝑓𝑑(ℜ). By observation 1, no subdivision is required to 

equalise the domination and fair domination numbers, hence 𝑆𝑑𝛾𝑓𝑑
− (ℜ) = 0. 

Case (ii): 𝔫 ≡ 1,3 (𝑚𝑜𝑑 5), with 𝔫 ≠ 6 

Here, 𝛾𝑓𝑑(ℜ) > 𝛾(ℜ). Consider the following subcases 

Subcase 1: 𝔫 ≡ 1 (𝑚𝑜𝑑 5) 

In this case, every vertex 𝔳 ∈ 𝕍\ℚ is dominated by a unique vertex in ℚ, except 𝔳2 and 

𝔳𝔫−1, which are both dominated by 𝔳1 and 𝔳𝔫 (since 𝔳1, 𝔳𝔫 ∈ ℚ). Subdividing the edges 

𝔳1𝔳2 and 𝔳𝔫𝔳𝔫−1 ∈ 𝔼1(ℜ) by vertices 𝔴1 and 𝔴2, respectively, results in a graph ℜ1 

where the original set ℚ now forms a 1-fair dominating set. Hence, ℚ1 = ℚ, and 

𝛾𝑓𝑑(ℜ1) = 𝛾(ℜ). Since |ℚ1| < |ℚ′|, we conclude 𝛾𝑓𝑑(ℜ1) < 𝛾𝑓𝑑(ℜ), implying 

𝑆𝑑𝛾𝑓𝑑
− (ℜ) = 2. 

Subcase 2: 𝔫 ≡ 3 (𝑚𝑜𝑑 5) 

Here, all vertices in 𝕍\ℚ are uniquely dominated by ℚ, except 𝔳𝔫 and 𝔳𝔫−1, which are 

both dominated by 𝔳1 and 𝔳𝔫−2 ∈ ℚ. Subdividing the edges 𝔳𝔫−1𝔳𝔫−2 and 𝔳1𝔳𝔫 by 𝑤1 

and 𝑤2, respectively, results in ℚ being a 1-fair dominating set of ℜ1. Thus, ℚ1 = ℚ, 

𝛾𝑓𝑑(ℜ1) = 𝛾(ℜ), and since |ℚ1| < |ℚ′|, we get 𝑆𝑑𝛾𝑓𝑑
− (ℜ) = 2. 

Case (iii): 𝔫 ≡ 2,4 (𝑚𝑜𝑑 5) 

Again here, 𝛾𝑓𝑑(ℜ) > 𝛾(ℜ). Consider the following subcases 

Subcase 3: 𝔫 ≡ 2 (𝑚𝑜𝑑 5) 

In this setting, all vertices 𝔳 ∈ 𝕍\ℚ are 1-dominated by ℚ except 𝔳𝔫, which is 

dominated by both 𝔳𝔫−1 and 𝔳1. Subdividing the edge 𝔳1𝔳𝔫 ∈ 𝔼1(ℜ) with vertex 𝔴1 

ensures each vertex outside ℚ is now 1-dominated. Therefore, ℚ1 = ℚ becomes a 1FD-

set of ℜ1, and 𝛾𝑓𝑑(ℜ1) = 𝛾(ℜ). Thus, |ℚ1| < |ℚ′|, and we conclude 𝑆𝑑𝛾𝑓𝑑
− (ℜ) = 1. 

Subcase 4: 𝔫 ≡ 4 (𝑚𝑜𝑑 5) 
Here, all vertices in 𝕍\ℚ are 1-dominated by ℚ, except 𝔳𝔫−1, which is dominated by 

both 𝔳1 and 𝔳𝔫−3 ∈ ℚ. By subdividing the edge 𝔳1𝔳𝔫−1 ∈ 𝔼2(ℜ) using vertex 𝔴1, we 
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ensure all vertices are uniquely dominated. Thus, ℚ1 = ℚ, and 𝛾𝑓𝑑(ℜ1) = 𝛾(ℜ). Since 

|ℚ1| < |ℚ
′|, we conclude 𝑆𝑑𝛾𝑓𝑑

− (ℜ) = 1. 

