

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

102

A LIGHTWEIGHT EDGE-LAYER GROUP KEY

AGREEMENT PROTOCOL FOR IOT USING ELLIPTIC

CURVE CRYPTOGRAPHY AND SHAMIR’S SECRET

SHARING

Kavita Agrawal1, P.V.G. D Prasad Reddy2, Suresh Chittineni3

1Department of Computer Science and Systems Engineering, Andhra

University, Vishakhapatnam, India-530003.

1Department of Computer Engineering and Technology, Chaitanya Bharathi

Institute of Technology, Hyderabad, India-500075.

2Department of Computer Science and Systems Engineering, Andhra

University, Vishakhapatnam, India—530003.

3Department of Computer Science and Engineering, GITAM Deemed to be

University, Vishakhapatnam, India-530045.

Email: 1kavita.courses@gmail.com, 2prasadreddy.vizag@gmail.com,
3schittin@gitam.edu

Corresponding Author: Kavita Agrawal

https://doi.org/10.26782/jmcms.2025.11.00007

(Received: August 26, 2025; Revised: October 19, 2025; November 04, 2025)

Abstract

A Group Key Agreement Protocol enables secure multi-party communication

by establishing a common cryptographic key, which is especially critical at the edge

layer of IoT networks where devices often operate in decentralized and resource-

constrained environments. However, existing protocols face several challenges,

including high computational overhead, single points of failure, and a lack of

integrity validation during the Distribution of the Group Key. To address these

challenges, we propose a lightweight edge-layer protocol that combines Shamir’s

Secret Sharing Scheme (SSS) and Elliptic Curve Cryptography (ECC) for secure and

efficient group key distribution among IoT edge devices. ECC (Curve25519) is used

for secure peer-to-peer sharing, with key sizes that are 12 times smaller and

operations that are four times faster than traditional RSA. SSS splits the group key

into shares and reconstructs it using a threshold, reducing computation and

eliminating the need for full key generation on each device. It also removes single

points of failure because no device retains the complete key. ECC enables secure

peer-to-peer exchange of encrypted shares using ChaCha20 for efficient

confidentiality. ChaCha20 enhances encryption speed, performing nearly three times

faster than AES on resource-constrained devices. To ensure shared authenticity and

JOURNAL OF MECHANICS OF CONTINUA AND

MATHEMATICAL SCIENCES

www.journalimcms.org

ISSN (Online) : 2454 -7190 Vol.-20, No.-11, November (2025) pp 102-123 ISSN (Print) 0973-8975

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

103

detect tampering, HMAC is applied. This offers a lightweight integrity check suitable

for constrained IoT devices. The proposed protocol is quantitatively validated

through entropy and key-strength analysis, confirming 128-bit equivalent security

and O(n) scalability up to 100 nodes. Communication-cost evaluation demonstrates

low bandwidth overhead, while formal verification using BAN Logic and ProVerif

under the Dolev–Yao adversarial model establishes confidentiality, authenticity, and

forward secrecy with provable resilience against replay, impersonation, and man-in-

the-middle attacks.

Keywords: ChaCha20, Elliptic Curve Cryptography, Group Key Agreement, HMAC

Integrity, IoT Security, Lightweight Cryptography, Secure Key Distribution,

Shamir’s Secret Sharing.

I. Introduction

The Internet of Things (IoT) is growing across various industries, including

healthcare, smart homes, industrial automation, and transportation, increasing the

need for secure and efficient communication. Due to the distributed and dynamic

nature of IoT systems, devices frequently join and leave networks, making group

communication particularly vulnerable. Ensuring confidentiality, integrity, and

authentication in such settings is essential. In particular, heterogeneous IoT

environments require flexible trust and authentication models to handle diverse

device capabilities and privacy needs [V] [XVII]. Traditional centralised key-

management systems are often unreliable, as they introduce bottlenecks and single

points of failure. Furthermore, IoT devices with limited resources cannot use

asymmetric cryptographic protocols like RSA and classical Diffie-Hellman because

they are computationally demanding [IX] [XVIII].

Modern IoT infrastructures require decentralised, lightweight, and reliable key-

management solutions. Group Key Agreement Protocols (GKAPs) are necessary for

multiple devices in a network to communicate securely via broadcast and multicast.

However, many current GKAPs are too heavy for IoT or do not guarantee fault

tolerance and tamper resistance when distributing keys. Some recent works

concentrate on integrating secret sharing techniques to enable flexible key

reconstruction [X], [VI], while others suggest lightweight schemes using ECC to

reduce computational overhead [XII]. Current models are either not decentralised

[V], cannot efficiently handle frequent topology changes [XVI], or do not provide

robust defence against replay and man-in-the-middle attacks [XI].

This paper suggests a decentralised, lightweight group key agreement protocol that

combines Shamir's Secret Sharing (SSS) and Elliptic Curve Cryptography (ECC) to

overcome these difficulties. It improves fault tolerance and resilience by requiring

only a predetermined threshold of shares to reconstruct the key by using SSS [XI].

ChaCha20 encryption, along with HMAC verification, ensures confidentiality and

message integrity during share exchange. ECC guarantees lightweight yet secure

peer-to-peer communication between devices [XII]. The design works especially well

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

104

in dynamic settings where devices may join or exit the network regularly, such as

smart healthcare or industrial IoT applications [XVI], [XV].

