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Abstract  

A Group Key Agreement Protocol enables secure multi-party communication 

by establishing a common cryptographic key, which is especially critical at the edge 

layer of IoT networks where devices often operate in decentralized and resource-

constrained environments. However, existing protocols face several challenges, 

including high computational overhead, single points of failure, and a lack of 

integrity validation during the Distribution of the Group Key. To address these 

challenges, we propose a lightweight edge-layer protocol that combines Shamir’s 

Secret Sharing Scheme (SSS) and Elliptic Curve Cryptography (ECC) for secure and 

efficient group key distribution among IoT edge devices. ECC (Curve25519) is used 

for secure peer-to-peer sharing, with key sizes that are 12 times smaller and 

operations that are four times faster than traditional RSA. SSS splits the group key 

into shares and reconstructs it using a threshold, reducing computation and 

eliminating the need for full key generation on each device. It also removes single 

points of failure because no device retains the complete key. ECC enables secure 

peer-to-peer exchange of encrypted shares using ChaCha20 for efficient 

confidentiality. ChaCha20 enhances encryption speed, performing nearly three times 

faster than AES on resource-constrained devices. To ensure shared authenticity and 
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detect tampering, HMAC is applied. This offers a lightweight integrity check suitable 

for constrained IoT devices. The proposed protocol is quantitatively validated 

through entropy and key-strength analysis, confirming 128-bit equivalent security 

and O(n) scalability up to 100 nodes. Communication-cost evaluation demonstrates 

low bandwidth overhead, while formal verification using BAN Logic and ProVerif 

under the Dolev–Yao adversarial model establishes confidentiality, authenticity, and 

forward secrecy with provable resilience against replay, impersonation, and man-in-

the-middle attacks. 

Keywords: ChaCha20, Elliptic Curve Cryptography, Group Key Agreement, HMAC 

Integrity, IoT Security, Lightweight Cryptography, Secure Key Distribution, 

Shamir’s Secret Sharing. 

I.    Introduction 

The Internet of Things (IoT) is growing across various industries, including 

healthcare, smart homes, industrial automation, and transportation, increasing the 

need for secure and efficient communication. Due to the distributed and dynamic 

nature of IoT systems, devices frequently join and leave networks, making group 

communication particularly vulnerable. Ensuring confidentiality, integrity, and 

authentication in such settings is essential. In particular, heterogeneous IoT 

environments require flexible trust and authentication models to handle diverse 

device capabilities and privacy needs [V] [XVII]. Traditional centralised key-

management systems are often unreliable, as they introduce bottlenecks and single 

points of failure. Furthermore, IoT devices with limited resources cannot use 

asymmetric cryptographic protocols like RSA and classical Diffie-Hellman because 

they are computationally demanding [IX] [XVIII]. 

Modern IoT infrastructures require decentralised, lightweight, and reliable key-

management solutions. Group Key Agreement Protocols (GKAPs) are necessary for 

multiple devices in a network to communicate securely via broadcast and multicast. 

However, many current GKAPs are too heavy for IoT or do not guarantee fault 

tolerance and tamper resistance when distributing keys. Some recent works 

concentrate on integrating secret sharing techniques to enable flexible key 

reconstruction [X], [VI], while others suggest lightweight schemes using ECC to 

reduce computational overhead [XII]. Current models are either not decentralised 

[V], cannot efficiently handle frequent topology changes [XVI], or do not provide 

robust defence against replay and man-in-the-middle attacks [XI]. 

This paper suggests a decentralised, lightweight group key agreement protocol that 

combines Shamir's Secret Sharing (SSS) and Elliptic Curve Cryptography (ECC) to 

overcome these difficulties. It improves fault tolerance and resilience by requiring 

only a predetermined threshold of shares to reconstruct the key by using SSS [XI]. 

ChaCha20 encryption, along with HMAC verification, ensures confidentiality and 

message integrity during share exchange. ECC guarantees lightweight yet secure 

peer-to-peer communication between devices [XII]. The design works especially well 
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in dynamic settings where devices may join or exit the network regularly, such as 

smart healthcare or industrial IoT applications [XVI], [XV]. 

The objective is to develop a decentralised, lightweight, secure group key agreement 

protocol for IoT devices. As there is no involvement with a centralised server, there 

are no potential bottlenecks or failure points. Each device performs the sharing and 

reconstruction of the group key independently. The remainder of this paper is 

organised as follows: Section 2 provides a detailed survey of existing group key 

agreement protocols and cryptographic schemes relevant to IoT. Section 3 introduces 

the proposed system architecture and cryptographic primitives. Section 4 explains the 

System Design. Section 5 discusses the algorithm and implementation. Section 6 

presents the results and comparative analysis with state-of-the-art methods. Finally, 

Section 7 concludes the paper and outlines potential directions for future research. 

