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Abstract 

This study introduces a parametric preliminary design of central core bracing 

tailored for towers and tall buildings dominated by dynamic flexural vibrations and 

handled by accidental and serviceability deflections. In such slender systems, the 

determination of the core thickness is of critical importance to structural engineers, as 

it formally validates the pre-project stage and, subsequently, enables proper structural 

detailing outcomes in accordance with seismic regulations and technical standards. 

This issue is a real challenge, as it typically entails an unlimited number of attempted 

iterations and enormous computational time to converge towards the optimal values of 

the structural load-bearing elements. 

To address this problem, we introduce a streamlined methodological approach, 

structured as a practical guideline, aimed at defining an optimal variation of the 

thickness profile and facilitating accurate structural sizing. This dynamic and 

structural optimization is governed by the max-min formulation of the natural 

frequency eigenvalue. For this, two strategic zones, depending on the height of the 

tower, were delineated. Additionally, the construction material usage quantity 

constraint is imposed to ensure its optimal consumption, thereby establishing a bridge 

between structural design maturity and the ambitions for increasing profits and 

resource savings. The principal advantage of this mechanical and mathematical 

resolution lies in its simplicity and practicality, allowing rapid and efficient hand-use 

calculations.  

The present paper is crowned by an illustrative case study designed to evaluate the 

tangible benefits achieved through the dynamic modal analysis. 
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I.    Introduction   

Our new era is increasingly defined by a prominent and visible urbanization 

pressure. Consequently, the development and planning of strategic land-use zoning 

specifically dedicated to high-rise buildings and tall towers have become a real 

imperative and a critical necessity, aiming to accommodate the escalating demand 

among urban populations for spatially efficient and functionally optimized residential 

and office spaces. This can be considered a fundamental phenomenon in the current 

urbanization [I]. 

This further underscores the fact that tall buildings and tower developments offer a 

genuine opportunity for real estate investors and developers seeking not only to 

maximize the profitability per square meter of land but also to accelerate the return on 

investment timelines [XIV]. 

From a strictly mechanical and structural standpoint, the projected floor’s number 

induces a significant seismic effect on such tall structures [VI], and it becomes a 

priority to safeguard human lives and mitigate structural damage by developing 

effective solutions to ensure safety under various loading conditions and improve 

overall stability [II]. Therefore, their structural design cannot be limited to a mere 

transcription of architectural conceptual drawings and plans. 

Indeed, numerous studies [V] [XIII] [XVII] concur on the inherent complexity of 

structural dynamic analysis, emphasizing that the height of slender towers constrains 

civil engineers within highly sensitive computational outputs. This sensitivity stems 

from the strong interdependence with input parameters and data, particularly the 

dimensions of structural load-bearing elements and the bracing system’s positioning. 

In this context, the dynamic response of high-rise buildings and tall towers results from 

a refined and targeted balance between several fundamental parameters [IX] [XVI] 

[XVII], such as the horizontal and vertical stiffness or inertia distribution, mass 

distribution in-plane and along the height, the geometric and dimensional 

characteristics of bracing structural elements, and their specific configuration.  

In the same frame, besides global dynamic properties, the resilience (ultimate strength–

deformation capacity) of a shear-wall-braced structure also depends on its symmetry, 

which enhances the perceived regularity and upgrades its seismic response, as 

demonstrated by Patil et al. [XV]. This rationale underpins our decision to orient this 

research paper toward central-core bracing systems. 

Translating these principles into a reliable numerical model requires a realistic and 

accurate dynamic behavior representation. In this regard, the in-depth work of Dym 

and Williams [VII] has highlighted the limitations of simplified classical models, which 

are often unable to accurately predict the vibratory behavior of tall buildings. 

Furthermore, as emphasized by Paz and Leigh [XVI], a uniform stiffness distribution 

along the entire height of a building tends to concentrate seismic forces at the base, 
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which amplifies differential displacements and exacerbates structural vulnerability. In 

contrast, a degressive distribution - i.e., a stiffness or flexural inertia that decreases with 

altitude significantly enhances and upgrades the Structural Accidental State response, 

reduces base-level stresses in Ultimate Limit State, and improves the mastery of 

Serviceability-Limit State deflections.  

This approach is further supported by the insightful parametric study of Alavi et al. 

[III], whose model integrates a minimum stiffness constraint for optimizing lateral 

stability. They advocate for abandoning homogeneous stiffness or constant inertia 

assumptions in favor of variable parametric distributions, which are better suited to 

current trends and modernist dynamic modeling requirements. 

In its turn, too, the work of Rahgozar et al. [XVIII] proposed an analytical formulation 

based on Timoshenko beams with variable cross-sections, allowing for the adjustment 

of natural frequencies and vibration modes in slender structures.  

This overall trend is likewise supported by Nieto et al. [XII], who concur on the 

necessity of designing an optimized thickness profile to reconcile structural efficiency 

with profitability and, consequently, with cost rationalization. The study carried out by 

Lam and Ho [X] corroborates this conclusion. It provides concrete evidence of the 

influence of shear-wall thickness on dynamic structural behavior and how it affects the 

internal forces and horizontal displacements. 

A range of approaches is still evolving toward material optimization and efficiency, 

involving increasingly high degrees of complexity that require advanced analytical 

methodologies. One of these is the novel hybrid optimization framework for sizing 

shear wall high-rise buildings proposed by Haopeng et al. [VIII], which combines the 

discrete particle swarm optimization (PSO) technique with the response surface 

method. 

This paper is intended to develop a simple, practical, and functional guideline for the 

parametric pre-sizing of slender towers by central core bracing (with shear walls). This 

guideline is intended for use during preliminary structural designs and assessments, a 

critical milestone for iterative engineering convergence between dynamic structural 

design and seismic performance improvement. 

