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Abstract

A Group Key Agreement Protocol enables secure multi-party communication
by establishing a common cryptographic key, which is especially critical at the edge
layer of 10T networks where devices often operate in decentralized and resource-
constrained environments. However, existing protocols face several challenges,
including high computational overhead, single points of failure, and a lack of
integrity validation during the Distribution of the Group Key. To address these
challenges, we propose a lightweight edge-layer protocol that combines Shamir’s
Secret Sharing Scheme (SSS) and Elliptic Curve Cryptography (ECC) for secure and
efficient group key distribution among 10T edge devices. ECC (Curve25519) is used
for secure peer-to-peer sharing, with key sizes that are 12 times smaller and
operations that are four times faster than traditional RSA. SSS splits the group key
into shares and reconstructs it using a threshold, reducing computation and
eliminating the need for full key generation on each device. It also removes single
points of failure because no device retains the complete key. ECC enables secure
peer-to-peer exchange of encrypted shares using ChaCha20 for efficient
confidentiality. ChaCha20 enhances encryption speed, performing nearly three times
faster than AES on resource-constrained devices. To ensure shared authenticity and

Kavita Agrawal et al

102



J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

detect tampering, HMAC is applied. This offers a lightweight integrity check suitable
for constrained loT devices. The proposed protocol is quantitatively validated
through entropy and key-strength analysis, confirming 128-bit equivalent security
and O(n) scalability up to 100 nodes. Communication-cost evaluation demonstrates
low bandwidth overhead, while formal verification using BAN Logic and ProVerif
under the Dolev—Yao adversarial model establishes confidentiality, authenticity, and
forward secrecy with provable resilience against replay, impersonation, and man-in-
the-middle attacks.

Keywords: ChaCha20, Elliptic Curve Cryptography, Group Key Agreement, HMAC
Integrity, loT Security, Lightweight Cryptography, Secure Key Distribution,
Shamir’s Secret Sharing.

I. Introduction

The Internet of Things (loT) is growing across various industries, including
healthcare, smart homes, industrial automation, and transportation, increasing the
need for secure and efficient communication. Due to the distributed and dynamic
nature of loT systems, devices frequently join and leave networks, making group
communication particularly vulnerable. Ensuring confidentiality, integrity, and
authentication in such settings is essential. In particular, heterogeneous IloT
environments require flexible trust and authentication models to handle diverse
device capabilities and privacy needs [V] [XVII]. Traditional centralised key-
management systems are often unreliable, as they introduce bottlenecks and single
points of failure. Furthermore, 10T devices with limited resources cannot use
asymmetric cryptographic protocols like RSA and classical Diffie-Hellman because
they are computationally demanding [IX] [XVIII].

Modern loT infrastructures require decentralised, lightweight, and reliable key-
management solutions. Group Key Agreement Protocols (GKAPS) are necessary for
multiple devices in a network to communicate securely via broadcast and multicast.
However, many current GKAPs are too heavy for 10T or do not guarantee fault
tolerance and tamper resistance when distributing keys. Some recent works
concentrate on integrating secret sharing techniques to enable flexible key
reconstruction [X], [VI], while others suggest lightweight schemes using ECC to
reduce computational overhead [XII]. Current models are either not decentralised
[V], cannot efficiently handle frequent topology changes [XVI], or do not provide
robust defence against replay and man-in-the-middle attacks [X1].

This paper suggests a decentralised, lightweight group key agreement protocol that
combines Shamir's Secret Sharing (SSS) and Elliptic Curve Cryptography (ECC) to
overcome these difficulties. It improves fault tolerance and resilience by requiring
only a predetermined threshold of shares to reconstruct the key by using SSS [XI].
ChaCha20 encryption, along with HMAC verification, ensures confidentiality and
message integrity during share exchange. ECC guarantees lightweight yet secure
peer-to-peer communication between devices [XI1]. The design works especially well

Kavita Agrawal et al

103



J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

in dynamic settings where devices may join or exit the network regularly, such as
smart healthcare or industrial 10T applications [XVI], [XV].