Theorem 5.4. For a Circulant graph 𝐶𝔫(1,3), 𝔫 ≥  5,  

𝑆𝑑𝛾𝑓𝑑
+ (𝐶𝔫(1,3)) = 1 

𝑆𝑑𝛾𝑓𝑑
− (𝐶𝔫(1,3)) = {

 3,            𝔫 ≡ 2  (𝑚𝑜𝑑 5)   
 0,            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

 

Proof: Let “ℜ ≅ 𝐶𝔫(1,3) be a graph with a vertex set (ℜ) = {𝔳1, 𝔳2, 𝔳3, … , 𝔳𝔫} . Let 

𝔼(ℜ) denote the edge set of ℜ, which can be partitioned as follows 𝔼1(ℜ) =
{𝔳1𝔳2, 𝔳2𝔳3, … , 𝔳𝔫𝔳1}, representing the outer cycle of ℜ, and 𝔼2(ℜ) = 𝔼(ℜ)\𝔼1(ℜ), 
representing the set of inner edges (chords) of ℜ. Thus, the total edge set is 𝔼(ℜ) =
𝔼1(ℜ) ∪ 𝔼2(ℜ)". According to Theorems 4.5 and 4.6, the domination number 𝛾(ℜ) 
and the fair domination number 𝛾𝑓𝑑(ℜ) are given by 

   𝛾(ℜ) = {
⌈
𝔫

5
⌉ , if 𝔫 ≢ 4 (mod 5)

⌈
𝔫

5
⌉ + 1, if 𝔫 ≡ 4 (mod 5)

 

  𝛾𝑓𝑑(ℜ) = {
⌈
𝔫

5
⌉ , if 𝔫 ≡ 0,1,3 (mod 5)

⌈
𝔫

5
⌉ + 1, if 𝔫 ≡ 2,4 (mod 5)

 

Let ℚ and ℚ′ be a 𝛾-set and a 𝛾𝑓𝑑-set of ℜ, respectively. They are defined as follows 

 ℚ = {
{𝔳5𝑘−4 ∣ 1 ≤ 𝑘 ≤ ⌈

𝔫

5
⌉}, if 𝔫 ≢ 4 (mod 5)

{𝔳5𝑘−4 ∣ 1 ≤ 𝑘 ≤ ⌈
𝔫

5
⌉} ∪ {𝔳𝔫−1}, if 𝔫 ≡ 4 (mod 5)

 

ℚ′ =

{
 
 
 

 
 
 {𝔳5𝑘−4 ∣ 1 ≤ 𝑘 ≤ ⌈

𝔫

5
⌉}, if 𝔫 ≡ 0,3 (mod 5)

{𝔳5𝑘−4 ∣ 1 ≤ 𝑘 ≤ ⌊
𝔫

5
⌋} ∪ {𝔳𝔫−2}, if 𝔫 ≡ 1 (mod 5)

{𝔳5𝑘−4 ∣ 1 ≤ 𝑘 ≤
𝔫 − 7

5
} ∪ {𝔳𝔫−2, 𝔳𝔫−5, 𝔳𝔫−8}, if 𝔫 ≡ 2 (mod 5)

{𝔳5𝑘−4 ∣ 1 ≤ 𝑘 ≤
𝔫 − 4

5
} ∪ {𝔳𝔫−2, 𝔳𝔫−5}, if 𝔫 ≡ 4 (mod 5)

 

Let ℜ1 be the graph obtained by subdividing each edge 𝔢𝑖 ∈ 𝔼(ℜ) = {𝔢1, 𝔢2, … , 𝔢𝑚} by 

introducing new subdivision vertices {𝔴1, 𝔴2, … ,𝔴𝑚}. Let ℚ1 denote the 𝛾𝑓𝑑-set of 

ℜ1. 