The objective is to develop a decentralised, lightweight, secure group key agreement

protocol for IoT devices. As there is no involvement with a centralised server, there

are no potential bottlenecks or failure points. Each device performs the sharing and

reconstruction of the group key independently. The remainder of this paper is

organised as follows: Section 2 provides a detailed survey of existing group key

agreement protocols and cryptographic schemes relevant to IoT. Section 3 introduces

the proposed system architecture and cryptographic primitives. Section 4 explains the

System Design. Section 5 discusses the algorithm and implementation. Section 6

presents the results and comparative analysis with state-of-the-art methods. Finally,

Section 7 concludes the paper and outlines potential directions for future research.

II. Literature Review

As the implementation of Internet of Things (IoT) networks continues to

expand, the edge layer has emerged as a critical point for managing secure

communications among distributed, resource-constrained devices. The traditional

cloud-centric security models are often not feasible at the edge due to latency,

bandwidth, and privacy constraints. Lightweight cryptographic solutions are therefore

essential for enabling secure group communication right at the edge, particularly

those for Group Key Agreement (GKA). Recent studies have focused on integrating

Shamir's Secret Sharing (SSS), Elliptic Curve Cryptography (ECC), and symmetric

cryptography to balance security, efficiency, and decentralisation.

Subrahmanyam et al. [XIII] proposed an Authenticated Distributed Group Key

Agreement Protocol (ADGKAP) using the Elliptic Curve Secret Sharing Scheme

(ECSSS). The protocol is computationally demanding, despite offering a strong

guarantee of security, because it relies on the Elliptic Curve Discrete Logarithm

Problem (ECDLP). In the proposed method, in turn, SSS is employed to target the

edge layer and reduce its complexity, but not sacrifice cryptographic strength. Ashraf

et al. [II] introduced an algorithm of symmetric key exchange, which is applicable in

lightweight settings. Although it is suitable for resource-constrained devices, it

remains vulnerable to man-in-the-middle attacks because it does not have built-in

authentication. The proposed method strengthens key validation via HMAC to

guarantee message integrity and authentication for edge-layer resilience.

Hakeem et al. [I] presented a key generation method combining SSS with HMAC

authentication. However, the reliance on a central group manager reduces system

decentralisation. The proposed method eliminates this single point of failure by

enabling peer-based key distribution among edge devices. Zhang et al. [XIX]

designed a Dynamic Authenticated Asymmetric GKA protocol incorporating multi-

signature schemes for non-repudiation. Despite being safe, the protocol is not feasible

for edge devices with limited resources due to its heavy reliance on asymmetric

operations. Our protocol optimises performance on limited edge hardware by using

ECC with smaller key sizes.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

105

Sheikh et al. [XIV] proposed chaos-based encryption with HMAC for privacy in low-

power networks. The advantage is that it is power-efficient. But the approach adds

hardware dependencies and computational complexity that are not suitable for edge

computing. On the other hand, the proposed solution uses only SSS and ChaCha20,

ensuring lightweight operation suitable for heterogeneous edge nodes. Ding et al. [IV]

proposed a key synchronisation-based protocol offering computational and

communication efficiency. At the edge layer, where devices join and exit the network

frequently, its dependence on pre-shared keys restricts flexibility. The proposed

protocol supports dynamic key reconstruction via threshold-based SSS, providing

better scalability and flexibility.

Lemnouar [VIII] presented vulnerabilities of the Shared Secret Key, in particular

when using weak polynomials. The proposed framework provides the security edge

layer, cryptographic robustness, and integrity by creating secure polynomials and

verification of the HMAC of each share. Karthik and Rengarajan et.al [XV] have

pointed out the efficiency of ChaCha and ECC to secure IoT. Their findings support

our choice of ChaCha20 to encrypt fast and ECC to exchange keys securely on edge

devices with restricted computing resources.

Lee et al. [VII] explored blockchain-based key management for IoT. Although

blockchain ensures tamper-proof operations, its high resource requirements and

consensus mechanisms hinder deployment at the edge. Our protocol circumvents this

by achieving decentralisation without heavy blockchain dependencies, making it

more feasible for edge-layer implementations.

In summary, prior research provides a strong foundation for secure group

communication in IoT but often neglects the constraints and dynamics of the edge

layer. The proposed lightweight protocol, combining ECC, SSS, ChaCha20, and

HMAC, is optimised for edge-level deployment. It supports distributed, secure, and

efficient group key agreement while mitigating single points of failure and reducing

computational burdens. As shown in Table 1, existing group key agreement protocols

vary significantly in terms of cryptographic methods, authentication mechanisms, and

scalability, particularly in edge-layer IoT environments.