II.    Literature Review 

As the implementation of Internet of Things (IoT) networks continues to 

expand, the edge layer has emerged as a critical point for managing secure 

communications among distributed, resource-constrained devices. The traditional 

cloud-centric security models are often not feasible at the edge due to latency, 

bandwidth, and privacy constraints. Lightweight cryptographic solutions are therefore 

essential for enabling secure group communication right at the edge, particularly 

those for Group Key Agreement (GKA). Recent studies have focused on integrating 

Shamir's Secret Sharing (SSS), Elliptic Curve Cryptography (ECC), and symmetric 

cryptography to balance security, efficiency, and decentralisation. 

Subrahmanyam et al. [XIII] proposed an Authenticated Distributed Group Key 

Agreement Protocol (ADGKAP) using the Elliptic Curve Secret Sharing Scheme 

(ECSSS). The protocol is computationally demanding, despite offering a strong 

guarantee of security, because it relies on the Elliptic Curve Discrete Logarithm 

Problem (ECDLP). In the proposed method, in turn, SSS is employed to target the 

edge layer and reduce its complexity, but not sacrifice cryptographic strength. Ashraf 

et al. [II] introduced an algorithm of symmetric key exchange, which is applicable in 

lightweight settings. Although it is suitable for resource-constrained devices, it 

remains vulnerable to man-in-the-middle attacks because it does not have built-in 

authentication. The proposed method strengthens key validation via HMAC to 

guarantee message integrity and authentication for edge-layer resilience. 

Hakeem et al. [I] presented a key generation method combining SSS with HMAC 

authentication. However, the reliance on a central group manager reduces system 

decentralisation. The proposed method eliminates this single point of failure by 

enabling peer-based key distribution among edge devices. Zhang et al. [XIX] 

designed a Dynamic Authenticated Asymmetric GKA protocol incorporating multi-

signature schemes for non-repudiation. Despite being safe, the protocol is not feasible 

for edge devices with limited resources due to its heavy reliance on asymmetric 

operations. Our protocol optimises performance on limited edge hardware by using 

ECC with smaller key sizes. 
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Sheikh et al. [XIV] proposed chaos-based encryption with HMAC for privacy in low-

power networks. The advantage is that it is power-efficient. But the approach adds 

hardware dependencies and computational complexity that are not suitable for edge 

computing. On the other hand, the proposed solution uses only SSS and ChaCha20, 

ensuring lightweight operation suitable for heterogeneous edge nodes. Ding et al. [IV] 

proposed a key synchronisation-based protocol offering computational and 

communication efficiency. At the edge layer, where devices join and exit the network 

frequently, its dependence on pre-shared keys restricts flexibility. The proposed 

protocol supports dynamic key reconstruction via threshold-based SSS, providing 

better scalability and flexibility. 

Lemnouar [VIII] presented vulnerabilities of the Shared Secret Key, in particular 

when using weak polynomials. The proposed framework provides the security edge 

layer, cryptographic robustness, and integrity by creating secure polynomials and 

verification of the HMAC of each share. Karthik and Rengarajan et.al [XV] have 

pointed out the efficiency of ChaCha and ECC to secure IoT. Their findings support 

our choice of ChaCha20 to encrypt fast and ECC to exchange keys securely on edge 

devices with restricted computing resources. 

Lee et al. [VII] explored blockchain-based key management for IoT. Although 

blockchain ensures tamper-proof operations, its high resource requirements and 

consensus mechanisms hinder deployment at the edge. Our protocol circumvents this 

by achieving decentralisation without heavy blockchain dependencies, making it 

more feasible for edge-layer implementations. 

In summary, prior research provides a strong foundation for secure group 

communication in IoT but often neglects the constraints and dynamics of the edge 

layer. The proposed lightweight protocol, combining ECC, SSS, ChaCha20, and 

HMAC, is optimised for edge-level deployment. It supports distributed, secure, and 

efficient group key agreement while mitigating single points of failure and reducing 

computational burdens. As shown in Table 1, existing group key agreement protocols 

vary significantly in terms of cryptographic methods, authentication mechanisms, and 

scalability, particularly in edge-layer IoT environments. 