Accordingly, this study relies on the free vibration equation of a cantilever beam (fixed 

at its base and free at its top) [XVI], and incorporates mechanically intuitive parameters 

easily grasped by practicing civil engineers, such as wall thickness, inertia, natural 

frequency, fundamental pulsation, and general/interstory displacement. This easy-to-

use parametric study fully aligns with the goals of financial optimization, resource 

rationalization, and effective upgrading of both modal dynamic response and seismic 

performance, through the targeted adjustment of the fundamental frequency of the 

modeled structural system. 

II.   Mechanical Formulation of Dynamic Structural Behavior with Distributed 

Properties 

The dynamic analysis of structures, represented through lumped parameter 

models with discrete coordinates for single-degree-of-freedom systems and for multi-
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degree-of-freedom systems [XX], offers a good methodology for evaluating structural 

behaviors under dynamic loads. Nonetheless, this modeling yields only rough results 

of the real dynamic response. This is added to the fact that these structures possess 

continuous distributed properties with an unlimited degrees of freedom [XVI]. 

The present paper is based on the dynamic theory of beams. For this reason, the 

treatment of our towers and tall buildings is based on the simple bending theory of a 

cantilever beam (one end fixed and the other end free), as it is commonly used for 

engineering purposes [XVI]. This beam model is thus assumed to exhibit distributed 

mass and elasticity. This is shown in Figure 1. 

 

Fig. 1. Plan view of a typical floor, elevation view of the shear wall, and a 3D 

perspective of the central core bracing system. 

The origin of the vertical coordinate axis z is defined at the free end, positioned at the 

top of the tower. The positive z-axis extends downward. The base, representing the 

fixed end, is positioned at z = H, where H corresponds to the total height of the tower. 

Accordingly, and for the purposes of streamlining and broadening the applicability of 

the proposed solution, we shall adopt the following formulation : 

 𝑧̅ = 𝑧
𝐻⁄                                                                                                           (1) 

The plane's lateral displacement in the perpendicular direction of the z (or z̅) axis is 

denoted by y. It can be expressed as the product of two separate functions: a function 

of deflection position Δ(z) (or Δ(z̅)) and a function of time ε(t) [XVI], that is: 

𝑦(𝑧, 𝑡) = 𝛥(𝑧) ⋅ 𝜀(𝑡)                                                                                      (2) 

Hence, based on Figure 1, the boundary conditions for this cantilever beam, 

considering overdots indicate derivatives with respect to z, are as follows:  

▪ At the free end (top of the tower): That is, at z = z̅ = 0, the bending 

moment M and the shear force V must be zero : 
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Condition 1: 𝛥(𝑧 = 0) = 𝛥𝑚𝑎𝑥 → 𝛥̇(𝑧 = 𝑧̅ = 0) = 0                                      (3) 

Condition 2: 𝑀(0, 𝑡) = 0 → 𝑦̈(0, 𝑡) = 0 → 𝛥̈(𝑧 = 𝑧̅ = 0) = 0                       (4) 

Condition 3: 𝑉(0, 𝑡) = 0 → 𝑦̇̈(0, 𝑡) = 0 → 𝛥̇̈(𝑧 = 𝑧̅ = 0) = 0                        (5) 

▪ At the fixed end (recessed end of the tower): that is, at z = H or, z̅ = 1, 

the deflection and the slope must be zero : 

Condition 4: 𝑦(𝐻, 𝑡) = 0 → 𝛥(𝑧 = 𝐻) = 𝛥(𝑧̅ = 1) = 0                                 (6) 

Condition 5 : 𝑦̇(𝐻, 𝑡) = 0 → 𝛥̇(𝑧 = 𝐻) = 𝛥̇(𝑧̅ = 1) = 0                                 (7) 

While solving such equations analytically is generally more complex than discrete 

methods, the study of continuous systems, particularly for simple structural 

configurations, yields valuable insights and outcomes with relatively modest 

computational effort. As a matter of fact, such analyses play a crucial role in assessing 

approximate methods based on discrete models. Acceleration, as well as variations in 

shear force and bending moment, are described using partial derivatives since these 

quantities depend simultaneously on two variables: the spatial coordinate z along the 

tower (modeled by a beam) and the temporal variable t [XVI].  

Assuming that shear deformation, rotary inertia, and damping are neglected, the lateral 

flexural equation of free vibration of a cantilever beam according to the perpendicular 

motion to the z [XVI], is : 

 𝐸𝐼(𝑧) ⋅
𝜕4𝑦

𝜕𝑧4 + 𝑚 ⋅
𝜕2𝑦

𝜕𝑡2 = 0                                (8) 

Where E is Young’s modulus of elasticity, 

And I(z) represents the moment of inertia associated with the transverse section of the 

hollow central core. It is defined by : 

𝐼(𝑧) = 𝐼0. 𝑒(𝑧)                                                                                               (9) 

Considering that e(z) denotes the core thickness as a function of the vertical coordinate, 

as shown in Figure 1.  

And I0 corresponds to the moment of inertia of the core with a unit thickness. 

The substitution of equations (2) and (9) in the differential equation (8) leads to : 

𝜕2𝜀(𝑡)

𝜕𝑡2 + [
𝐸𝐼0

𝑚
.

𝜕2

𝜕𝑧2(𝑒(𝑧).𝛥̈(𝑧))

𝛥(𝑧)
] . 𝜀(𝑡) = 0                                                                      (10) 

Or : 
𝜕2𝜀(𝑡)

𝜕𝑡2 + [√
𝐸𝐼0

𝑚
. 𝛺]

2

. 𝜀(𝑡) = 0                                                                              (11) 

Where : 𝛺2 =
𝜕2

𝜕𝑧2(𝑒(𝑧).𝛥̈(𝑧))

𝛥(𝑧)
                                                                                          (12) 

Considering that 𝜔 represents the angular frequency of the beam. This natural 

frequency of the system is written as follows : 
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   𝜔2 =
𝐸𝐼0

𝑚
. 𝛺2                                                  (13) 

A clear proportionality and dependence can be readily inferred between Ω and the 

natural frequency.  