The objective is to develop a decentralised, lightweight, secure group key agreement
protocol for 10T devices. As there is no involvement with a centralised server, there
are no potential bottlenecks or failure points. Each device performs the sharing and
reconstruction of the group key independently. The remainder of this paper is
organised as follows: Section 2 provides a detailed survey of existing group key
agreement protocols and cryptographic schemes relevant to 10T. Section 3 introduces
the proposed system architecture and cryptographic primitives. Section 4 explains the
System Design. Section 5 discusses the algorithm and implementation. Section 6
presents the results and comparative analysis with state-of-the-art methods. Finally,
Section 7 concludes the paper and outlines potential directions for future research.

Il. Literature Review

As the implementation of Internet of Things (IoT) networks continues to
expand, the edge layer has emerged as a critical point for managing secure
communications among distributed, resource-constrained devices. The traditional
cloud-centric security models are often not feasible at the edge due to latency,
bandwidth, and privacy constraints. Lightweight cryptographic solutions are therefore
essential for enabling secure group communication right at the edge, particularly
those for Group Key Agreement (GKA). Recent studies have focused on integrating
Shamir's Secret Sharing (SSS), Elliptic Curve Cryptography (ECC), and symmetric
cryptography to balance security, efficiency, and decentralisation.

Subrahmanyam et al. [XIII] proposed an Authenticated Distributed Group Key
Agreement Protocol (ADGKAP) using the Elliptic Curve Secret Sharing Scheme
(ECSSS). The protocol is computationally demanding, despite offering a strong
guarantee of security, because it relies on the Elliptic Curve Discrete Logarithm
Problem (ECDLP). In the proposed method, in turn, SSS is employed to target the
edge layer and reduce its complexity, but not sacrifice cryptographic strength. Ashraf
et al. [11] introduced an algorithm of symmetric key exchange, which is applicable in
lightweight settings. Although it is suitable for resource-constrained devices, it
remains vulnerable to man-in-the-middle attacks because it does not have built-in
authentication. The proposed method strengthens key validation via HMAC to
guarantee message integrity and authentication for edge-layer resilience.

Hakeem et al. [I] presented a key generation method combining SSS with HMAC
authentication. However, the reliance on a central group manager reduces system
decentralisation. The proposed method eliminates this single point of failure by
enabling peer-based key distribution among edge devices. Zhang et al. [XIX]
designed a Dynamic Authenticated Asymmetric GKA protocol incorporating multi-
signature schemes for non-repudiation. Despite being safe, the protocol is not feasible
for edge devices with limited resources due to its heavy reliance on asymmetric
operations. Our protocol optimises performance on limited edge hardware by using
ECC with smaller key sizes.
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Sheikh et al. [XIV] proposed chaos-based encryption with HMAC for privacy in low-
power networks. The advantage is that it is power-efficient. But the approach adds
hardware dependencies and computational complexity that are not suitable for edge
computing. On the other hand, the proposed solution uses only SSS and ChaCha20,
ensuring lightweight operation suitable for heterogeneous edge nodes. Ding et al. [IV]
proposed a key synchronisation-based protocol offering computational and
communication efficiency. At the edge layer, where devices join and exit the network
frequently, its dependence on pre-shared keys restricts flexibility. The proposed
protocol supports dynamic key reconstruction via threshold-based SSS, providing
better scalability and flexibility.

Lemnouar [VII] presented vulnerabilities of the Shared Secret Key, in particular
when using weak polynomials. The proposed framework provides the security edge
layer, cryptographic robustness, and integrity by creating secure polynomials and
verification of the HMAC of each share. Karthik and Rengarajan et.al [XV] have
pointed out the efficiency of ChaCha and ECC to secure loT. Their findings support
our choice of ChaCha20 to encrypt fast and ECC to exchange keys securely on edge
devices with restricted computing resources.