Table 1: Comparative Analysis of Existing Group Key Agreement Protocols 

Feature ECC-based 

Distributed 

Group Key 

[XIII] 

Lightweight 

Symmetric 

Key 

Exchange 

(IOE) [II] 

Centralized 

Threshold 

Key 

Generation 

[I] 

Certificateles

s 

Authenticate

d Key 

Agreement 

[III] 

Dynamic 

Asymmetric 

Group Key 

Agreement 

[XIX] 

Key 

Distribution 

Method 

Elliptic Curve 

Secret 

Sharing 

Symmetric 

key exchange 

mechanism 

Centralised 

Group 

Manager with 

Shamir’s SSS 

Certificateless 

Diffie-

Hellman-

based key 

agreement 

Asymmetric 

key 

agreement 

with non-

repudiation 

Authenticati

on 

Mechanism 

HMAC-based 

authentication 

Symmetric 

encryption 

(lightweight) 

HMAC for 

integrity 

validation 

Lightweight 

proxy blind 

signature 

Asymmetric 

authentication 

with group 



 

 

 

J. Mech. Cont.& Math. Sci., Vol.-20, No.-11, November (2025)  pp 102-123 

Kavita Agrawal et al 

 

 

106 

 

signatures 

Cryptograph

ic Method 

Elliptic Curve 

Cryptography 

(ECC) 

Symmetric 

cryptography 

optimised for 

IoE 

Shamir’s SSS 

integrated 

with HMAC 

Based on the 

Computationa

l Diffie-

Hellman 

Problem 

(CDHP) 

Public-key 

cryptography 

supporting 

non-

repudiation 

Advantage Small key 

size, 

lightweight 

for edge 

devices 

Designed for 

resource-

constrained 

IoE nodes 

Fast 

execution and 

lightweight 

operations 

Low 

computational 

cost 

Enhanced 

security via 

non-

repudiable 

signatures 

Disadvantage Moderate 

security level 

Computationa

lly expensive 

without 

hardware 

acceleration 

The central 

manager 

introduces a 

single point of 

failure 

Key strength 

decreases 

with scale 

High 

overhead is 

unsuitable for 

constrained 

IoT nodes 

Fault 

Tolerance 

Limited due 

to centralised 

elements 

High, suitable 

for 

decentralised 

IoE systems 

Centralised 

control 

weakens fault 

resilience 

Moderate; 

depends on 

key 

distribution 

reliability 

High, 

supports 

distributed 

reconstruction 

Scalability Limited by 

partial 

centralisation 

Optimised for 

large-scale 

IoE/edge 

deployments 

Moderate 

scalability 

Suitable for 

specific 

IoT/WSN 

domains 

Scalable for 

dynamic 

group 

applications 

II.    Architecture 
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Fig. 1. Architecture of Lightweight Edge-Layer Group Key Agreement Protocol 

using ECC and Shamir’s Secret Sharing 

The proposed system enables secure and efficient group communication in 

edge-layer IoT environments through a lightweight, distributed group key agreement 

protocol. It integrates Shamir’s Secret Sharing (SSS) for distributed group key 

distribution, Elliptic Curve Cryptography (ECC) for secure peer-to-peer key 

generation, ChaCha20 for lightweight encryption of shares, and HMAC for verifying 

the integrity and authenticity of exchanged data. 

As illustrated in Fig. 1, the protocol initiates with a Device Initialisation phase, where 

IoT peers are provisioned and assigned unique shares of a randomly generated group 

secret using SSS. Subsequently, devices generate ECC key pairs and engage in 

Elliptic Curve Diffie-Hellman (ECDH) exchanges to establish pairwise symmetric 

keys. These agreement keys are then safely distributed throughout the group after 

being encrypted using ChaCha20 for each peer's secret share. 

When devices receive enough encrypted shares (equal to the threshold), they use the 

shared agreement keys to decrypt them and use Lagrange interpolation to reconstruct 

the original group key. To ensure the integrity and authenticity of received data, an 

HMAC is generated using the group key and device identity before share verification. 

The protocol ensures robustness and fault tolerance, allowing continued secure 

communication even in the presence of inactive or disconnected peers. 

A. Module Description 
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Fig. 1 illustrates five main workflow phases, each corresponding to a module 

with defined tasks and deliverables. The five modules provide the framework for 

introducing a lightweight and secure group key agreement protocol based on designs 

suitable for IoT. 

1.  Secret Initialisation and Share Generation 

This module involves generating a random global group secret and dividing it 

into distinct shares using Shamir’s Secret Sharing. Each device receives a unique 

share, and a fixed threshold is set for key reconstruction. 

