JOURNAL OF MECHANICS OF CONTINUA AND

MATHEMATICAL SCIENCES

ISSN (Online): 2454 -7190 Vol.-20, No.-10, October (2025) pp 155 - 173 ISSN (Print) 0973-8975

OPTIMIZATION OF MULTI -CONSTRAINT RESERVOIR SYSTEM: A CRITICAL REVIEW OF THE CHARGED SYSTEM SEARCH ALGORITHM

Ghasaq Saadoon Mutar¹, Lariyah Bte Mohd Sidek², Saad T. Y. Alfalahi³ Hidayah Bte Basri⁴, Mahmoud Saleh⁵, Jamal O. Sameer⁶

¹Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Malaysia.

²Institute of Energy Infrastructure (IEI), College of Engineering, Universiti Tenaga Nasional, Malaysia.

³Department of Computer Engineering Techniques, Madenat Alelem University College, Baghdad, Iraq.

⁴Institute of Energy Infrastructure (IEI), College of Engineering, Universiti Tenaga Nasional, Malaysia.

⁵Department of Water Resources Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.

⁶Ministry of Water Resources, Baghdad, Iraq.

Email: ¹pe21463@student.uniten.edu.my, ²lariyah@uniten.edu.my ³saad.t.yasin@mauc.edu.iq, ⁴bhidayah@uniten.edu.my ⁵mahmoud.s@coeng.uobaghdad.edu.iq, ⁶jamalsamir99@gmail.com

Corresponding Author: Ghasaq Saadoon Mutar

https://doi.org/10.26782/jmcms.2025.10.00010

(Received: July 24, 2025; Revised: September 20, 2025; October 03, 2025)

Abstract

The growing complexity of reservoir management driven by hydrological uncertainty and sedimentation has led to increased reliance on advanced optimization techniques. This review critically examines the recent application of the Charged System Search (CSS) algorithm in addressing nonlinear, multi-constraint challenges within water resource systems. Across the literature, CSS is recognized as an effective method for optimizing operations related to hydropower, water supply, and sediment management. Most studies adopt scenario-based modeling with stochastic hydrological inputs to enhance system resilience under climate variability. A key distinction among studies lies in algorithm customization. While some apply standard CSS, others hybridize it with techniques like Particle Swarm Optimization (PSO),

Sequential Quadratic Programming (SOP), and Genetic Algorithms (GA) to improve convergence and solution quality. Comparisons with other metaheuristics such as Differential Evolution (DE), Ant Colony Optimization (ACO), and NSGA-II further contextualize CSS's relative performance. The reviewed works vary in modeling scale and objectives: some aim to maximize water or energy yield, others to minimize sedimentation or manage operational trade-offs. Models span single- and multireservoir systems, with temporal scopes ranging from short-term operations to longterm sediment dynamics. Implementation environments include MATLAB, Python, and specialized hydrological platforms, reflecting methodological diversity. Additionally, researchers employ both single- and multi-objective optimization, often utilizing Pareto fronts for trade-off analysis. By synthesizing these methodological trends and algorithmic adaptations, the review underscores CSS's flexibility and effectiveness within metaheuristic-based reservoir optimization. However, it also identifies key limitations, including a lack of standardization, minimal real-world application, and weak integration with real-time forecasting tools. The paper concludes with suggestions for future research aimed at enhancing computational efficiency, operational relevance, and decision-support capability in the context of increasing water resource challenges under climate change.

Keywords: Charged System Search (CSS), Reservoir Management, Optimization Algorithms, Sediment Accumulation, Multi-objective Modeling