Case (i): Sd𝛾𝑓𝑑
+ (ℜ) = 1 

Since ℚ′ is a 𝛾𝑓𝑑-set of ℜ, it is a 1-fair dominating set. When an edge 𝔳𝔦𝔳𝔦+1 ∈ 𝔼1(ℜ) 

is subdivided, 𝔦 = 1, the resulting vertex 𝔴1 in ℜ1 may cause 𝔳2 to no longer be 

dominated by any vertex in ℚ′. To compensate, we include 𝔴1 in the dominating set,  
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   ℚ1 = ℚ′ ∪ {𝔴1} 

Similarly, subdividing an inner edge 𝔳𝔦𝔳𝔦+3 ∈ 𝔼2(ℜ) , say 𝔦 = 1 may leave 𝔳3 

undominated, requiring 

  ℚ1 = ℚ′ ∪ {𝔴1} 

In both cases, we observe that |ℚ1| > |ℚ′|, implying 𝛾𝑓𝑑(ℜ1) > 𝛾𝑓𝑑(ℜ). Thus, 

  Sd𝛾𝑓𝑑
+ (ℜ) = 1 

Case (ii): Sd𝛾𝑓𝑑
− (ℜ) = 3 

Subcase 1: 𝔫 ≡ 2 (𝑚𝑜𝑑 5) 

Here, 𝛾(ℜ) < 𝛾𝑓𝑑(ℜ). Based on Case (i), subdividing any single edge increases the 

fair domination number, implying Sd𝛾𝑓𝑑
− (ℜ) > 1. Now consider subdividing two 

edges, e.g., 𝔳1𝔳2 and 𝑣2𝑣3, introducing vertices 𝔴1 and 𝔴2. It is observed that the 

neighborhoods of 𝔴1 and 𝔴2 are not fully dominated by the original set ℚ. We redefine 

  ℚ1 = ℚ
′ ∪ {𝔴1, 𝔴2} 

Here, |ℚ1| > |ℚ′|, thus 𝛾𝑓𝑑(ℜ1) > 𝛾𝑓𝑑(ℜ), and so Sd𝛾𝑓𝑑
− (ℜ) > 2 

Now, consider subdividing three edges {𝔳𝔫−1𝔳𝔫, 𝔳1𝔳𝔫−2, 𝔳𝔫−1𝔳2}, introducing 

𝔴1, 𝔴2, 𝔴3. In this case, we define 

  ℚ1 = {𝔳5𝑘−4 ∣ 1 ≤ 𝑘 ≤ ⌈
𝔫

5
⌉} = ℚ 

Since |ℚ1| = |ℚ| < |ℚ′|, it follows that 

  𝛾𝑓𝑑(ℜ1) < 𝛾𝑓𝑑(ℜ) 

  ⇒ Sd𝛾𝑓𝑑
− (ℜ) = 3 

Subcase 2: 𝔫 ≢ 2 (𝑚𝑜𝑑 5) 

In this scenario, 𝛾(ℜ) = 𝛾𝑓𝑑(ℜ) based on Observation 1, and thus Sd𝛾𝑓𝑑
− (ℜ) = 0 

VI.   Conclusions 

The study of fair domination subdivision numbers opens transformative 

possibilities for network design, offering a mathematical lens to enhance resilience, 

efficiency, and equity in interconnected systems. By determining the minimal edge 

subdivisions required for fair domination, we gain the power to fortify communication 

networks against disruptions, optimize resource distribution in social and technological 

structures, and engineer adaptive architectures capable of self-correction. This 

parameter transcends theoretical interest; it equips us with actionable strategies to build 

more robust and balanced networks, from infrastructure grids to algorithmic systems. 

As research advances, unlocking its full potential across graph classes could redefine 

how we approach stability and fairness in an increasingly connected world. The pursuit 

of these insights represents not just a graph-theoretic challenge, but a step toward 

future-proofing the very frameworks that sustain modern society. We proposed an 
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algorithm to construct a fair dominating set and compute the fair domination number 

for the Circulant graph 𝐶𝔫(1, 2) and  𝐶𝔫(1, 3), addressing various cases based on 

 𝔫 (𝑚𝑜𝑑 5) and 𝔫 (𝑚𝑜𝑑 3). This algorithm not only confirms theoretical results but 

also offers a practical method for identifying fair dominating sets in Circulant graphs. 