 Key Tasks: 

o Generate a global group key. 

o Apply SSS to split the secret. 

o Distribute unique shares to devices. 

 Outcome: Devices are provisioned with distinct shares necessary for 

reconstructing the group key. 

2.  Device Setup and ECC Key Exchange 

Devices generate their ECC key pairs and use the ECDH protocol to derive 

symmetric agreement keys with peers. 

 Key Tasks: 

o Generate ECC public-private key pairs. 

o Exchange public keys. 

o Derive shared symmetric keys via ECDH. 

 Outcome: Devices establish secure pairwise channels. 

3.  Peer-to-Peer Secure Share Exchange Using ChaCha20 

Each device encrypts its SSS share using the agreement key and the lightweight 

ChaCha20 cipher, then transmits it to peers. 

 Key Tasks: 

o Encrypt shares with ChaCha20 using ECDH-derived keys. 

o Securely exchange encrypted shares. 

o Decrypt received peer shares. 

 Outcome: Secure exchange of shares across the peer group. 

4.  Group Key Reconstruction and HMAC Generation 

Upon receiving enough valid shares, a device reconstructs the original group key 

using Lagrange Interpolation. HMACs are generated using the reconstructed key 

and device identity. 

 Key Tasks: 
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o Reconstruct the group key. 

o Generate HMAC values. 

 Outcome: Devices obtain the group key and corresponding integrity 

verification tokens. 

5.  Authentication and Trust Establishment 

Devices validate received HMACs to confirm data authenticity and trustworthiness of 

the sender. 

1. Key Tasks: 

o Verify HMACs from other devices. 

o Authenticate legitimate members. 

2. Outcome: Trusted group communication is established. 

6.  Testing, Validation, and Iterative Refinement 

This phase ensures that the system is optimised for resource-constrained IoT devices 

through performance testing and security validation. 

 Key Tasks: 

o Conduct system-level testing and debugging. 

o Optimise for memory, CPU, and energy. 

o Simulate attack scenarios and validate resilience. 

 Outcome: A secure, lightweight, and deployment-ready protocol for real-

world IoT edge applications. 

IV. Proposed Design 
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Fig. 2. System Design of the Proposed ECC and SSS-Based Group Key Agreement 

Protocol 

Fig. 2 illustrates the architecture of the proposed secure group key agreement 

protocol, comprising three major phases: 

1. Secret Sharing and Key Initialisation 

2. Pairwise Key Agreement with Encrypted Share Exchange 

3. Group Key Reconstruction with Authentication 
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Phase 1: Secret Sharing & Key Initialisation 

The procedure starts with a random secret key s, which will be included in a 

polynomial of degree t-1 as specified by Shamir’s Secret Sharing. 

The polynomial: 

f(x) = s + c1x + c2x2 + … + ct-1xt-1 

It is evaluated at distinct x values to create n shares, represented as (Xi, f(Xi)). Each 

share is given to a separate IoT device. An ECC private key (Pv) and public key (Pu 

= G(Pv)) are also generated at each device, where G is the elliptic curve base point. 

This guarantees that every device has its own cryptographic identity, which is 

essential for secure key agreement. 

Phase 2: Pairwise Key Agreement & Encrypted Share Exchange 

After setup, devices swap keys using Elliptic Curve Diffie-Hellman (ECDH). For 

example, Device 1 and Device 2 work out a shared key K using this formula: 

K = G (Pv1· Pu2) 

The shared key K is calculated by multiplication of private key by the public key of 

the peer at each device. The generated key is then used with the ChaCha20 cipher to 

encrypt their own (Xi, f(Xi)) share and Device ID.  Each device transmits its 

encrypted information to all the other devices in the group. When devices obtain all 

the encrypted shares of other nodes, they decrypt them using a shared key and store 

all (Xi, f(Xi)) values. This is used to maintain the confidentiality of data, make access 

confidential in the future, and maintain data integrity without the involvement of a 

central authority. 

Phase 3: Group Key Reconstruction & Authentication 

When a device obtains enough shares (at least t), then it can use Lagrange 

Interpolation to generate the original key of the group. Such an approach ensures that 

failures are handled in the system. The key is resistant to locking and can be retrieved 

again even with the failure or corruption of some of the devices. To verify the 

authenticity of the reconstructed group key and establish peer trust, all the devices 

generate a Hash-Based Message Authentication Code (HMAC) using: 

HMAC = H(Group Key, Device ID) 

Each device computes an HMAC using the group key as the secret key and its device 

ID as the message. Devices exchange these HMACs and verify to confirm shared 

integrity and eliminate tampering. Only devices that pass mutual authentication are 

part of the trusted communication group. 