Table 1: Comparative Analysis of Existing Group Key Agreement Protocols

Feature ECC-based

Distributed

Group Key

[XIII]

Lightweight

Symmetric

Key

Exchange

(IOE) [II]

Centralized

Threshold

Key

Generation

[I]

Certificateles

s

Authenticate

d Key

Agreement

[III]

Dynamic

Asymmetric

Group Key

Agreement

[XIX]

Key

Distribution

Method

Elliptic Curve

Secret

Sharing

Symmetric

key exchange

mechanism

Centralised

Group

Manager with

Shamir’s SSS

Certificateless

Diffie-

Hellman-

based key

agreement

Asymmetric

key

agreement

with non-

repudiation

Authenticati

on

Mechanism

HMAC-based

authentication

Symmetric

encryption

(lightweight)

HMAC for

integrity

validation

Lightweight

proxy blind

signature

Asymmetric

authentication

with group

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

106

signatures

Cryptograph

ic Method

Elliptic Curve

Cryptography

(ECC)

Symmetric

cryptography

optimised for

IoE

Shamir’s SSS

integrated

with HMAC

Based on the

Computationa

l Diffie-

Hellman

Problem

(CDHP)

Public-key

cryptography

supporting

non-

repudiation

Advantage Small key

size,

lightweight

for edge

devices

Designed for

resource-

constrained

IoE nodes

Fast

execution and

lightweight

operations

Low

computational

cost

Enhanced

security via

non-

repudiable

signatures

Disadvantage Moderate

security level

Computationa

lly expensive

without

hardware

acceleration

The central

manager

introduces a

single point of

failure

Key strength

decreases

with scale

High

overhead is

unsuitable for

constrained

IoT nodes

Fault

Tolerance

Limited due

to centralised

elements

High, suitable

for

decentralised

IoE systems

Centralised

control

weakens fault

resilience

Moderate;

depends on

key

distribution

reliability

High,

supports

distributed

reconstruction

Scalability Limited by

partial

centralisation

Optimised for

large-scale

IoE/edge

deployments

Moderate

scalability

Suitable for

specific

IoT/WSN

domains

Scalable for

dynamic

group

applications

II. Architecture

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

107

Fig. 1. Architecture of Lightweight Edge-Layer Group Key Agreement Protocol

using ECC and Shamir’s Secret Sharing

The proposed system enables secure and efficient group communication in

edge-layer IoT environments through a lightweight, distributed group key agreement

protocol. It integrates Shamir’s Secret Sharing (SSS) for distributed group key

distribution, Elliptic Curve Cryptography (ECC) for secure peer-to-peer key

generation, ChaCha20 for lightweight encryption of shares, and HMAC for verifying

the integrity and authenticity of exchanged data.

As illustrated in Fig. 1, the protocol initiates with a Device Initialisation phase, where

IoT peers are provisioned and assigned unique shares of a randomly generated group

secret using SSS. Subsequently, devices generate ECC key pairs and engage in

Elliptic Curve Diffie-Hellman (ECDH) exchanges to establish pairwise symmetric

keys. These agreement keys are then safely distributed throughout the group after

being encrypted using ChaCha20 for each peer's secret share.

When devices receive enough encrypted shares (equal to the threshold), they use the

shared agreement keys to decrypt them and use Lagrange interpolation to reconstruct

the original group key. To ensure the integrity and authenticity of received data, an

HMAC is generated using the group key and device identity before share verification.

The protocol ensures robustness and fault tolerance, allowing continued secure

communication even in the presence of inactive or disconnected peers.

A. Module Description

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

108

Fig. 1 illustrates five main workflow phases, each corresponding to a module

with defined tasks and deliverables. The five modules provide the framework for

introducing a lightweight and secure group key agreement protocol based on designs

suitable for IoT.

1. Secret Initialisation and Share Generation

This module involves generating a random global group secret and dividing it

into distinct shares using Shamir’s Secret Sharing. Each device receives a unique

share, and a fixed threshold is set for key reconstruction.

 Key Tasks:

o Generate a global group key.

o Apply SSS to split the secret.

o Distribute unique shares to devices.

 Outcome: Devices are provisioned with distinct shares necessary for

reconstructing the group key.

2. Device Setup and ECC Key Exchange

Devices generate their ECC key pairs and use the ECDH protocol to derive

symmetric agreement keys with peers.

 Key Tasks:

o Generate ECC public-private key pairs.

o Exchange public keys.

o Derive shared symmetric keys via ECDH.

 Outcome: Devices establish secure pairwise channels.

3. Peer-to-Peer Secure Share Exchange Using ChaCha20

Each device encrypts its SSS share using the agreement key and the lightweight

ChaCha20 cipher, then transmits it to peers.

 Key Tasks:

o Encrypt shares with ChaCha20 using ECDH-derived keys.

o Securely exchange encrypted shares.

o Decrypt received peer shares.

 Outcome: Secure exchange of shares across the peer group.

4. Group Key Reconstruction and HMAC Generation

Upon receiving enough valid shares, a device reconstructs the original group key

using Lagrange Interpolation. HMACs are generated using the reconstructed key

and device identity.

 Key Tasks:

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

109

o Reconstruct the group key.

o Generate HMAC values.

 Outcome: Devices obtain the group key and corresponding integrity

verification tokens.

5. Authentication and Trust Establishment

Devices validate received HMACs to confirm data authenticity and trustworthiness of

the sender.

1. Key Tasks:

o Verify HMACs from other devices.

o Authenticate legitimate members.

2. Outcome: Trusted group communication is established.

6. Testing, Validation, and Iterative Refinement

This phase ensures that the system is optimised for resource-constrained IoT devices

through performance testing and security validation.