These findings contribute to the broader understanding of domination theory in graph 

structures and lay the groundwork for future investigations into fair domination across 

other graph classes and their applications in network design and resource distribution. 

VII.   Scope for Further Research 

Several open problems in fair domination warrant further investigation. First, 

determining the fair domination subdivision number for broader graph classes would 

be valuable. Another key direction is characterizing the graph classes for which the 

relation 𝑆𝑑𝛾𝑓𝑑
+ (ℜ)  = 1 holds. Additionally, generalizing the fair domination 

subdivision number for circulant graphs, particularly 𝐶𝔫(1, 𝔫), presents an interesting 

avenue for future research. 

 

 

Conflict of Interest:  

There was no relevant conflict of interest regarding this paper. 

 

References 

I. Blažej, Václav, Jan Matyáš Křišťan, and Tomáš Valla: ‘Computing m-

eternal domination number of cactus graphs in linear time’. arXiv. 

arXiv:2301.05155, 2023. https://doi.org/10.48550/arXiv.2301.05155. 

II. Boehmer, Niclas, Tomohiro Koana, and Rolf Niedermeier: ‘A refined 

complexity analysis of fair districting over graphs.’ Autonomous 

Agents and Multi-Agent Systems. Vol. 37(1), pp: 13, 2023. 

10.48550/arXiv.2102.11864. 

III. Caro, Yair, Adriana Hansberg, and Michael Henning: ‘Fair domination 

in graphs’. Discrete Mathematics. Vol. 312(19), pp: 2905-2914, 2012. 

10.1016/j.disc.2012.05.006. 

IV. Casado, Alejandra, Jesús Sánchez-Oro, and Anna Martínez-Gavara: 

‘Heuristics for the weighted total domination problem’. TOP: An 

Official Journal of the Spanish Society of Statistics and Operations 

Research. Vol. 33(2),  pp: 395–436, 2025    10.1007/s11750-025-

00695-1. 

V. Dejter, Italo J: ‘Perfect domination in regular grid graphs’. 

Australasian Journal of Combinatoricsz. Vol. 42, pp: 99–114, 2007. 

10.48550/arXiv.0711.4343. 

VI. Enriquez, Enrico, et al : ‘Domination in fuzzy directed graphs’. 

Mathematics. Vol. 9(17), pp: 2143, 2021.   10.3390/math9172143. 

VII. Hajian, Majid, and N. Jafari Rad: ‘Trees and unicyclic graphs with 

large fair domination number’. Util. Math. Vol. 112, 2022. 



 

 

 

 

 

J. Mech. Cont. & Math. Sci., Vol.-20, No.-12, December (2025)  pp 31-47 

G. Navamani  et al. 

 

 

46 
 

VIII. Hajian, Majid, and Nader Jafari Rad: ‘Fair domination number in 

cactus graphs’. Discussiones Mathematicae Graph Theory. Vol. 39(2), 

pp: 489-503, 2019. 

IX. Hansberg, Adriana: ‘Reviewing some results on fair domination in 

graphs’. Electronic Notes in Discrete Mathematics. Vol. 43, pp: 367-

373, 2013. https://doi.org/10.1016/j.endm.2013.07.054. 

X. Harary, Frank. Graph theory (on Demand Printing of 02787). CRC 

Press, 2018.     10.1201/9780429493768. 

XI. Hatami, Hamed, and Pooya Hatami: ‘Perfect dominating sets in the 

Cartesian products of prime cycles’. The Electronic Journal of 

Combinatorics, Vol. 14(1), pp: N8, 2007. 

https://doi.org/10.37236/1009. 

XII. Haynes, Teresa W., Stephen Hedetniemi, and Peter Slater: 

‘Fundamentals of domination in graphs’. CRC press, 2013.     