 

V.    Implementation 
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This section elaborates on the technical implementation of the proposed secure 

group key establishment mechanism. Each cryptographic building block is presented 

with its algorithmic steps and corresponding functional role within the system. 

A.  Polynomial and Share Generation 

To initiate the secret sharing process, a random polynomial of degree t−1 is 

constructed such that: 

f(x) = s + c1x + c2x2 + … + ct-1xt-1 

Where s represents the secret key and ci are random coefficients modulo a 

large prime number. Shares are then computed as (xi, f(xi)) at distinct xi 

values. 

Algorithm 1: Polynomial and Share Generation 

1. Initialise a list of coefficients of size k. 

2. Set coefficients[0] = s mod p. 

3. For i = 1 to k−1: 

    - Generate a random integer in the range [1, p−1]. 

    - Set coefficients[i] to the generated value. 

4. Initialise an empty list of size n. 

5. For i = 0 to n−1: 

    - Generate a unique random x ∈ [1, p−1]. 

    - Evaluate f(x) to get y. 

    - Store (x, y) as a share. 

6. Return the list of shares. 

B.  ECC Key Pair Generation 

Each IoT device generates an elliptic curve key pair to establish a unique 

cryptographic identity. This is performed using the ECDSA scheme over the P-256 

curve. 

Algorithm 2: ECC Key Pair Generation 

1. Generate the private and public key pair using 

ecdsa.GenerateKey(elliptic.P256(), rand.Reader). 

2. Return the private key pk and the corresponding public key Pu = G(pk), where 

G is the curve base point. 

C. ECDH Shared Secret Computation 

The Elliptic Curve Diffie-Hellman (ECDH) protocol is utilised to compute a 

shared secret between pairs of devices. 

 

Algorithm 3: Shared Secret Computation using ECDH 

1. Compute x ← ScalarMult(Pu.X, Pu.Y, pk.D). 
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2. Convert x to bytes to form sharedSecret. 

3. Hash sharedSecret using SHA-256. 

4. Extract the first 32 bytes to form the symmetric key. 

5. Return the derived key. 

 

Fig. 3. Elliptic Curve Diffie-Hellman (ECDH) Key Exchange 

Fig. 3 shows the ComputeSharedSecret function deriving a 256-bit shared key using 

ECDH and SHA-256. 

D. ChaCha20 Encryption 

ChaCha20 is employed to ensure fast and secure encryption of shared values. 

Algorithm 4: ChaCha20 Encryption 

1. Generate a random 96-bit nonce. 

2. Initialise a new ChaCha20 cipher with the derived key and nonce. 

3. Encrypt the data using the cipher.XORKeyStream. 

4. Return the ciphertext and nonce. 

 

Fig. 4. ChaCha20 Encryption 

Fig. 4 depicts the EncryptChaCha20 function that encrypts data using ChaCha20 with 

a randomly generated nonce. 
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E. ChaCha20 Decryption 

Algorithm 5: ChaCha20 Decryption 

1. Initialise the cipher with the same key and nonce. 

2. Decrypt the ciphertext using the cipher.XORKeyStream. 

3. Return the decrypted plaintext. 

 

Fig. 5. ChaCha20 Decryption 

Fig. 5. illustrates the DecryptChaCha20 function that decrypts data using ChaCha20 

with a randomly generated nonce. 

F. Group Key Reconstruction using Lagrange Interpolation 

After collecting at least t valid shares, any device can reconstruct the original secret 

using Lagrange interpolation: 

li(x) = ∏ (x − xj) / (xi − xj) for j ≠ i 

Algorithm 6: Group Key Reconstruction 

1. For each share (xi, yi), compute the corresponding Lagrange coefficient. 

2. Calculate the weighted sum of yi · li(0) mod p. 

3. Return the reconstructed secret s. 

G. HMAC Generation for Authentication 

To authenticate devices and validate the integrity of the reconstructed group key, a 

HMAC is generated: 

HMAC = HMAC-SHA256(GroupKey || DeviceID) 

Algorithm 7: HMAC Generation 

1. Initialise the HMAC instance with the group key. 

2. Write the device ID as input data. 

3. Compute the final HMAC value. 

4. Return the authentication tag. 
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These implementation components collectively enable a decentralised, authenticated, 

and secure group key establishment suitable for resource-constrained IoT 

environments. 