Lee et al. [VII] explored blockchain-based key management for loT. Although
blockchain ensures tamper-proof operations, its high resource requirements and
consensus mechanisms hinder deployment at the edge. Our protocol circumvents this
by achieving decentralisation without heavy blockchain dependencies, making it
more feasible for edge-layer implementations.

In summary, prior research provides a strong foundation for secure group
communication in 1oT but often neglects the constraints and dynamics of the edge
layer. The proposed lightweight protocol, combining ECC, SSS, ChaCha20, and
HMAC, is optimised for edge-level deployment. It supports distributed, secure, and
efficient group key agreement while mitigating single points of failure and reducing
computational burdens. As shown in Table 1, existing group key agreement protocols
vary significantly in terms of cryptographic methods, authentication mechanisms, and
scalability, particularly in edge-layer 10T environments.

Table 1: Comparative Analysis of Existing Group Key Agreement Protocols

Feature ECC-based Lightweight  Centralized Certificateles Dynamic
Distributed Symmetric Threshold S Asymmetric
Group Key Key Key Authenticate  Group Key

[X1] Exchange Generation d Key Agreement
(ICE) [11] [n Agreement [X1X]

NG Elliptic Curve =~ Symmetric Centralised Certificateless ~ Asymmetric

Distribution L key exchange Group Diffie- key
Method Sharing mechanism Manager with  Hellman- agreement
Shamir’s SSS  based key with non-
agreement repudiation
AGEE B HMAC-based  Symmetric HMAC  for Lightweight Asymmetric
on authentication  encryption integrity proxy blind authentication
Mechanism (lightweight)  validation signature with  group
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Fig. 1. Architecture of Lightweight Edge-Layer Group Key Agreement Protocol
using ECC and Shamir’s Secret Sharing

The proposed system enables secure and efficient group communication in
edge-layer lIoT environments through a lightweight, distributed group key agreement
protocol. It integrates Shamir’s Secret Sharing (SSS) for distributed group key
distribution, Elliptic Curve Cryptography (ECC) for secure peer-to-peer key
generation, ChaCha20 for lightweight encryption of shares, and HMAC for verifying
the integrity and authenticity of exchanged data.

As illustrated in Fig. 1, the protocol initiates with a Device Initialisation phase, where
0T peers are provisioned and assigned unique shares of a randomly generated group
secret using SSS. Subsequently, devices generate ECC key pairs and engage in
Elliptic Curve Diffie-Hellman (ECDH) exchanges to establish pairwise symmetric
keys. These agreement keys are then safely distributed throughout the group after
being encrypted using ChaCha20 for each peer's secret share.

When devices receive enough encrypted shares (equal to the threshold), they use the
shared agreement keys to decrypt them and use Lagrange interpolation to reconstruct
the original group key. To ensure the integrity and authenticity of received data, an
HMAC is generated using the group key and device identity before share verification.
The protocol ensures robustness and fault tolerance, allowing continued secure
communication even in the presence of inactive or disconnected peers.

A. Module Description
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Fig. 1 illustrates five main workflow phases, each corresponding to a module
with defined tasks and deliverables. The five modules provide the framework for
introducing a lightweight and secure group key agreement protocol based on designs
suitable for loT.

1. Secret Initialisation and Share Generation

This module involves generating a random global group secret and dividing it
into distinct shares using Shamir’s Secret Sharing. Each device receives a unique
share, and a fixed threshold is set for key reconstruction.

o Key Tasks:

o Generate a global group key.
o Apply SSS to split the secret.
o Distribute unique shares to devices.

e Outcome: Devices are provisioned with distinct shares necessary for
reconstructing the group key.