10.1201/9781482246582. 

XIII. Henning, Michael A., Arti Pandey, and Vikash Tripathi: ‘Complexity 

and algorithms for semipaired domination in graphs’. Theory of 

Computing Systems, Vol. 64(7), pp: 1225-1241, 2020.     

10.48550/arXiv.1904.00964. 

XIV. Inza, Ernesto Parra, et al: ‘Algorithms for the global domination 

problem’. Computers & Operations Research. Vol. 173, pp: 106876, 

2025. 10.1016/j.cor.2024.106876. 

XV. Jafari Rad, Nader, et al: ‘Total domination in cubic Knödel graphs’. 

Communications in Combinatorics and Optimization. Vol. 6(2), pp: 

221-230, 2021.      10.22049/cco.2020.26793.1143. 

XVI. Joseph, J. Paulraj, and S. Arumugam: ‘Domination in subdivision 

graphs’. J. Indian Math. Soc. Vol. 62, pp: 274-282, 1996. 

XVII. Kumar, J. Pavan, and P. Venkata Subba Reddy: ‘Algorithmic aspects 

of some variants of domination in graphs’. Analele Stiint. Ale Univ. 

Ovidius Constanta Ser. Mat. Vol. 28(3), pp: 153-170, 2020. 

10.48550/arXiv.2002.00002. 

XVIII. Kumar, J. Pavan, P. Venkata Subba Reddy, and S. Arumugam: 

‘Algorithmic complexity of secure connected domination in graphs’. 

AKCE International Journal of Graphs and Combinatorics. Vol. 

17(3),  pp: 1010-1013, 2020.      10.48550/arXiv.2002.00002. 

XIX. Lin, Ching-Chi, Cheng-Yu Hsieh, and Ta-Yu Mu: ‘A linear-time 

algorithm for weighted paired-domination on block graphs’. Journal 

of Combinatorial Optimization. Vol. 44(1), pp: 269-286, 2022. 

10.1007/s10878-021-00767-5. 

XX. Miranda, Aldwin T., and Rolito G. Eballe : ‘Domination defect for the 

join and corona of graphs’. Applied Mathematical Sciences. Vol. 

15(12), pp: 615-623, 2021. 10.12988/ams.2021.914597. 

XXI. Mu, Ta-Yu, and Ching-Chi Lin: ‘Optimal Algorithm for Paired-

Domination in Distance-Hereditary Graphs’. arXiv. 

arXiv:2411.19476, 2024.      10.48550/arXiv.2411.19476. 

 

https://doi.org/10.1201/9780429493768
https://doi.org/10.48550/arXiv.2002.00002


 

 

 

 

 

J. Mech. Cont. & Math. Sci., Vol.-20, No.-12, December (2025)  pp 31-47 

G. Navamani  et al. 

 

 

47 
 

XXII. Navamani. G and Reena Mercy M A: ‘Fair domination number of 

some graphs’. Preprint. 

XXIII. Novak, Tina, and Janez Žerovnik: ‘A Linear Time Algorithm for 

Weighted k-Fair Domination Problem in Cactus Graphs’. Operations 

Research Forum Cham: Springer International Publishing. Vol. 3(3), 

2022. 10.1007/s43069-022-00154-8. 

XXIV. Pushpam, P. Roushini Leely, and G. Navamani: ‘Eternal m-security in 

certain classes of graphs’. J. Combin. Math. Combin. Vol. 92, pp: 25-

38, 2015. 

XXV. Rad, Nader Jafari: ‘Domination in circulant graphs’. Analele Stiintifice 

Ale Universitatii Ovidius Constanta, Seria Matematica. Vol. 17(1), pp: 

169-176, 2019. 

XXVI. Swaminathan, V., et al: ‘Outer complete fair domination in graphs’. 

Discrete Mathematics, Algorithms and Applications. Vol. 14(03), pp: 

2150126, 2022.      10.1142/S1793830921501263. 

https://doi.org/10.1142/S1793830921501263