Then,     
𝜕2

𝜕𝑧2 (𝑒(𝑧). 𝛥̈(𝑧)) − 𝛺2. 𝛥(𝑧) = 0                                                                      (14) 

III.      Formulation of the Optimization Problem 

In this section, we shall begin by refining the scope of our research problem, 

which will subsequently enable us to formulate it mathematically as a max-min model, 

subject to a set of technical constraints. 

Mathematical and technical basis and framing of the problem 

By adhering closely to the analytical implications of equation (13) and given that e(z) 

is the sole unknown for us, the problem is essentially linked with the optimization of 

the fundamental natural frequency. For this dynamic design optimization, it is standard 

practice to maximize the eigenvalue of the fundamental natural frequency to avoid the 

risk of resonance [XXII]. The latter, of course, is associated with its smallest value [IV] 

[XXI], denoted here ω𝑓. Considering the variable component of equation (13), and for 

the sake of convenience, our focus shall, by transitivity, be directed solely toward the 

variable Omega Ω. Consequently, Ωf is utilized as the objective function within our 

proposed optimization model, which is expressed through a max-min formulation. 

This governing parameter plays a critical role in regulating the dynamic response of 

the structure, in accordance with optimal determination of the vertical variation of the 

central core’s thickness e(z). This approach effectively contributes to reducing the 

quantity and consumption of construction materials, such as reinforced concrete, for 

instance, and consequently results in a cost-effective solution driven by a targeted 

design strategy and upgraded seismic response. 

To faithfully adhere to this underlying rational design framework, an initial constraint 

is imposed on the thickness function by stipulating that the iterative parameter, used 

for targeted optimization - aimed at reducing material consumption -, is the average 

thickness of the entire structure, denoted by em. A second constraint is defined by the 

parameter emin, representing the minimum core thickness as mandated by current 

seismic design regulations and standards. This minimum thickness is applied to the 

upper stories of the tower, where the bending moment effectively is zero at the top 

(M=0). For the lower stories, the thickness varies but consistently remains strictly 

greater than the prescribed positive minimum throughout the entire structural height. 

This formulation highlights the existence of a critical point, denoted 𝑧𝑐𝑟 ∈ [0, 𝐻] or 

𝑧𝑐̅𝑟 ∈ [0, 1], which delineates the structure into two distinct zones as shown in Figure 

2: Constant Thickness Zone (CT) and Variable Thickness Zone (VT) : 

▪ For CT Zone: ∀𝑧 ∈ [0, 𝑧𝑐𝑟]: 𝑒(𝑧) = 𝑒𝐶𝑇(𝑧) = 𝑒𝑚𝑖𝑛 

                  or, ∀𝑧̅ ∈ [0, 𝑧𝑐̅𝑟]: 𝑒(𝑧̅) = 𝑒𝐶𝑇(𝑧̅) = 𝑒𝑚𝑖𝑛                                   (15) 
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▪ For VT Zone: ∀𝑧 ∈ [𝑧𝑐𝑟, 𝐻]: 𝑒(𝑧) = 𝑒𝑉𝑇(𝑧) 

                  or, ∀𝑧̅ ∈ [𝑧𝑐̅𝑟, 1]: 𝑒(𝑧̅) = 𝑒𝑉𝑇(𝑧̅)                                                (16)                                                

In the CT Zone, the core thickness remains constant, resulting in a constant flexural 

rigidity 𝐸𝐼. Consequently, the modal deformation is directly proportional to the 

bending moment, which varies along the vertical axis, and therefore, the curvature 

within this zone is necessarily non-uniform. 

 

Fig. 2. Tall Tower divided into two zones according to central core thickness. 

In contrast, the VT Zone allows for a gradual adjustment of thickness, and thus of 

rigidity. As previously suggested, it is possible to adopt a thickness variation law such 

that changes in bending moment are counterbalanced by corresponding changes in 

flexural rigidity governing which depends on the eigenvalue of natural frequency [IV] 

[XXI]. 

This approach may yield a more regular and controlled modal deformation in the lower 

part of the structure, harmonized with the frequency optimization governed by the 

max–min formulation. The curvature in this zone is therefore constant. 

Mathematical and technical formulation of the problem 

Based on the framework established with respect to the desired dynamic behavior of 

the tower’s central core bracing, the problem addressed in the present paper can be 

formulated as follows: 

{

𝑀𝑎𝑥{𝛺𝑓
2 = 𝑀𝑖𝑛(𝛺𝑖

2)}; 𝑖 = 1,2, … , +∞

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
∫  

𝐻

0
 𝑒(𝑧)𝑑𝑧 = 𝑒𝑚. 𝐻

∀ 𝑧 ∈  [0; 𝐻 ]: 0 < 𝑒𝑚𝑖𝑛 ≤ 𝑒(𝑧)

                                             (17) 

Or, {

𝑀𝑎𝑥{𝛺𝑓
2 = 𝑀𝑖𝑛(𝛺𝑖

2)}; 𝑖 = 1,2, … , +∞

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
∫  

1

0
 𝑒(𝑧̅)𝑑𝑧̅ = 𝑒𝑚

∀ 𝑧̅  ∈  [0; 1 ]: 0 < 𝑒𝑚𝑖𝑛 ≤ 𝑒(𝑧̅)

                                     (18) 
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Consequently, two additional boundary conditions can be inferred as a direct outcome 

of incorporating the aforementioned critical point : 

▪ Displacement continuity condition : 

Condition 6 : ΔCT(zcr) = ΔVT(zcr), or ΔCT(𝑧𝑐̅𝑟) = ΔVT(𝑧𝑐̅𝑟)                        (19) 

▪ Slope continuity condition : 

Condition 7 : Δ̇CT(zcr) = Δ̇VT(zcr), or Δ̇CT(𝑧𝑐̅𝑟) = Δ̇VT(𝑧𝑐̅𝑟)                       (20) 

 

IV.   Solution of the Optimization Problem 

The resolution of our optimization system is structured around five key steps, 

as detailed below: 

Key Step 1: Rayleigh-Ritz energy method 

By using the Rayleigh-Ritz energy method, we can consider the Rayleigh quotient to 

be approximately equal to the system's natural frequency. This is deduced from the 

conservation of energy, where the equality between the average kinetic and potential 

energies is considered. 