2. Device Setup and ECC Key Exchange

Devices generate their ECC key pairs and use the ECDH protocol to derive
symmetric agreement keys with peers.

o Key Tasks:
o Generate ECC public-private key pairs.
o Exchange public keys.
o Derive shared symmetric keys via ECDH.
e Outcome: Devices establish secure pairwise channels.
3. Peer-to-Peer Secure Share Exchange Using ChaCha20

Each device encrypts its SSS share using the agreement key and the lightweight
ChaCha20 cipher, then transmits it to peers.

o Key Tasks:

o Encrypt shares with ChaCha20 using ECDH-derived keys.
o Securely exchange encrypted shares.
o Decrypt received peer shares.

e Outcome: Secure exchange of shares across the peer group.
4.  Group Key Reconstruction and HMAC Generation

Upon receiving enough valid shares, a device reconstructs the original group key
using Lagrange Interpolation. HMACs are generated using the reconstructed key
and device identity.

e Key Tasks:
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o Reconstruct the group key.
o Generate HMAC values.

e Outcome: Devices obtain the group key and corresponding integrity
verification tokens.

5. Authentication and Trust Establishment

Devices validate received HMACs to confirm data authenticity and trustworthiness of
the sender.

1. Key Tasks:

o Verify HMACs from other devices.
o Authenticate legitimate members.

2. Outcome: Trusted group communication is established.
6. Testing, Validation, and Iterative Refinement

This phase ensures that the system is optimised for resource-constrained 10T devices
through performance testing and security validation.

o Key Tasks:

o Conduct system-level testing and debugging.
o Optimise for memory, CPU, and energy.
o Simulate attack scenarios and validate resilience.

e QOutcome: A secure, lightweight, and deployment-ready protocol for real-
world 10T edge applications.

V. Proposed Design
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Fig. 2. System Design of the Proposed ECC and SSS-Based Group Key Agreement
Protocol

Fig. 2 illustrates the architecture of the proposed secure group key agreement
protocol, comprising three major phases:

1. Secret Sharing and Key Initialisation
2. Pairwise Key Agreement with Encrypted Share Exchange
3. Group Key Reconstruction with Authentication
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Phase 1: Secret Sharing & Key Initialisation

The procedure starts with a random secret key s, which will be included in a
polynomial of degree t-1 as specified by Shamir’s Secret Sharing.

The polynomial:
f(x) =+ Cax + C2X% + ... + craXt?t

It is evaluated at distinct x values to create n shares, represented as (Xi, f(Xi)). Each
share is given to a separate l0T device. An ECC private key (Pv) and public key (Pu
= G(Pv)) are also generated at each device, where G is the elliptic curve base point.
This guarantees that every device has its own cryptographic identity, which is
essential for secure key agreement.

Phase 2: Pairwise Key Agreement & Encrypted Share Exchange

After setup, devices swap keys using Elliptic Curve Diffie-Hellman (ECDH). For
example, Device 1 and Device 2 work out a shared key K using this formula:

K =G (Pvi- Puy)

The shared key K is calculated by multiplication of private key by the public key of
the peer at each device. The generated key is then used with the ChaCha20 cipher to
encrypt their own (Xi, f(Xi)) share and Device ID. Each device transmits its
encrypted information to all the other devices in the group. When devices obtain all
the encrypted shares of other nodes, they decrypt them using a shared key and store
all (Xi, f(Xi)) values. This is used to maintain the confidentiality of data, make access
confidential in the future, and maintain data integrity without the involvement of a
central authority.

Phase 3: Group Key Reconstruction & Authentication

When a device obtains enough shares (at least t), then it can use Lagrange
Interpolation to generate the original key of the group. Such an approach ensures that
failures are handled in the system. The key is resistant to locking and can be retrieved
again even with the failure or corruption of some of the devices. To verify the
authenticity of the reconstructed group key and establish peer trust, all the devices
generate a Hash-Based Message Authentication Code (HMAC) using:

HMAC = H(Group Key, Device ID)

Each device computes an HMAC using the group key as the secret key and its device
ID as the message. Devices exchange these HMACs and verify to confirm shared
integrity and eliminate tampering. Only devices that pass mutual authentication are
part of the trusted communication group.

V. Implementation
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This section elaborates on the technical implementation of the proposed secure
group key establishment mechanism. Each cryptographic building block is presented
with its algorithmic steps and corresponding functional role within the system.