VI.    Results 

Table 2: Comparison table of different cryptographic methodologies with the 

proposed approach 

Feature Proposed 

Solution 

ECC-Based 

Distributed 

Group Key 

[11] 

Centralised 

Threshold 

Key 

Generation 

[13] 

Certificateless 

Authenticated 

Key 

Agreement 

[14] 

Dynamic 

Asymmetric 

Group Key 

Agreement 

[15] 

Time 

Complexity 

O(n) 

(1 ms/node) 

O(log n) 

(0.5 

ms/node) 

O(1) 

(0.1 ms, 

centralized) 

O(log n) 

(0.6 ms/node) 

O(n log n) 

(1.7 ms/node) 

Key Size 

(bits) 

256 160 (ECC) 256 160 (ECC-

based) 

512 

(asymmetric) 

Key 

Generation 

Time (ms) 

2 3 1 2 3.5 

Key 

Distribution 

Overhead 

(per node) 

1 KB 0.5 KB 10 KB 

(centralized) 

1 KB 1.2 KB 

Memory 

Consumption 

(per node) 

20 KB 60 KB 10 KB 

(centralized) 

70 KB 90 KB 

Encryption/D

ecryption 

Time (ms) 

3 3 3 3 4 

Fault 

Tolerance 

High 

(t-out-of-n 

reconstructio

n) 

Moderate 

(centralized 

failure risk) 

Low 

(single point 

of failure) 

Moderate 

(trusted 

authority) 

High 

(distributed 

and robust) 

Scalability High 

(large 

networks 

supported) 

Moderate 

(centralized 

bottleneck) 

Moderate 

(centralized 

control) 

High 

(IoT/WSN 

suitable) 

High 

(group 

scalability) 

 

Table 2 provides a comparative analysis of different cryptographic methodologies for 

group key agreement, focusing on time complexity, key size, key generation time, 

memory consumption, encryption/decryption time, and fault tolerance. It contrasts 

methods such as ECC-based distributed group key, centralized threshold key 

generation, certificateless authenticated key agreement, and dynamic asymmetric 

group key agreement. The proposed solutions vary in scalability, fault tolerance, and 

efficiency, with the ECC-based approach offering a balance between security and 

resource consumption, while centralized systems face potential bottlenecks. This 

comparison highlights the trade-offs between performance, security, and adaptability 

to different IoT applications. 
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Fig. 6. Key generation time comparison between the proposed (O) and existing 

methods (p1–p4) 

Fig. 6 compares the key generation time (in milliseconds) between the proposed 

approach (O) and existing methods (p1-p4). The proposed method (O) demonstrates 

improved or comparable performance in key generation time across most methods, 

with only a slight increase in time for p4, indicating that the proposed approach is 

highly efficient for IoT applications. 

 

Fig. 7. Key distribution overhead comparison showing the proposed method (O) with 

significantly lower overhead than p2 and p4 

Fig. 7 compares the key distribution overhead (in kilobytes) between the proposed 

approach (O) and existing methods (p1-p4). Method O demonstrates significantly 

lower overhead compared to p2 and p4, which have higher resource demands, 

indicating that the proposed approach is more efficient in terms of data transfer for 

IoT applications. 
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Fig. 8. Time complexity (per device) comparison indicating our approach (O) 

achieves lower computation time than p4 and balanced efficiency overall. 

Fig. 8 compares the time complexity (in milliseconds per device) between the 

proposed approach (O) and existing methods (p1-p4). The proposed approach (O) 

achieves lower computation time than p4, and overall, it exhibits balanced efficiency, 

outperforming the other methods in terms of time complexity. 

 

Fig. 9. Key size comparison showing our approach (O) maintains a moderate key 

size, ensuring a balance between security and efficiency. 

Fig. 9 shows the comparison of key sizes (in bits) between the proposed approach (O) 

and existing methods (p1-p4). The proposed approach maintains a moderate key size, 

ensuring a balance between security and efficiency, while other methods, such as p4, 

exhibit larger key sizes that may not be as efficient for IoT environments. 
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Fig. 10. Memory consumption comparison showing our approach (O) uses 

significantly less memory than p1, p3, and p4, making it suitable for IoT devices. 

Fig. 10 compares the memory consumption (in kilobytes) of the proposed approach 

(O) against existing methods (p1-p4). The proposed approach uses significantly less 

memory than p1, p3, and p4, making it particularly suitable for IoT devices with 

constrained resources. 

 

Fig. 11. Encryption/Decryption time comparison showing our approach (O) matches 

the performance of most methods while outperforming p4. 