Based on equations (11) and (13): 𝑅(𝜔) = 𝜔2                          (21) 

This implies considering the orthonormality of the eigen-vectors and the equation (13), 

that : 

𝜔𝑛
2 =

∫  
𝐻

0
 𝐸𝐼0.𝑒(𝑧).[𝛥̈(𝑧)]2𝑑𝑧

∫  
𝐻

0
 𝑚.[𝛥(𝑧)]2𝑑𝑧

= 𝐸𝐼0. ∫  
𝐻

0
𝑒(𝑧). [𝛥̈(𝑧)]2𝑑𝑧 =

𝐸𝐼0

𝑚
. 𝛺𝑓

2                 (22) 

Then : 𝛺𝑓
2 = 𝑚. ∫  

𝐻

0
 𝑒(𝑧). [𝛥̈(𝑧)]2𝑑𝑧                                                                      (23) 

Key Step 2: Lagrange multipliers method 

To find the local maxima and minima of the objective function in equation (17) subject 

to equality constraints, we use the method of Lagrange multipliers. The corresponding 

Lagrangian is formulated, taking into account equation (23), as follows :  

  ℒ = 𝛺𝑓
2 − 𝜆. (∫  

𝐻

0
𝑒(𝑧). 𝑑𝑧 − 𝑒𝑚. 𝐻)                                            (24) 

Where: 𝜆 ≥0 denotes the Lagrange multiplier. 

Or, ℒ = 𝑚. ∫  [𝛥̈(𝑧)]2𝐻

0
. 𝑒(𝑧). 𝑑𝑧 − 𝜆. ∫  

𝐻

0
𝑒(𝑧). 𝑑𝑧 + 𝜆. 𝑒𝑚. 𝐻                 (25) 

Among the critical points of the Lagrangian is the condition that its derivative with 

respect to e must be zero. Then, 𝛿ℒ
𝛿𝑒⁄ = 0                                                                        (26) 

Which means that : 

 𝛿ℒ
𝛿𝑒⁄ = ∫  

𝐻

0
  (𝑚. 𝛥̈𝑓

2 − 𝜆). 𝛿𝑒. 𝑑𝑧 = 0                            (27) 
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So, given that the curvature Δ̈VT in the VT Zone (Variable Thickness) is constant – a 

meticulously validated corollary -, it follows that: 

𝛥̈𝑓(𝑧) = 𝛥̈𝑓 = ±√𝜆
𝑚⁄ = ±𝜈 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 = 𝛥̈𝑉𝑇                          (28)  

Key Step 3: The deflection position function 

The deflection position function Δ(z) (or Δ(z̅)), represents the modal displacement 

shape and is defined separately over the two structural regions as follows: 

▪ VT Zone : 

By leveraging the preceding equation (28) and performing a double integration while 

applying the associated boundary conditions (conditions 5 and 4) specified, 

respectively, in equations (7) then (6), the following expression is obtained: 

 𝛥𝑉𝑇(𝑧) =
1

2
𝜈. (𝑧 − 𝐻)2                                                                               (29) 

Alternatively, the formulation can be expressed using the relative height variable 

defined in equation (1): 𝛥𝑉𝑇(𝑧̅) =
1

2
𝜈. 𝐻2. ( 𝑧̅ − 1)2                                              (30) 

For the sake of simplification, the following formulation may be considered: 

∀ 𝑧̅  ∈  [𝑧̅𝑐𝑟; 1 ]: 𝛥𝑉𝑇(𝑧̅) = 𝜓𝜈 . 𝛥̅𝑉𝑇(𝑧̅)                                                     (31) 

By defining new variables : 𝜓𝜈 =
1

2
𝜈𝐻2 and  𝛥̅𝑉𝑇(𝑧̅) = ( 𝑧̅ − 1)2                (32) 

▪ CT Zone : 

By substituting equation (15) - which defines the allocation of the minimum core 

thickness in the upper floors of the tower - into equation (14), we obtain: 

𝛥̈̈(𝑧) − 𝛺𝑒
4. 𝛥(𝑧) = 0                                                                                    (33) 

Where a new variable is defined, 𝛺𝑒
4 =

𝛺2

𝑒𝑚𝑖𝑛
                                                 (34) 

And this, considering that four overdots indicate the fourth derivative of Δ with respect 

to  

  z : 𝛥̈̈(𝑧) = 
𝜕4

𝜕𝑧4  𝛥(𝑧)                                                                                        (35) 

The solution to this fourth-order differential equation is obtained by constructing its 

characteristic equation, based on the assumption of the following solution candidate 

function: 𝛥(𝑧) = 𝐴. 𝑒𝑝𝑧, where: 𝐴 𝜖 ℝ and 𝑝 𝜖 ℂ.                     (36) 

The characteristic equation is as follows: 𝐴. 𝑒𝑝𝑧. (𝑝4 − 𝛺𝑒
4) = 0                  (37) 

This leads us to two potential solutions: 𝑝 = ±𝛺𝑒 or, 𝑝 = ±𝛺𝑒 . 𝑖              (38)  

Where, 𝑖 𝜖 ℂ and it’s the symbol of the imaginary unit. Therefore : 

𝛥𝐶𝑇(𝑧) = 𝛼1. 𝑒𝛺𝑒.𝑧 + 𝛼2. 𝑒−𝛺𝑒.𝑧 + 𝛼3. 𝑠𝑖𝑛(𝛺𝑒 . 𝑧) + 𝛼4 𝑐𝑜𝑠(𝛺𝑒 . 𝑧)            (39) 
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By introducing a change of variable, we deduce that: 

𝛥𝐶𝑇(𝑧̅) = 𝛼1. 𝑒𝛺̅𝑒.𝑧̅ + 𝛼2. 𝑒−𝛺̅𝑒.𝑧̅ + 𝛼3. 𝑠𝑖𝑛(𝛺̅𝑒 . 𝑧̅) + 𝛼4 𝑐𝑜𝑠(𝛺̅𝑒 . 𝑧̅)            (40) 

Where in according to (34), 𝛺̅𝑒
4 = (𝛺𝑒 . 𝐻)4 =

𝛺2

𝑒𝑚𝑖𝑛
∙ 𝐻4                               (41) 

And the coefficients 𝛼1, 𝛼2, 𝛼3 and 𝛼4 𝜖 ℝ. 
 