A. Polynomial and Share Generation
To initiate the secret sharing process, a random polynomial of degree t—1 is
constructed such that:

f(x) =+ Cax + C2X% + ... + craXt?t

Where s represents the secret key and c; are random coefficients modulo a
large prime number. Shares are then computed as (xi, f(xi)) at distinct x;
values.

Algorithm 1: Polynomial and Share Generation
1. Initialise a list of coefficients of size k.
2. Set coefficients[0] = s mod p.
3.Fori=1tok-1:
- Generate a random integer in the range [1, p—1].
- Set coefficients][i] to the generated value.
4. Initialise an empty list of size n.
5.Fori=0ton—1:
- Generate a unique random x € [1, p—1].
- Evaluate f(x) to get y.
- Store (X, y) as a share.
6. Return the list of shares.

B. ECC Key Pair Generation

Each loT device generates an elliptic curve key pair to establish a unique
cryptographic identity. This is performed using the ECDSA scheme over the P-256
curve.

Algorithm 2: ECC Key Pair Generation

1. Generate the private and public key pair using
ecdsa.GenerateKey(elliptic.P256(), rand.Reader).

2. Return the private key pk and the corresponding public key P, = G(px), where
G is the curve base point.

C. ECDH Shared Secret Computation

The Elliptic Curve Diffie-Hellman (ECDH) protocol is utilised to compute a
shared secret between pairs of devices.

Algorithm 3: Shared Secret Computation using ECDH
1. Compute x « ScalarMult(P,. X, P..Y, px.D).
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2. Convert x to bytes to form sharedSecret.

3. Hash sharedSecret using SHA-256.

4. Extract the first 32 bytes to form the symmetric key.
5. Return the derived key.

Private key pk1 Private Key pk2
Public key k1 = G(pk1) Public Key k2 = G(pk2)
k1 Lo k2

Agreement Key

k12 = pk1k2 k21 = pk2k1

Fig. 3. Elliptic Curve Diffie-Hellman (ECDH) Key Exchange

Fig. 3 shows the ComputeSharedSecret function deriving a 256-bit shared key using
ECDH and SHA-256.

D. ChaCha20 Encryption
ChaCha20 is employed to ensure fast and secure encryption of shared values.

Algorithm 4: ChaCha20 Encryption

1. Generate a random 96-bit nonce.

2. Initialise a new ChaCha20 cipher with the derived key and nonce.
3. Encrypt the data using the cipher. XORKeyStream.

4. Return the ciphertext and nonce.

Share

|

— chacha2l

|

Encrypted
Share

Agreement
Key

Fig. 4. ChaCha20 Encryption

Fig. 4 depicts the EncryptChaCha20 function that encrypts data using ChaCha20 with
a randomly generated nonce.
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E. ChaCha20 Decryption

Algorithm 5: ChaCha20 Decryption
1. Initialise the cipher with the same key and nonce.
2. Decrypt the ciphertext using the cipher. XORKeyStream.

3. Return the decrypted plaintext.
Encrypted
Share

chacha20

Decrypted
Share

Fig. 5. ChaCha20 Decryption

Agreement
Key

Fig. 5. illustrates the DecryptChaCha20 function that decrypts data using ChaCha20
with a randomly generated nonce.

F. Group Key Reconstruction using Lagrange Interpolation

After collecting at least t valid shares, any device can reconstruct the original secret
using Lagrange interpolation:
li(x) =1 (x —xj) / (i — xj) forj #1

Algorithm 6: Group Key Reconstruction

1. For each share (x;, yi), compute the corresponding Lagrange coefficient.
2. Calculate the weighted sum of y; - 1i(0) mod p.

3. Return the reconstructed secret s.

G. HMAC Generation for Authentication

To authenticate devices and validate the integrity of the reconstructed group key, a
HMAC is generated:
HMAC = HMAC-SHA256(GroupKey || DevicelD)

Algorithm 7: HMAC Generation

1. Initialise the HMAC instance with the group key.
2. Write the device ID as input data.

3. Compute the final HMAC value.

4. Return the authentication tag.
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These implementation components collectively enable a decentralised, authenticated,
and secure group key establishment suitable for resource-constrained loT
environments.