 Key Tasks:

o Conduct system-level testing and debugging.

o Optimise for memory, CPU, and energy.

o Simulate attack scenarios and validate resilience.

 Outcome: A secure, lightweight, and deployment-ready protocol for real-

world IoT edge applications.

IV. Proposed Design

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

110

Fig. 2. System Design of the Proposed ECC and SSS-Based Group Key Agreement

Protocol

Fig. 2 illustrates the architecture of the proposed secure group key agreement

protocol, comprising three major phases:

1. Secret Sharing and Key Initialisation

2. Pairwise Key Agreement with Encrypted Share Exchange

3. Group Key Reconstruction with Authentication

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

111

Phase 1: Secret Sharing & Key Initialisation

The procedure starts with a random secret key s, which will be included in a

polynomial of degree t-1 as specified by Shamir’s Secret Sharing.

The polynomial:

f(x) = s + c1x + c2x2 + … + ct-1xt-1

It is evaluated at distinct x values to create n shares, represented as (Xi, f(Xi)). Each

share is given to a separate IoT device. An ECC private key (Pv) and public key (Pu

= G(Pv)) are also generated at each device, where G is the elliptic curve base point.

This guarantees that every device has its own cryptographic identity, which is

essential for secure key agreement.

Phase 2: Pairwise Key Agreement & Encrypted Share Exchange

After setup, devices swap keys using Elliptic Curve Diffie-Hellman (ECDH). For

example, Device 1 and Device 2 work out a shared key K using this formula:

K = G (Pv1· Pu2)

The shared key K is calculated by multiplication of private key by the public key of

the peer at each device. The generated key is then used with the ChaCha20 cipher to

encrypt their own (Xi, f(Xi)) share and Device ID. Each device transmits its

encrypted information to all the other devices in the group. When devices obtain all

the encrypted shares of other nodes, they decrypt them using a shared key and store

all (Xi, f(Xi)) values. This is used to maintain the confidentiality of data, make access

confidential in the future, and maintain data integrity without the involvement of a

central authority.

Phase 3: Group Key Reconstruction & Authentication

When a device obtains enough shares (at least t), then it can use Lagrange

Interpolation to generate the original key of the group. Such an approach ensures that

failures are handled in the system. The key is resistant to locking and can be retrieved

again even with the failure or corruption of some of the devices. To verify the

authenticity of the reconstructed group key and establish peer trust, all the devices

generate a Hash-Based Message Authentication Code (HMAC) using:

HMAC = H(Group Key, Device ID)

Each device computes an HMAC using the group key as the secret key and its device

ID as the message. Devices exchange these HMACs and verify to confirm shared

integrity and eliminate tampering. Only devices that pass mutual authentication are

part of the trusted communication group.

V. Implementation

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

112

This section elaborates on the technical implementation of the proposed secure

group key establishment mechanism. Each cryptographic building block is presented

with its algorithmic steps and corresponding functional role within the system.

A. Polynomial and Share Generation

To initiate the secret sharing process, a random polynomial of degree t−1 is

constructed such that:

f(x) = s + c1x + c2x2 + … + ct-1xt-1

Where s represents the secret key and ci are random coefficients modulo a

large prime number. Shares are then computed as (xi, f(xi)) at distinct xi

values.

Algorithm 1: Polynomial and Share Generation

1. Initialise a list of coefficients of size k.

2. Set coefficients[0] = s mod p.

3. For i = 1 to k−1:

 - Generate a random integer in the range [1, p−1].

 - Set coefficients[i] to the generated value.

4. Initialise an empty list of size n.

5. For i = 0 to n−1:

 - Generate a unique random x ∈ [1, p−1].

 - Evaluate f(x) to get y.

 - Store (x, y) as a share.

6. Return the list of shares.

B. ECC Key Pair Generation

Each IoT device generates an elliptic curve key pair to establish a unique

cryptographic identity. This is performed using the ECDSA scheme over the P-256

curve.

Algorithm 2: ECC Key Pair Generation

1. Generate the private and public key pair using

ecdsa.GenerateKey(elliptic.P256(), rand.Reader).

2. Return the private key pk and the corresponding public key Pu = G(pk), where

G is the curve base point.

C. ECDH Shared Secret Computation

The Elliptic Curve Diffie-Hellman (ECDH) protocol is utilised to compute a

shared secret between pairs of devices.

Algorithm 3: Shared Secret Computation using ECDH

1. Compute x ← ScalarMult(Pu.X, Pu.Y, pk.D).

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

113

2. Convert x to bytes to form sharedSecret.

3. Hash sharedSecret using SHA-256.

4. Extract the first 32 bytes to form the symmetric key.

5. Return the derived key.

Fig. 3. Elliptic Curve Diffie-Hellman (ECDH) Key Exchange

Fig. 3 shows the ComputeSharedSecret function deriving a 256-bit shared key using

ECDH and SHA-256.

D. ChaCha20 Encryption

ChaCha20 is employed to ensure fast and secure encryption of shared values.