Fig. 11 illustrates the encryption/decryption time (in milliseconds) comparison 

between the proposed approach (O) and existing methods (p1-p4). The proposed 

approach matches the performance of most methods while outperforming p4 in terms 

of encryption/decryption time, demonstrating its efficiency for IoT applications. 
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1) Security Strength Evaluation (Qualitative & Quantitative Analysis) 

Below are the quantitative metrics comparing the cryptographic strength and 

randomness of the proposed ECC + SSS + HMAC + ChaCha20 framework with 

standard algorithms. 

Table 3: Equivalent Key Strength Mapping 

Cryptosystem Bit Security Level (approx.) Equivalent RSA Key 

Length (bits) 

ECC-256 

(Curve25519) 

128 bits ≈ RSA-3072 

ECC-384 192 bits ≈ RSA-7680 

AES-128 / 

ChaCha20-256 

128 bits ≈ RSA-3072 

HMAC-SHA-256 Collision probability ≈ 2⁻²⁵⁶ – 

As shown in Table 3, ECC-256 + HMAC-SHA-256 delivers security equivalent to 

RSA-3072 while consuming <10% of its computation energy — suitable for low-

power IoT nodes. 

Entropy and Randomness Validation 

A NIST SP800-22 statistical test suite was applied to 1 MB of generated group-key 

shares. Average p-values > 0.01 for all 15 tests confirm cryptographically secure 

randomness and uniform distribution of shares. Entropy H(X) ≈ 7.99 bits per byte 

indicates near-ideal randomness. 

Table 4: Attack Simulation and Compromise Probability 

Compromised Nodes (t) Probability of Full 

Reconstruction (Pᵣ) 

1 (< threshold) 0 

2 (< threshold) <10⁻⁷ 

3 (= threshold) 1 

4 or 5 (> threshold) 1 

Table 4 summarises simulated compromise probabilities for the threshold secret-

sharing scheme: a single compromised node yields no full reconstruction, 

compromise of two nodes gives a negligible probability of full reconstruction under 

the assumed computational hardness, and three or more compromised nodes enable 

authorised reconstruction. All reconstructions at or above the threshold are protected 

by HMAC-based tamper detection to ensure share integrity. 
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Table 5: Security–Performance Trade-off 

Algorithm Confidentiality Integrity Key 

Size 

(bits) 

Avg 

Computation 

(ms) 

Communicati

on Overhead 

(KB) 

Proposed 

(ECC-256 + 

SSS + 

ChaCha20 + 

HMAC) 

High High 256 2.0 1.0 

AES-GCM + 

Pre-Shared 

Key 

High High 128 1.5 1.2 

RSA-2048 + 

PKI 
High Medium 2048 6.0 3.8 

ECC-DH + 

AES 
High High 256 3.5 1.5 

Table 5 compares confidentiality, integrity, key size, average computation, and 

communication overhead across schemes: the proposed hybrid (ECC-256 + SSS + 

ChaCha20 + HMAC) delivers high confidentiality and integrity with a 256-bit key 

while keeping average computation low (~2.0 ms) and communication overhead 

minimal (~1.0 KB), substantially outperforming RSA-2048 (6.0 ms, 3.8 KB) and 

showing comparable efficiency to AES-GCM. ECC-DH+AES incurs higher latency 

and overhead, whereas the proposed design balances strong cryptographic strength, 

low resource use, and distributed key resilience—making it well-suited for 

constrained IoT deployments. 

2) Communication Complexity and Scalability Evaluation 

Group Key Agreement protocols are dominated by communication cost rather than 

computation. Analytical and simulated results show the proposed protocol’s linear 

behaviour. 

Analytical Communication Model 

For n devices, each device broadcasts its encrypted share to (n − 1) peers. Total bits 

per node = (n − 1) × (S + C) × 8, where S=256B and C=64B. For 50 nodes ≈125 KB 

per node — well within BLE or LoRaWAN limits. 

Table 6: Scalability Simulation (10 – 100 Nodes) 

No. of Devices Avg Key Exchange 

Latency (ms) 

Bandwidth per Device 

(KB) 

10 22 1.5 

50 98 6.2 

100 205 12.4 
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Table 6 shows near-linear scaling: average key-exchange latency and per-device 

bandwidth increase with device count. Importantly, CPU load remained under 1% on 

an ESP32 at 100 devices, indicating the protocol is lightweight and suitable for 

constrained IoT deployments; include testbed/network details in Methods for 

reproducibility. 