All belonging will be determined based on the boundary, displacement continuity, and 

slope continuity conditions (Conditions 2, 3, 6, and 7) specified in equations (4), (5), 

(19), and (20). 

 By applying equations (4) and (5), we obtain : {
𝛼3 = 𝛼1 − 𝛼2

𝛼4 = 𝛼1 + 𝛼2
                                  (42) 

In turn, the equations (19) and (20) yield the following simplified results considering 

(40), (41), (42), (31), and (32): 

∀ 𝑧̅  ∈  [0; 𝑧𝑐̅𝑟 ]: 𝛥𝐶𝑇(𝑧̅) = 𝜓𝜈 . 𝛥̅𝐶𝑇(𝑧̅)                                                         (43) 

Where: 𝜓𝜈 is defined in equation (32),  

 𝛥̅𝐶𝑇(𝑧̅) = [𝛼̅1. 𝑇1(𝑧̅)⌊𝛺̅𝑒⌋ + 𝛼̅2. 𝑇2(𝑧̅)⌊𝛺̅𝑒⌋]                                                   (44) 

And : {
𝛼̅1 =

α1
ψν

⁄ = [𝑇̅4. 𝑧𝑐̅𝑟
2 + 2. (

𝑇̅2

𝛺̅𝑒
− 𝑇̅4) . 𝑧𝑐̅𝑟 − (

2𝑇̅2

𝛺̅𝑒
− 𝑇̅4)] (2. 𝑇̅5)⁄

𝛼̅2 =
α2

ψν
⁄ = [𝑇̅3. 𝑧𝑐̅𝑟

2 − 2. (
𝑇̅6

𝛺̅𝑒
+ 𝑇̅7) . 𝑧𝑐̅𝑟 + (

2𝑇̅1

𝛺̅𝑒
+ 𝑇̅3)] (2. 𝑇̅5)⁄

 

With: 𝜂̅ = 𝛺̅𝑒 . 𝑧𝑐̅𝑟 and 𝛺̅𝑒 is defined in equation (41), 

And:

{
𝑇̅1 = 𝑇1(𝑧𝑐̅𝑟)⌊𝛺̅𝑒⌋ = 𝑒𝛺̅𝑒.𝑧̅𝑐𝑟 + 𝑠𝑖𝑛(𝛺̅𝑒 . 𝑧𝑐̅𝑟) + 𝑐𝑜𝑠(𝛺̅𝑒. 𝑧𝑐̅𝑟) = 𝑒𝜂̅ + 𝑠𝑖𝑛(𝜂̅) + 𝑐𝑜𝑠(𝜂̅)

𝑇̅2 = 𝑇2(𝑧𝑐̅𝑟)⌊𝛺̅𝑒⌋ = 𝑒−𝛺̅𝑒.𝑧̅𝑐𝑟 − 𝑠𝑖𝑛(𝛺̅𝑒. 𝑧𝑐̅𝑟) + 𝑐𝑜𝑠(𝛺̅𝑒. 𝑧𝑐̅𝑟) = 𝑒−𝜂̅ − 𝑠𝑖𝑛(𝜂̅) + 𝑐𝑜𝑠(𝜂̅)
 

{
𝑇̅3 = 𝑇3(𝑧𝑐̅𝑟)⌊𝛺̅𝑒⌋ = 𝑒𝛺̅𝑒.𝑧̅𝑐𝑟 − 𝑠𝑖𝑛(𝛺̅𝑒. 𝑧𝑐̅𝑟) + 𝑐𝑜𝑠(𝛺̅𝑒. 𝑧𝑐̅𝑟) = 𝑒𝜂̅ − 𝑠𝑖𝑛(𝜂̅) + 𝑐𝑜𝑠(𝜂̅)

𝑇̅4 = 𝑇4(𝑧𝑐̅𝑟)⌊𝛺̅𝑒⌋ = 𝑒−𝛺̅𝑒.𝑧̅𝑐𝑟 + 𝑠𝑖𝑛(𝛺̅𝑒. 𝑧𝑐̅𝑟) + 𝑐𝑜𝑠(𝛺̅𝑒. 𝑧𝑐̅𝑟) = 𝑒−𝜂̅ + 𝑠𝑖𝑛(𝜂̅) + 𝑐𝑜𝑠(𝜂̅)
   

𝑇̅5 = 𝑇5(𝑧𝑐̅𝑟)⌊𝛺̅𝑒⌋ = [(𝑒𝛺̅𝑒.𝑧̅𝑐𝑟 + 𝑒−𝛺̅𝑒.𝑧̅𝑐𝑟). 𝑐𝑜𝑠(𝛺̅𝑒. 𝑧𝑐̅𝑟) + 2] = [(𝑒𝜂̅ + 𝑒−𝜂̅). 𝑐𝑜𝑠(𝜂̅) + 2]  

{
𝑇̅6 = 𝑇6(𝑧𝑐̅𝑟)⌊𝛺̅𝑒⌋ = 𝑒𝛺̅𝑒.𝑧̅𝑐𝑟 − 𝑠𝑖𝑛(𝛺̅𝑒. 𝑧𝑐̅𝑟) − 𝑐𝑜𝑠(𝛺̅𝑒. 𝑧𝑐̅𝑟) = 𝑒𝜂̅ − 𝑠𝑖𝑛(𝜂̅) − 𝑐𝑜𝑠(𝜂̅)