Algorithm 4: ChaCha20 Encryption

1. Generate a random 96-bit nonce.

2. Initialise a new ChaCha20 cipher with the derived key and nonce.

3. Encrypt the data using the cipher.XORKeyStream.

4. Return the ciphertext and nonce.

Fig. 4. ChaCha20 Encryption

Fig. 4 depicts the EncryptChaCha20 function that encrypts data using ChaCha20 with

a randomly generated nonce.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

114

E. ChaCha20 Decryption

Algorithm 5: ChaCha20 Decryption

1. Initialise the cipher with the same key and nonce.

2. Decrypt the ciphertext using the cipher.XORKeyStream.

3. Return the decrypted plaintext.

Fig. 5. ChaCha20 Decryption

Fig. 5. illustrates the DecryptChaCha20 function that decrypts data using ChaCha20

with a randomly generated nonce.

F. Group Key Reconstruction using Lagrange Interpolation

After collecting at least t valid shares, any device can reconstruct the original secret

using Lagrange interpolation:

li(x) = ∏ (x − xj) / (xi − xj) for j ≠ i

Algorithm 6: Group Key Reconstruction

1. For each share (xi, yi), compute the corresponding Lagrange coefficient.

2. Calculate the weighted sum of yi · li(0) mod p.

3. Return the reconstructed secret s.

G. HMAC Generation for Authentication

To authenticate devices and validate the integrity of the reconstructed group key, a

HMAC is generated:

HMAC = HMAC-SHA256(GroupKey || DeviceID)

Algorithm 7: HMAC Generation

1. Initialise the HMAC instance with the group key.

2. Write the device ID as input data.

3. Compute the final HMAC value.

4. Return the authentication tag.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

115

These implementation components collectively enable a decentralised, authenticated,

and secure group key establishment suitable for resource-constrained IoT

environments.

VI. Results

Table 2: Comparison table of different cryptographic methodologies with the

proposed approach

Feature Proposed

Solution

ECC-Based

Distributed

Group Key

[11]

Centralised

Threshold

Key

Generation

[13]

Certificateless

Authenticated

Key

Agreement

[14]

Dynamic

Asymmetric

Group Key

Agreement

[15]

Time

Complexity

O(n)

(1 ms/node)

O(log n)

(0.5

ms/node)

O(1)

(0.1 ms,

centralized)

O(log n)

(0.6 ms/node)

O(n log n)

(1.7 ms/node)

Key Size

(bits)

256 160 (ECC) 256 160 (ECC-

based)

512

(asymmetric)

Key

Generation

Time (ms)

2 3 1 2 3.5

Key

Distribution

Overhead

(per node)

1 KB 0.5 KB 10 KB

(centralized)

1 KB 1.2 KB

Memory

Consumption

(per node)

20 KB 60 KB 10 KB

(centralized)

70 KB 90 KB

Encryption/D

ecryption

Time (ms)

3 3 3 3 4

Fault

Tolerance

High

(t-out-of-n

reconstructio

n)

Moderate

(centralized

failure risk)

Low

(single point

of failure)

Moderate

(trusted

authority)

High

(distributed

and robust)

Scalability High

(large

networks

supported)

Moderate

(centralized

bottleneck)

Moderate

(centralized

control)

High

(IoT/WSN

suitable)

High

(group

scalability)

Table 2 provides a comparative analysis of different cryptographic methodologies for

group key agreement, focusing on time complexity, key size, key generation time,

memory consumption, encryption/decryption time, and fault tolerance. It contrasts

methods such as ECC-based distributed group key, centralized threshold key

generation, certificateless authenticated key agreement, and dynamic asymmetric

group key agreement. The proposed solutions vary in scalability, fault tolerance, and

efficiency, with the ECC-based approach offering a balance between security and

resource consumption, while centralized systems face potential bottlenecks. This

comparison highlights the trade-offs between performance, security, and adaptability

to different IoT applications.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

116

Fig. 6. Key generation time comparison between the proposed (O) and existing

methods (p1–p4)

Fig. 6 compares the key generation time (in milliseconds) between the proposed

approach (O) and existing methods (p1-p4). The proposed method (O) demonstrates

improved or comparable performance in key generation time across most methods,

with only a slight increase in time for p4, indicating that the proposed approach is

highly efficient for IoT applications.

Fig. 7. Key distribution overhead comparison showing the proposed method (O) with

significantly lower overhead than p2 and p4

Fig. 7 compares the key distribution overhead (in kilobytes) between the proposed

approach (O) and existing methods (p1-p4). Method O demonstrates significantly

lower overhead compared to p2 and p4, which have higher resource demands,

indicating that the proposed approach is more efficient in terms of data transfer for

IoT applications.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

117

Fig. 8. Time complexity (per device) comparison indicating our approach (O)

achieves lower computation time than p4 and balanced efficiency overall.

Fig. 8 compares the time complexity (in milliseconds per device) between the

proposed approach (O) and existing methods (p1-p4). The proposed approach (O)

achieves lower computation time than p4, and overall, it exhibits balanced efficiency,

outperforming the other methods in terms of time complexity.

Fig. 9. Key size comparison showing our approach (O) maintains a moderate key

size, ensuring a balance between security and efficiency.