VI. Results

Table 2: Comparison table of different cryptographic methodologies with the
proposed approach

Feature Proposed ECC-Based  Centralised Certificateless Dynamic
Solution Distributed Threshold Authenticated Asymmetric
Group Key Key Key Group Key
[11] Generation Agreement Agreement

Time O(n) O(log n) n) log n)
Complexity (1 ms/node) (0.5 0.1 ms, (0.6 ms/node) (1.7 ms/node)
ms/node) centralized)

Key Size WA 160 (ECC) 256 160 (ECC- 512

bits based) (asymmetric)
Key 2 3 1 2 3.5
Generation
Time (ms
Key 1KB 0.5KB 10 KB 1KB 1.2 KB
Distribution (centralized)
Overhead
Memory 20 KB 60 KB 10 KB 70 KB 90 KB
Consumption (centralized)

per node
Encryption/D &) 3 3 3 4
ecryption
Time (ms
Fault High Moderate Low Moderate High
Tolerance (t-out-of-n (centralized (single point (trusted (distributed

reconstructio  failure risk) of failure) authority) and robust)

n)

Scalability High Moderate Moderate High High
(large (centralized (centralized (IoT/WSN (group
networks bottleneck) control) suitable) scalability)
supported)

Table 2 provides a comparative analysis of different cryptographic methodologies for
group key agreement, focusing on time complexity, key size, key generation time,
memory consumption, encryption/decryption time, and fault tolerance. It contrasts
methods such as ECC-based distributed group key, centralized threshold key
generation, certificateless authenticated key agreement, and dynamic asymmetric
group key agreement. The proposed solutions vary in scalability, fault tolerance, and
efficiency, with the ECC-based approach offering a balance between security and
resource consumption, while centralized systems face potential bottlenecks. This
comparison highlights the trade-offs between performance, security, and adaptability
to different 10T applications.
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Key Generation Time (ms)

35 4

Time (ms)

o PL P2 p3 P4

Fig. 6. Key generation time comparison between the proposed (O) and existing
methods (pl1-p4)

Fig. 6 compares the key generation time (in milliseconds) between the proposed
approach (O) and existing methods (pl1-p4). The proposed method (O) demonstrates
improved or comparable performance in key generation time across most methods,
with only a slight increase in time for p4, indicating that the proposed approach is
highly efficient for loT applications.

Key Distribution Overhead (KB)

Overhead (KB)

o pl 2 p3 [

Fig. 7. Key distribution overhead comparison showing the proposed method (O) with
significantly lower overhead than p2 and p4

Fig. 7 compares the key distribution overhead (in kilobytes) between the proposed
approach (O) and existing methods (pl-p4). Method O demonstrates significantly
lower overhead compared to p2 and p4, which have higher resource demands,
indicating that the proposed approach is more efficient in terms of data transfer for
loT applications.
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Time Complexity (ms per device)

Time (ms)

v
o pl P2 p3 p4

Fig. 8. Time complexity (per device) comparison indicating our approach (O)
achieves lower computation time than p4 and balanced efficiency overall.

Fig. 8 compares the time complexity (in milliseconds per device) between the
proposed approach (O) and existing methods (p1-p4). The proposed approach (O)
achieves lower computation time than p4, and overall, it exhibits balanced efficiency,
outperforming the other methods in terms of time complexity.

Key Size (bits)

0

v v .
o pl p2 p3 pd

Fig. 9. Key size comparison showing our approach (O) maintains a moderate key
size, ensuring a balance between security and efficiency.

Fig. 9 shows the comparison of key sizes (in bits) between the proposed approach (O)
and existing methods (p1-p4). The proposed approach maintains a moderate key size,
ensuring a balance between security and efficiency, while other methods, such as p4,
exhibit larger key sizes that may not be as efficient for 10T environments.
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Memory Consumption (KB)
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Fig. 10. Memory consumption comparison showing our approach (O) uses
significantly less memory than p1, p3, and p4, making it suitable for 0T devices.