𝑇̅7 = 𝑇7(𝑧𝑐̅𝑟)⌊𝛺̅𝑒⌋ = 𝑒𝛺̅𝑒.𝑧̅𝑐𝑟 + 𝑠𝑖𝑛(𝛺̅𝑒 . 𝑧𝑐̅𝑟) − 𝑐𝑜𝑠(𝛺̅𝑒. 𝑧𝑐̅𝑟) = 𝑒𝜂̅ + 𝑠𝑖𝑛(𝜂̅) − 𝑐𝑜𝑠(𝜂̅)
 

Key Step 4: The thickness function  

The thickness function e(z) (or e(z̅)) represents an optimal vertical distribution of the 

tower’s central core bracing aimed to upgrade and improve its seismic response. This 

function is defined separately over the two structural regions as follows: 

▪ VT Zone : 

By making the substitution of equations (28) into equation (14), the following 

expression is obtained: 

 𝑒̈(𝑧) =
𝛺2

𝜈
. 𝛥(𝑧)                                                                      (45) 
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So, 𝑒̈(𝑧̅) =
𝑑²𝑒(𝑧̅)

𝑑𝑧̅²
=  𝐻2.

𝑑²𝑒(𝑧̅)

𝑑𝑧̅²
=

𝛺2.𝐻2

𝜈
. 𝛥(𝑧̅)                                              (46) 

Therefore, considering the scope of the two defined zones and through a double 

integration process of equation (46), we obtain: 

𝑒(𝑧̅) =
𝛺2.𝐻2

𝜈
. [∫ ∫ 𝛥𝐶𝑇(𝑧̅). 𝑑²𝑧̅ 

𝑧̅𝑐𝑟

0
 

𝑧̅

0
+ ∫ ∫ 𝛥𝑉𝑇(𝑧̅). 𝑑²𝑧̅ 

𝑧̅

𝑧̅𝑐𝑟

𝑧̅

0
]                        (47) 

By using equations (31), (32), (41), and (43), equation (47) will be : 

𝑒(𝑧̅) =
1

2
𝛺̅𝑒

4. 𝑒𝑚𝑖𝑛. [∫ ∫ 𝛥̅𝐶𝑇(𝑧̅). 𝑑²𝑧̅ 
𝑧̅𝑐𝑟

0
 

𝑧̅

0
+ ∫ ∫ 𝛥̅𝑉𝑇(𝑧̅). 𝑑²𝑧̅ 

𝑧̅

𝑧̅𝑐𝑟

𝑧̅

0
]                  (48) 

Based on equations (32) and (44), and after calculating the double integration appearing 

in equation (48), the thickness function will be expressed as: 

∀𝑧̅ 𝜖 [𝑧𝑐̅𝑟; 1]: 𝑒(𝑧̅) = 𝑒𝑉𝑇(𝑧̅) =
1

24
𝛺̅𝑒

4. 𝑒𝑚𝑖𝑛 . [𝑧̅4 − 4. 𝑧̅3 + 6. 𝑧̅2 + 12(𝑇̅0 − 𝓀̅𝑐𝑟). 𝑧̅]  

𝑒(𝑧)̅ = 𝑒𝑉𝑇(𝑧̅) =
1

24
𝛺̅𝑒

4. 𝑒𝑚𝑖𝑛 . [𝑧̅4 − 4. 𝑧̅3 + 6. 𝑧̅2 + 12(𝑇̅0 − 𝓀̅𝑐𝑟). 𝑧̅]                    (49) 

Where, 𝛺̅𝑒 is defined in equation (41), 

𝓀̅𝑐𝑟 = 𝓀(𝑧𝑐̅𝑟) =
𝑧̅𝑐𝑟

3

3
− 𝑧𝑐̅𝑟

2 + 𝑧𝑐̅𝑟                                                                           (50) 

And, T̅0 =
1

Ω̅e
. (α̅1. T̅7 − α̅2. T̅8); knowing that these components have been defined in 

equation (44). 

▪ CT Zone : 

From the above, we save the following formula (15) : 

∀𝑧̅ ∈ [0, 𝑧𝑐̅𝑟]: 𝑒(𝑧̅) = 𝑒𝐶𝑇(𝑧̅) = 𝑒𝑚𝑖𝑛                                    

Key Step 5 – Final: Relationship between the unknowns 𝒛̅𝒄𝒓 and 𝜴̅𝒆 

To establish the sought-after relationship between the two unknowns, we introduce two 

additional conditions, referred to as Condition 8 and Condition 9. They respectively 

express the continuity of the thickness function, and the limitation of material usage, 

while maintaining a mastered average thickness, denoted 𝑒𝑚.  

The conditions are defined as follows: 

▪ Thickness function continuity condition : 

Condition 8 : 𝑒𝐶𝑇(𝑧𝑐̅𝑟) = 𝑒𝑉𝑇(𝑧𝑐̅𝑟)                                                                   (51) 

▪ Optimal mastery of the construction material usage condition : 

Condition 9: As mentioned in equation (18): ∫  
1

0
 𝑒(𝑧̅)𝑑𝑧̅ = 𝑒𝑚                        (52) 

These two conditions in equations (51) and (52) can be reformulated into alternative 

expressions, derived also from equation (15):  

𝑒𝑉𝑇(𝑧𝑐̅𝑟) = 𝑒𝑚𝑖𝑛                                                                                                    (53) 
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And, ∫  
1

𝑧̅𝑐𝑟
  𝑒𝑉𝑇(𝑧̅)𝑑𝑧̅ = 𝑒𝑚 − 𝑒𝑚𝑖𝑛. 𝑧𝑐̅𝑟                                                         (54) 

By substituting equations (49) and (50) into equation (53), we obtain the first 

relationship between the unknowns z̅cr and Ω̅e: 

𝑧𝑐̅𝑟
4 −

8

3
. 𝑧𝑐̅𝑟

3
+ 2. 𝑧𝑐̅𝑟

2 = 4. [𝑇̅0. 𝑧𝑐̅𝑟 −
2

𝛺̅𝑒
4]                                                        (55) 