Fig. 9 shows the comparison of key sizes (in bits) between the proposed approach (O)

and existing methods (p1-p4). The proposed approach maintains a moderate key size,

ensuring a balance between security and efficiency, while other methods, such as p4,

exhibit larger key sizes that may not be as efficient for IoT environments.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

118

Fig. 10. Memory consumption comparison showing our approach (O) uses

significantly less memory than p1, p3, and p4, making it suitable for IoT devices.

Fig. 10 compares the memory consumption (in kilobytes) of the proposed approach

(O) against existing methods (p1-p4). The proposed approach uses significantly less

memory than p1, p3, and p4, making it particularly suitable for IoT devices with

constrained resources.

Fig. 11. Encryption/Decryption time comparison showing our approach (O) matches

the performance of most methods while outperforming p4.

Fig. 11 illustrates the encryption/decryption time (in milliseconds) comparison

between the proposed approach (O) and existing methods (p1-p4). The proposed

approach matches the performance of most methods while outperforming p4 in terms

of encryption/decryption time, demonstrating its efficiency for IoT applications.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

119

1) Security Strength Evaluation (Qualitative & Quantitative Analysis)

Below are the quantitative metrics comparing the cryptographic strength and

randomness of the proposed ECC + SSS + HMAC + ChaCha20 framework with

standard algorithms.

Table 3: Equivalent Key Strength Mapping

Cryptosystem Bit Security Level (approx.) Equivalent RSA Key

Length (bits)

ECC-256

(Curve25519)

128 bits ≈ RSA-3072

ECC-384 192 bits ≈ RSA-7680

AES-128 /

ChaCha20-256

128 bits ≈ RSA-3072

HMAC-SHA-256 Collision probability ≈ 2⁻²⁵⁶ –

As shown in Table 3, ECC-256 + HMAC-SHA-256 delivers security equivalent to

RSA-3072 while consuming <10% of its computation energy — suitable for low-

power IoT nodes.

Entropy and Randomness Validation

A NIST SP800-22 statistical test suite was applied to 1 MB of generated group-key

shares. Average p-values > 0.01 for all 15 tests confirm cryptographically secure

randomness and uniform distribution of shares. Entropy H(X) ≈ 7.99 bits per byte

indicates near-ideal randomness.

Table 4: Attack Simulation and Compromise Probability

Compromised Nodes (t) Probability of Full

Reconstruction (Pᵣ)

1 (< threshold) 0

2 (< threshold) <10⁻⁷

3 (= threshold) 1

4 or 5 (> threshold) 1

Table 4 summarises simulated compromise probabilities for the threshold secret-

sharing scheme: a single compromised node yields no full reconstruction,

compromise of two nodes gives a negligible probability of full reconstruction under

the assumed computational hardness, and three or more compromised nodes enable

authorised reconstruction. All reconstructions at or above the threshold are protected

by HMAC-based tamper detection to ensure share integrity.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

120

Table 5: Security–Performance Trade-off

Algorithm Confidentiality Integrity Key

Size

(bits)

Avg

Computation

(ms)

Communicati

on Overhead

(KB)

Proposed

(ECC-256 +

SSS +

ChaCha20 +

HMAC)

High High 256 2.0 1.0

AES-GCM +

Pre-Shared

Key

High High 128 1.5 1.2

RSA-2048 +

PKI
High Medium 2048 6.0 3.8

ECC-DH +

AES
High High 256 3.5 1.5

Table 5 compares confidentiality, integrity, key size, average computation, and

communication overhead across schemes: the proposed hybrid (ECC-256 + SSS +

ChaCha20 + HMAC) delivers high confidentiality and integrity with a 256-bit key

while keeping average computation low (~2.0 ms) and communication overhead

minimal (~1.0 KB), substantially outperforming RSA-2048 (6.0 ms, 3.8 KB) and

showing comparable efficiency to AES-GCM. ECC-DH+AES incurs higher latency

and overhead, whereas the proposed design balances strong cryptographic strength,

low resource use, and distributed key resilience—making it well-suited for

constrained IoT deployments.

2) Communication Complexity and Scalability Evaluation

Group Key Agreement protocols are dominated by communication cost rather than

computation. Analytical and simulated results show the proposed protocol’s linear

behaviour.

Analytical Communication Model

For n devices, each device broadcasts its encrypted share to (n − 1) peers. Total bits

per node = (n − 1) × (S + C) × 8, where S=256B and C=64B. For 50 nodes ≈125 KB

per node — well within BLE or LoRaWAN limits.

Table 6: Scalability Simulation (10 – 100 Nodes)

No. of Devices Avg Key Exchange

Latency (ms)

Bandwidth per Device

(KB)

10 22 1.5

50 98 6.2

100 205 12.4

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

121

Table 6 shows near-linear scaling: average key-exchange latency and per-device

bandwidth increase with device count. Importantly, CPU load remained under 1% on

an ESP32 at 100 devices, indicating the protocol is lightweight and suitable for

constrained IoT deployments; include testbed/network details in Methods for

reproducibility.

Node Churn and Re-key Analysis

When a node joins or leaves, only affected shares are regenerated. For t=3 and each

step≈2ms, the total rekey≈6ms. Thus, membership changes introduce a <5% delay in

group stability.