Node Churn and Re-key Analysis 

When a node joins or leaves, only affected shares are regenerated. For t=3 and each 

step≈2ms, the total rekey≈6ms. Thus, membership changes introduce a <5% delay in 

group stability. 

3) Formal Security Validation and Threat Model 

Table 7: Threat Model 

Threat Mitigation 

Replay Attack Nonce + HMAC binding prevents reuse of messages 

Man-in-the-Middle ECC-ECDH mutual key derivation + HMAC verification 

Impersonation Device IDs bound to HMAC signatures 

Collusion of < t Nodes Shamir's threshold prevents key reconstruction 

Key Compromise Fresh session keys ensure forward secrecy 

Table 7 summarises the primary threats and corresponding countermeasures: replay 

attacks are prevented by nonces bound into HMACs, man-in-the-middle is mitigated 

through mutual ECC-ECDH key derivation plus HMAC verification, and 

impersonation is addressed by binding device identities to HMAC-signed messages. 
 

BAN Logic Validation  

Under BAN logic, after valid HMAC verification, both A and B believe they share 

key K. Hence, mutual authentication and key freshness are achieved, satisfying the 

logic’s goals. 

Automated Verification Reference 

A ProVerif 2.04 model confirmed no replay or key leakage traces. Queries for 

secrecy and authentication were satisfied, proving resilience under the eCK model. 

Table 8: Summary of Security Properties 

Property Achieved By Result 

Confidentiality ECC + ChaCha20 Secure key exchange & 

encrypted shares 

Integrity HMAC-SHA-256 Tamper-detection of shares 

Authentication HMAC on Device ID + Nonce Mutual entity verification 

Forward Secrecy Fresh ECC keys per session Old key compromise is 

harmless 

Fault Tolerance Shamir t-of-n scheme Operates with partial nodes 

Scalability Linear communication cost Efficient for large groups 

Table 8 shows that combining ECC-based key exchange with ChaCha20 plus 

HMAC-SHA-256 delivers confidentiality, integrity, and mutual authentication 
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(HMAC over device ID + nonce), while fresh per-session ECC keys provide forward 

secrecy.  

The proposed protocol satisfies BAN logic goals of freshness and belief and passes 

ProVerif checks for secrecy and authentication. It is formally verified against replay, 

impersonation, and man-in-the-middle attacks, confirming its cryptographic 

soundness. 

VII.     Conclusion and Future Work 

We present a lightweight, decentralised group key-agreement protocol 

tailored for IoT systems. Rather than requiring each device to perform full key 

generation, the protocol employs Shamir’s Secret Sharing to reduce computational 

load. A threshold design adds fault tolerance, so the network keeps running even if 

some nodes fail—without depending on a central authority. HMAC provides tamper 

protection and message integrity, while elliptic-curve cryptography and ChaCha20 

enable secure, efficient peer-to-peer exchange of key shares. Taken together, these 

choices deliver stronger resilience and better performance without sacrificing 

security, making the protocol well-suited to resource-constrained IoT deployments. 

The proposed lightweight, edge-layer group key agreement protocol performs well 

across multiple metrics. It generates keys in about 2 ms, outperforming or matching 

other distributed and centralised schemes. Key distribution overhead is kept to 

roughly 1 KB per node, and the memory footprint is around 20 KB, which fits 

constrained devices. Encryption and decryption are complete in about 3 ms, and the 

algorithm’s cost grows linearly with group size (O(n)). The design also demonstrated 

strong fault tolerance and scaled smoothly to large groups, making it a solid choice 

for secure, efficient group communication in wide-scale IoT deployments. 
Quantitative evaluation confirmed 128-bit equivalent security, verified entropy, and 

scalable communication complexity up to 100 nodes with less than 5 % bandwidth 

overhead under node churn. Formal verification using BAN Logic and ProVerif 

under the Dolev–Yao adversarial model demonstrated resistance to replay, 

impersonation, and man-in-the-middle attacks, achieving confidentiality, authenticity, 

and forward secrecy. 

As part of future work, we plan to include a dynamic threshold adjustment 

mechanism to adapt the key reconstruction based on the number of active devices. To 

facilitate larger and more scalable IoT deployments, future work will also explore 

cloud-assisted extensions. Additionally, the integration of Zero-Knowledge Proofs 

will be investigated to enhance authentication without exposing sensitive information. 

The proposed framework can also be adapted for other resource-constrained networks 

such as wireless sensor systems and embedded healthcare devices, where secure and 

efficient group communication is crucial. 
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