And the second one is deduced by substituting equations (49) and (50) into equation 

(54): 

   𝓀m = {
1

120
. Ω̅e

4. [9. z̅cr
5 − 25. z̅cr

4 + 10. z̅cr
3 + 30(1 − T̅0). z̅cr

2 + 30 (
4

Ω̅e
4 −

                 1) . z̅cr + 30. T̅0 + 6]}                                                                                                   (56) 

Where, 𝓀𝑚 =
𝑒𝑚

𝑒𝑚𝑖𝑛
                                                                                                   (57) 

Table 1: Values of 𝐳̅𝐜𝐫, 𝛀̅𝐞 and 𝐓̅𝟎 for each input value of 𝓴𝐦 

𝓴𝒎  73,956 17,523 7,683 4,440 3,019 2,285 1,861 1,596 1,421 1,299 

𝒛̅𝒄𝒓  0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 

𝛀̅𝐞  6,175 4,247 3,369 2,836 2,467 2,193 1,979 1,806 1,663 1,542 

𝑻̅𝟎  0,051 0,105 0,164 0,230 0,303 0,385 0,477 0,580 0,694 0,822 
 

𝓴𝒎  1,213 1,150 1,104 1,070 1,045 1,026 1,014 1,006 1,001 1,000 

𝒛̅𝒄𝒓  0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00 

𝛀̅𝐞  1,439 1,349 1,270 1,201 1,139 1,083 1,032 0,987 0,945 0,907 

𝑻̅𝟎  0,964 1,121 1,294 1,484 1,692 1,920 2,168 2,437 2,728 3,042 

 

Fig. 3. Graph illustrating the relationship between z̅cr and 𝓀𝑚. 

By developing a simple algorithm in Python code, the values of z̅cr corresponding to 

Ω̅e can be obtained from equation (55), by progressively varying z̅cr in increments of 

0.05 within the interval between 0 and 1 (z̅cr ∈ [0;1]). This relationship between z̅cr 

and Ω̅e appears to be of significant value for establishing their numerical correlation 

with the coefficient 𝓀𝑚, through the application of equation (56). This enabled the 

construction of a ready-to-use table, as shown in Table 1, displaying, for each input 
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value of 𝓀𝑚, the associated values of z̅cr, Ω̅e and 𝑇̅0, and facilitated the direct 

representation of the graph in Figure 3, illustrating the relationship between z̅cr and 

𝓀𝑚. 

V.   Practical Guideline for the Structural Design Engineer 

This practical guideline is structured around three milestones, each easy to 

assimilate and simple to implement. They are presented as follows: 

First milestone 

To implement this targeted methodological procedure, the Structural Engineer will also 

draw upon their professional expertise. The input parameters to be defined include : 

▪ The tower height, denoted H, as specified in the architectural drawings, 

▪ The minimum thickness of the central core bracing of the tower, denoted emin, 

which should be derived from seismic regulations and best practices in Civil 

Engineering, 

▪ The average thickness of the central core bracing of the tower, denoted em, 

considered as an iterative value framing the optimization of material quantities 

and associated costs. 

Result 1: the value of the dimensionless coefficient 𝓀𝑚 is derived from equation (57). 

Second milestone 

Then, using this calculated value of 𝓀m, the critical relative height z̅cr can be 

determined directly from the Table 1 or Figure 3. 

Result 2: the value of the critical relative height z̅cr is now known. 

Third milestone 

Based on the preceding calculations, the optimal variation of thickness e(z̅), as 

proposed in the present article, can be determined by applying equations (49) and (15), 

which govern the thickness distribution of the central core bracing of the tower across 

the CT zone and VT zone (constant thickness zone and variable thickness zone). 

Result 3: the thickness functions eVT(z̅) and eCT(z̅) are now known. The targeted design 

is thus defined, and the engineering analysis process can follow. 

VI.   Case study – Illustrative application 

Brief Introduction  

The case study examines a representative R+32 tower with four basement levels 

(H=121 m), planned as part of a major urban development project for a new Financial  

City in Morocco [XI].  
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Fig. 4. Elevation view of the studied tower and section of the central bracing core for 

a typical floor plan 

Figure 4 displays the elevation view of the tower along with the key dimensions of the 

central bracing core in a typical plan layout. Dynamic modal analysis is carried out 

using specialized software (RSA 2025), dedicated to educational and research 

purposes. The analysis is based on the thickness distribution framework proposed in 

the present paper. 

Contextualization and studied variants 

Two design variants are considered within this illustrative application in the aim of 

illustrating the potential efficiency gains achievable through our proposed pre-sizing 

methodology :  

▪ The first variant (adopted by the engineering design office and architectural 

configuration - reference case) assumes a constant central core thickness, set at 

e = 50 cm = constant value. This thickness is considered the reference 

thickness for the comparison study. 

▪ The second variant faithfully follows the proposed practical guideline, 

incorporating a significantly reduced quantity of material, represented by an 

average thickness of em = 40 cm. The thickness distribution reaches its 

termination at the top of the tower, with a minimum value of emin = 22 cm, 

leading, therefore, to a coefficient value of 𝓀m = 1,818, using equation (57) and 

the first milestone requirements. 

For this second variant, the numerical application, based on the implementation of the 

second aforementioned milestone, yields the following results, as shown in Table 2. 
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Table 2: Value of 𝐳̅𝐜𝐫 and 𝒛𝐜𝐫 according to the input value of 𝓴𝐦 (Variant 2) 

𝒆𝒎 (cm) 𝒆𝒎𝒊𝒏 (cm) 𝓴𝒎  𝒛̅𝒄𝒓  𝒛𝒄𝒓= 𝒛̅𝒄𝒓. 𝑯 (m)  

40 22 1,818 0,358 43,33 

For practical and scheduling reasons related to the construction process, particularly to 

facilitate the implementation of slipform systems for casting the shear walls forming 

the tower’s central bracing core, we opted to apply vertical thickness variation by 

subdividing the tower’s height into four sections, ranging from the minimum thickness 

at the top to the maximum at the base :  

▪ The first section at the top of the tower spans from 0 m to 65 m, encompassing 

18 levels (from floor 15 to floor 32), 

▪ The second section in the mid-zone extends from 65 m to 86 m, comprising 6 

levels (from floor 9 to floor 14), 

▪ The third section, also mid-zone, ranges from 86 m to 110 m, covering 7 levels 

(from floor 2 to floor 8), 

▪ The fourth section at the base of the tower spans from 110 m to 121 m, 

comprising 2 major levels (the ground floor and first floor). The four basement 

levels are assigned the same thickness as the ground floor. 