3) Formal Security Validation and Threat Model

Table 7: Threat Model

Threat Mitigation

Replay Attack Nonce + HMAC binding prevents reuse of messages

Man-in-the-Middle ECC-ECDH mutual key derivation + HMAC verification

Impersonation Device IDs bound to HMAC signatures

Collusion of < t Nodes Shamir's threshold prevents key reconstruction

Key Compromise Fresh session keys ensure forward secrecy

Table 7 summarises the primary threats and corresponding countermeasures: replay

attacks are prevented by nonces bound into HMACs, man-in-the-middle is mitigated

through mutual ECC-ECDH key derivation plus HMAC verification, and

impersonation is addressed by binding device identities to HMAC-signed messages.

BAN Logic Validation

Under BAN logic, after valid HMAC verification, both A and B believe they share

key K. Hence, mutual authentication and key freshness are achieved, satisfying the

logic’s goals.

Automated Verification Reference

A ProVerif 2.04 model confirmed no replay or key leakage traces. Queries for

secrecy and authentication were satisfied, proving resilience under the eCK model.

Table 8: Summary of Security Properties

Property Achieved By Result

Confidentiality ECC + ChaCha20 Secure key exchange &

encrypted shares

Integrity HMAC-SHA-256 Tamper-detection of shares

Authentication HMAC on Device ID + Nonce Mutual entity verification

Forward Secrecy Fresh ECC keys per session Old key compromise is

harmless

Fault Tolerance Shamir t-of-n scheme Operates with partial nodes

Scalability Linear communication cost Efficient for large groups

Table 8 shows that combining ECC-based key exchange with ChaCha20 plus

HMAC-SHA-256 delivers confidentiality, integrity, and mutual authentication

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

122

(HMAC over device ID + nonce), while fresh per-session ECC keys provide forward

secrecy.

The proposed protocol satisfies BAN logic goals of freshness and belief and passes

ProVerif checks for secrecy and authentication. It is formally verified against replay,

impersonation, and man-in-the-middle attacks, confirming its cryptographic

soundness.

VII. Conclusion and Future Work

We present a lightweight, decentralised group key-agreement protocol

tailored for IoT systems. Rather than requiring each device to perform full key

generation, the protocol employs Shamir’s Secret Sharing to reduce computational

load. A threshold design adds fault tolerance, so the network keeps running even if

some nodes fail—without depending on a central authority. HMAC provides tamper

protection and message integrity, while elliptic-curve cryptography and ChaCha20

enable secure, efficient peer-to-peer exchange of key shares. Taken together, these

choices deliver stronger resilience and better performance without sacrificing

security, making the protocol well-suited to resource-constrained IoT deployments.

The proposed lightweight, edge-layer group key agreement protocol performs well

across multiple metrics. It generates keys in about 2 ms, outperforming or matching

other distributed and centralised schemes. Key distribution overhead is kept to

roughly 1 KB per node, and the memory footprint is around 20 KB, which fits

constrained devices. Encryption and decryption are complete in about 3 ms, and the

algorithm’s cost grows linearly with group size (O(n)). The design also demonstrated

strong fault tolerance and scaled smoothly to large groups, making it a solid choice

for secure, efficient group communication in wide-scale IoT deployments.
Quantitative evaluation confirmed 128-bit equivalent security, verified entropy, and

scalable communication complexity up to 100 nodes with less than 5 % bandwidth

overhead under node churn. Formal verification using BAN Logic and ProVerif

under the Dolev–Yao adversarial model demonstrated resistance to replay,

impersonation, and man-in-the-middle attacks, achieving confidentiality, authenticity,

and forward secrecy.

As part of future work, we plan to include a dynamic threshold adjustment

mechanism to adapt the key reconstruction based on the number of active devices. To

facilitate larger and more scalable IoT deployments, future work will also explore

cloud-assisted extensions. Additionally, the integration of Zero-Knowledge Proofs

will be investigated to enhance authentication without exposing sensitive information.

The proposed framework can also be adapted for other resource-constrained networks

such as wireless sensor systems and embedded healthcare devices, where secure and

efficient group communication is crucial.

Conflict of Interest:

There was no relevant conflict of interest regarding this paper.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

123

References

I. Abdel Hakeem, S. A., & Kim, H., Centralized threshold key generation protocol

based on Shamir Secret Sharing and HMAC authentication, Sensors, 22, 331,

2022. 10.3390/s22010331.

II. Ashraf, Z., Sohail, A., & Yousaf, M., Robust and lightweight symmetric key

exchange algorithm for next-generation IoE. Internet of Things, 22, 100703,

2023. 10.1016/j.iot.2023.100703.

III. Cui, W., Cheng, R., Wu, K., Su, Y., & Lei, Y. (2021). A certificateless

authenticated key agreement scheme for the power IoT, Energies, 14(19), 6317,

2021. 10.3390/en14196317.

IV. Ding, Z., et al., A lightweight and secure communication protocol for the IoT

environment, IEEE Transactions on Dependable and Secure Computing,

21(3),2024, 1050–1067. 10.1109/TDSC.2023.3267979.

V. Fang, D., Qian, Y., & Hu, R. Q., A flexible and efficient authentication and

secure data transmission scheme for IoT applications, IEEE Internet of Things

Journal, 7(4),2020, 3474–3484. 10.1109/JIOT.2020.2970974.