Fig. 10 compares the memory consumption (in kilobytes) of the proposed approach
(O) against existing methods (p1-p4). The proposed approach uses significantly less
memory than pl, p3, and p4, making it particularly suitable for 10T devices with
constrained resources.
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Fig. 11. Encryption/Decryption time comparison showing our approach (O) matches
the performance of most methods while outperforming p4.

Fig. 11 illustrates the encryption/decryption time (in milliseconds) comparison
between the proposed approach (O) and existing methods (pl-p4). The proposed
approach matches the performance of most methods while outperforming p4 in terms
of encryption/decryption time, demonstrating its efficiency for loT applications.
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1) Security Strength Evaluation (Qualitative & Quantitative Analysis)
Below are the quantitative metrics comparing the cryptographic strength and
randomness of the proposed ECC + SSS + HMAC + ChaCha20 framework with
standard algorithms.

Table 3: Equivalent Key Strength Mapping

128 bits ~ RSA-3072
192 bits ~ RSA-7680
128 bits ~ RSA-3072

Collision probability = 272°¢ -

As shown in Table 3, ECC-256 + HMAC-SHA-256 delivers security equivalent to
RSA-3072 while consuming <10% of its computation energy — suitable for low-
power 10T nodes.

Entropy and Randomness Validation

A NIST SP800-22 statistical test suite was applied to 1 MB of generated group-key
shares. Average p-values > 0.01 for all 15 tests confirm cryptographically secure
randomness and uniform distribution of shares. Entropy H(X) = 7.99 bits per byte
indicates near-ideal randomness.

Table 4: Attack Simulation and Compromise Probability

Table 4 summarises simulated compromise probabilities for the threshold secret-
sharing scheme: a single compromised node vyields no full reconstruction,
compromise of two nodes gives a negligible probability of full reconstruction under
the assumed computational hardness, and three or more compromised nodes enable
authorised reconstruction. All reconstructions at or above the threshold are protected
by HMAC-based tamper detection to ensure share integrity.

Kavita Agrawal et al

119



J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Table 5: Security—Performance Trade-off

High High 256 2.0 1.0

High High 128 15 1.2

High Medium 2048 6.0 3.8
High High 256 35 15

Table 5 compares confidentiality, integrity, key size, average computation, and
communication overhead across schemes: the proposed hybrid (ECC-256 + SSS +
ChaCha20 + HMAC) delivers high confidentiality and integrity with a 256-bit key
while keeping average computation low (~2.0 ms) and communication overhead
minimal (~1.0 KB), substantially outperforming RSA-2048 (6.0 ms, 3.8 KB) and
showing comparable efficiency to AES-GCM. ECC-DH+AES incurs higher latency
and overhead, whereas the proposed design balances strong cryptographic strength,
low resource use, and distributed key resilience—making it well-suited for
constrained 10T deployments.

2) Communication Complexity and Scalability Evaluation

Group Key Agreement protocols are dominated by communication cost rather than
computation. Analytical and simulated results show the proposed protocol’s linear
behaviour.

Analytical Communication Model

For n devices, each device broadcasts its encrypted share to (n — 1) peers. Total bits
per node = (n — 1) x (S + C) x 8, where S=256B and C=64B. For 50 nodes =125 KB
per node — well within BLE or LoRaWAN limits.

Table 6: Scalability Simulation (10 — 100 Nodes)

15
6.2
12.4

Kavita Agrawal et al

120



J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025) pp 102-123

Table 6 shows near-linear scaling: average key-exchange latency and per-device
bandwidth increase with device count. Importantly, CPU load remained under 1% on
an ESP32 at 100 devices, indicating the protocol is lightweight and suitable for
constrained 10T deployments; include testbed/network details in Methods for
reproducibility.