So, based on the implementation of the third aforementioned milestone, the numerical 

application leads to the thickness distribution of the central core bracing of the tower, 

deemed to be the optimal solution, as shown in Figure 5, where : 

▪ 𝑒1 = 𝑒𝐶𝑇(0 ≤ 𝑧̅ ≤ 0,537) = 𝑒𝑚𝑖𝑛 = 22 𝑐𝑚         

▪ 𝑒2 = 𝑒𝑉𝑇(0,537 ≤ 𝑧̅ ≤ 0,713) = 𝑒𝑉𝑇(0,537) = 37 𝑐𝑚         

▪ 𝑒3 = 𝑒𝑉𝑇(0,713 ≤ 𝑧̅ ≤ 0,907) = 𝑒𝑉𝑇(0,713) = 54 𝑐𝑚         

▪ 𝑒4 = 𝑒𝑉𝑇(0,907 ≤ 𝑧̅ ≤ 1,000) = 𝑒𝑉𝑇(0,907) = 70 𝑐𝑚               (58) 

 

 

Fig. 5: Plot of the thickness distribution of the central core bracing of the tower and 

software modeling (Variant 2) 
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Comparative Analysis 

The two studied design variants exhibit distinct behaviors in terms of displacements, 

modal participation, and dynamic characteristics, as shown in Table 3. 

Table 3: Modal analysis findings and seismic displacement check (Variant 2) 

Dynamic 

mode 

number 

Frequency 

(Hz) 

Frequency 

in the first 

dynamic 

mode (Hz) 

Cumulative 

mobilized 

masses in the 

X-direction 

(%) 

Cumulative 

mobilized 

masses in the 

Y-direction 

(%) 

Maximum 

global 

displacement 

at the top of 

the tower 

(mm) 

 Variant 1: Constant Thickness 

50 3,55 0,17 70,45 71,39 53,90 

 Variant 2: Variable Thickness 

41 13,46 0,22 90,95 90,12 42,40 

 Benefits assessment of the Variant 2 

✓  +↑  279,15 

% 

+↑  29,41 % ✓  ✓  - ↓  21,33 % 

Variant 1, representing the initial design, shows a high overall absolute displacement 

exceeding the normative and regulatory admissible threshold. Indeed, its peak value 

reaches approximately 54 mm at the top of the tower. It also displays insufficient modal 

mass participation (around 70%), despite mobilizing more than 50 dynamic 

deformation modes. This observation indicates that the structure in Variant 1 is highly 

rigid, concentrating seismic energy and further internalizing dynamic strengths. This 

conclusion is supported by the low natural frequency value in the first mode of modal 

analysis (0.17 Hz), as well as the slow frequency progression up to mode 50 (reaching 

3.55 Hz). 

Variant 2, on the other hand, reflects a validated seismic design, achieving mass 

mobilization exceeding 90% in both lateral directions in mode 41. These modal mass 

values demonstrate the structural resistance through seismic energy dissipation via 

finely mastered deflections. Furthermore, Variant 2 confirms that varying the thickness 

of central core bracing, following the method proposed in the present paper, 

significantly improves and upgrades the tower’s dynamic seismic performance. This 

includes maximizing the first modal frequency (0.22 Hz), reflecting an increase of over 

29%, and a rapid frequency progression up to mode 41 (13.46 Hz), while maintaining 

a well-controlled overall deformation (around 42 mm at the top of the tower—a 

reduction of more than 21%). 

This analysis relies on optimizing the quantity of concrete used in the central core. 

Based on the adjusted thicknesses shown in Figure 5, Variant 2 demonstrates a 

substantial volume reduction of over one-third. This structural optimization 

methodology strongly supports the efficient allocation of investments in these slender 

structures. 
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V.    Conclusion 

Accordingly, this study relies on the free vibration equation of a cantilever 

beam (fixed at its base and free at its top) [XVI], and incorporates mechanically 

intuitive parameters easily grasped by practicing civil engineers, such as wall thickness, 

inertia, natural frequency, fundamental pulsation, and general/inter-story displacement. 

This easy-to-use parametric study fully aligns with the goals of financial optimization, 

resource rationalization, and effective upgrading of both modal dynamic response and 

seismic performance, through the targeted adjustment of the fundamental frequency of 

the modeled structural system. 

This study is seamlessly integrated into the framework of preliminary structural design 

for slender towers braced by a central core, particularly concerning mastering their 

projected dynamic and seismic behavior.  

To this end, a practical guideline dedicated to civil design engineers and relating to 

slender structures was developed. It aimed at reducing the quantity of construction 

material required and optimizing the system’s natural frequency, specifically, by 

maximizing its smallest eigenvalue. The analytical–parametric investigation proposes 

solving this max–min formulation, subject to material optimization constraints, through 

detailed derivations of the core thickness profile across two structural zones. 

Accordingly, a critical relative height was defined to demarcate the threshold between 

the zone of constant minimum thickness and the zone with variable thickness. 

This methodological approach directs the dynamic structural response toward a more 

mature and targeted optimal design, thereby upgrading dynamic characteristics 

identified via modal analysis, while significantly reducing both the iterative 

computational time and the cost of material consumption. It is based on mechanically 

intuitive parameters easily grasped by practicing civil engineers. 

This research paper culminates in a concrete case study applying the proposed 

methodology and exhibiting the expected positive impacts. 
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