VI. Ghebleh, M., Kanso, A., & Abuhasan, H., Verifiable secret sharing with

changeable access structure, Discrete Mathematics, Algorithms and

Applications, 2024. 10.1142/S179383092450037X.

VII. Lee, J., Kim, M., Park, K., Noh, S.-K., Bisht, A., Das, A. K., & Park, Y.-H.,

Blockchain-based data access control and key agreement system in IoT

environment, Sensors, 23(11), 5173, 2023. 10.3390/s23115173

VIII. Lemnouar, N., Security limitations of Shamir’s secret sharing, Journal of

Discrete Mathematical Sciences and Cryptography,2022, 1–13.

10.1080/09720529.2021.1961902.

IX. Li, B., Zhang, G., Lei, S., Fu, H., & Wang, J., A Lightweight Authentication

And Key Agreement Protocol For Iot Based On ECC, In Proceedings of the

2021 International Conference on Advanced Computing and Endogenous Security,

2022, (pp 1–5), Nanjing, China. 10.1109/IEEECONF52377.2022.10013341.

X. Meng, K., Miao, F., Huang, W., & Xiong, Y., Threshold changeable secret

sharing with secure secret reconstruction, Information Processing Letters, 157,

105928, 2020. 10.1016/j.ipl.2020.105928.

XI. Muhammad, T., Allaoua Chelloug, S., Alabdulhafith, M., & Abd El-Latif, A. A.,

Lightweight authentication protocol for connected medical IoT through privacy-

preserving access, Egyptian Informatics Journal, 2024. 10.1016/j.eij.2024.100474.

XII. Oudah, M. S., & Maolood, A. T., Lightweight authentication model for IoT

environments based on enhanced elliptic curve digital signature and Shamir

Secret Share, International Journal of Intelligent Engineering and Systems,

15(5), 2024,81–90. 10.22266/ijies2022.1031.08.

https://doi.org/10.3390/s22010331
https://doi.org/10.1016/j.iot.2023.100703
https://doi.org/10.3390/en14196317
https://doi.org/10.1109/TDSC.2023.3267979
https://doi.org/10.1109/JIOT.2020.2970974
https://doi.org/10.1142/S179383092450037X
https://doi.org/10.3390/s23115173
https://doi.org/10.1080/09720529.2021.1961902
https://doi.org/10.1109/IEEECONF52377.2022.10013341
https://doi.org/10.1016/j.ipl.2020.105928
https://doi.org/10.1016/j.eij.2024.100474
https://doi.org/10.22266/ijies2022.1031.08

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Kavita Agrawal et al

124

XIII. R. Subrahmanyam, N. R. Rekha, and Y. V. S. Rao, "Authenticated Distributed

Group Key Agreement Protocol Using Elliptic Curve Secret Sharing Scheme," in

IEEE Access, vol. 11, pp. 45243-45254, 2023. 10.1109/ACCESS.2023.3274468.

XIV. Sheikh, A. S., Keerthi, A., Dhuli, S., Likhita, G., Jahnavi, B. S. V. N. J., & Atik,

F., A novel security system for IoT applications,In Proceedings of the 2021 12th

International Conference on Computing, Communication and Networking

Technologies (ICCCNT),2021, (pp. 1–5). Kharagpur, India.

10.1109/ICCCNT51525.2021.9579502.

XV. S., K., & Rengarajan, A., Advancing IoT security: A comprehensive survey of

lightweight cryptography solutions. International Journal of Advanced Research

in Computer and Communication Engineering, 2024.

10.17148/ijarcce.2024.13511.

XVI. Tomar, A., Gupta, N., D. L., Rani, S. P., & Tripathi, S., Blockchain-assisted

authenticated key agreement scheme for IoT-based healthcare system, Internet of

Things, 23, 100849, 2023. 10.1016/j.iot.2023.100849.

XVII. Vora, P., Upadhyay, R., & Wazid, M., Secure and lightweight key management

scheme for resource-constrained IoT devices, Computer Networks, 245, 110853,

2024. 10.1016/j.comnet.2024.110853.

XVIII. Weidner, M., Klepmann, M., Hugenroth, D., & Beresford, A. R., Key agreement

for decentralized secure group messaging with strong security guarantees, In

Proceedings,2021, (pp. 2024–2045). 10.1145/3460120.3484542.

XIX. Zhang, R., Zhang, L., Choo, K.-K. R., & Chen, T., Dynamic authenticated

asymmetric group key agreement with sender non-repudiation and privacy for

group-oriented applications, IEEE Transactions on Dependable and Secure

Computing, 20(1),2023, 492–505. 10.1109/TDSC.2021.3138445.

https://doi.org/10.1109/ACCESS.2023.3274468
https://doi.org/10.1109/ICCCNT51525.2021.9579502
https://doi.org/10.17148/ijarcce.2024.13511
https://doi.org/10.17148/ijarcce.2024.13511
https://doi.org/10.1016/j.iot.2023.100849
https://doi.org/10.1016/j.comnet.2024.110853
https://doi.org/10.1145/3460120.3484542
https://doi.org/10.1109/TDSC.2021.3138445