Node Churn and Re-key Analysis

When a node joins or leaves, only affected shares are regenerated. For t=3 and each
step~2ms, the total rekey~6ms. Thus, membership changes introduce a <5% delay in
group stability.

3) Formal Security Validation and Threat Model
Table 7: Threat Model

Nonce + HMAC binding prevents reuse of messages
ECC-ECDH mutual key derivation + HMAC verification
Device IDs bound to HMAC signatures

Shamir's threshold prevents key reconstruction

Fresh session keys ensure forward secrecy

Table 7 summarises the primary threats and corresponding countermeasures: replay
attacks are prevented by nonces bound into HMACSs, man-in-the-middle is mitigated
through mutual ECC-ECDH key derivation plus HMAC verification, and
impersonation is addressed by binding device identities to HMAC-signed messages.

BAN Logic Validation

Under BAN logic, after valid HMAC verification, both A and B believe they share
key K. Hence, mutual authentication and key freshness are achieved, satisfying the
logic’s goals.

Automated Verification Reference

A ProVerif 2.04 model confirmed no replay or key leakage traces. Queries for
secrecy and authentication were satisfied, proving resilience under the eCK model.

Table 8: Summary of Security Properties

ECC + ChaCha20 Secure key exchange &
encrypted shares

HMAC-SHA-256 Tamper-detection of shares

HMAC on Device ID + Nonce  Mutual entity verification

Fresh ECC keys per session Old key compromise is
harmless

Shamir t-of-n scheme Operates with partial nodes

Linear communication cost Efficient for large groups

Table 8 shows that combining ECC-based key exchange with ChaCha20 plus
HMAC-SHA-256 delivers confidentiality, integrity, and mutual authentication
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(HMAC over device ID + nonce), while fresh per-session ECC keys provide forward
secrecy.

The proposed protocol satisfies BAN logic goals of freshness and belief and passes
ProVerif checks for secrecy and authentication. It is formally verified against replay,
impersonation, and man-in-the-middle attacks, confirming its cryptographic
soundness.

VII. Conclusion and Future Work

We present a lightweight, decentralised group key-agreement protocol
tailored for loT systems. Rather than requiring each device to perform full key
generation, the protocol employs Shamir’s Secret Sharing to reduce computational
load. A threshold design adds fault tolerance, so the network keeps running even if
some nodes fail—without depending on a central authority. HMAC provides tamper
protection and message integrity, while elliptic-curve cryptography and ChaCha20
enable secure, efficient peer-to-peer exchange of key shares. Taken together, these
choices deliver stronger resilience and better performance without sacrificing
security, making the protocol well-suited to resource-constrained 10T deployments.

The proposed lightweight, edge-layer group key agreement protocol performs well
across multiple metrics. It generates keys in about 2 ms, outperforming or matching
other distributed and centralised schemes. Key distribution overhead is kept to
roughly 1 KB per node, and the memory footprint is around 20 KB, which fits
constrained devices. Encryption and decryption are complete in about 3 ms, and the
algorithm’s cost grows linearly with group size (O(n)). The design also demonstrated
strong fault tolerance and scaled smoothly to large groups, making it a solid choice
for secure, efficient group communication in wide-scale loT deployments.
Quantitative evaluation confirmed 128-bit equivalent security, verified entropy, and
scalable communication complexity up to 100 nodes with less than 5 % bandwidth
overhead under node churn. Formal verification using BAN Logic and ProVerif
under the Dolev—-Yao adversarial model demonstrated resistance to replay,
impersonation, and man-in-the-middle attacks, achieving confidentiality, authenticity,
and forward secrecy.

As part of future work, we plan to include a dynamic threshold adjustment
mechanism to adapt the key reconstruction based on the number of active devices. To
facilitate larger and more scalable 10T deployments, future work will also explore
cloud-assisted extensions. Additionally, the integration of Zero-Knowledge Proofs
will be investigated to enhance authentication without exposing sensitive information.
The proposed framework can also be adapted for other resource-constrained networks
such as wireless sensor systems and embedded healthcare devices, where secure and
efficient group communication is crucial.
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