I. Introduction

Sustainable reservoir management is a serious issue that is being faced in the field of water resources in the world due to growing water line constraints and sedimentation problems, as well as the influence of changing climatic conditions (Ma et al.)(M. A. Almubaidin et al.). The complexity of the current reservoir systems is increasing and requires designing a higher level of computing approaches that would be able to address non-linearities, multi-objective trade-offs, as well as long-run uncertainty (Müller et al.)(Ibrahim et al.). Part of them are metaheuristic optimization approaches, recently known as potent mechanisms to handle conflicting aims of reservoirs and the avoidance of failure of supply of water, generation of energy, flood control at a reservoir, and handling of sediment. The recent developments in the Charged System Search (CSS) are a physics-based metaheuristic algorithm that emulates the dynamics of the interacting particles governed by the Coulomb law of interaction. The model started attracting attention because of their powerful global search and convergence properties. CSS has found some successful use in the solution of different engineering problems, and its ability to optimize reservoir operation in the presence of sediment accumulation is progressively evaluated in modern literature. The capability to reproduce diverse hydrological processes with a complex workflow in the algorithm, and at the same time, including physical and operational constraints, presents a great advantage of the algorithm compared to conventional optimization methods. Fig. 1 presents the structure of optimization of reservoir management based on CSS.

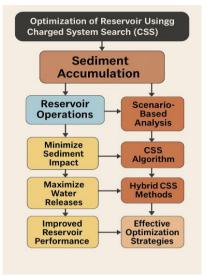


Fig. 1. Optimization framework of reservoir management using CSS.

One of the first attempts of the CSS algorithm application to the optimization or the reservoir operation with specific attention to the sediment deposit was provided by several authors (Ma et al.)(M. A. Almubaidin et al.). They concluded that multiscenario planning is essential due to the non-stationary nature of sediment inflow and to hydrological variation. In the developed research, an optimization framework having multiple objectives based on CSS was developed with references to the objectives of sediment deposition and operating objectives, including water release, storage conservation, and energy generation. The results showed that the CSS-based method proved better than the classical algorithms in reducing a possible accumulation of sediments and ensuring operational resilience, which confirmed its applicability to long-term reservoir sustainability. The hydrodynamic implications regarding reduced performance because of sediment buildup are also demonstrated in the recent works (Goharian et al.), (Lee et al.), (Ummah), which study the wear out of the water levelstorage functions (because of gradual loss in storage capacity). Their study was able to rebuild and alter the stage-storage curves by the impact of sedimentation and was able to measure its influence on decisions to control flooding. Though it is not a study concentrated on CSS, the research highlights the necessity to add sediment dynamics to the optimization schemes. Their approach also contains the logic that the operation that is grounded on the old reservoir geometry-based policies is inefficient and that more adaptive methods that are data-informed, like CSS, should be used.

In addition to this, some of the research studies the spatial variation of sediment deposits of the river-reservoir system based on geophysical methods (Obialor et al.) (Latif et al.). The studies provided an understanding of the effects of non-uniform distribution of sediment on reservoir hydraulics and proposed that considering the heterogeneity in the computer modelling can be used to optimize calculations. It was recommended that the characterization of habits and stronger integration of physical characterizations and algorithmic optimization be adopted, and that the use of site-specific models is indeed necessary in a CSS application. Beyond sedimentation,

dynamic control of suspended sediment loads in water infrastructure has also been an active area of research. Other studies (Ren et al.)(Kosasaeng and Kangrang) proposed a novel output feedback control system for regulating suspended sediment concentrations in reservoirs and canals. While the focus was not on optimization per se, their work highlights the importance of intelligent control strategies in tandem with optimization algorithms. Their adaptive control scheme can serve as a complementary component to CSS-based optimization frameworks, especially in real-time sediment mitigation.

From a methodological standpoint, outstanding works (Lai et al.) (Shirgir et al.) laid a foundational contribution by applying CSS to jointly optimize hydropower and water-supply operations. Their case study demonstrated how CSS can efficiently handle complex multi-objective formulations, offering high-quality Pareto-optimal solutions. This research not only validated the algorithm's applicability to water resource systems but also reinforced its relevance to multi-scenario analyses that involve environmental, operational, and sedimentation constraints. Collectively, these studies point to a growing consensus on the value of incorporating sediment dynamics and multi-scenario evaluation into reservoir operation frameworks. The convergence of CSS optimization, hydrological modelling, and sediment characterization represents a promising direction for enhancing the resilience and sustainability of reservoirs. However, despite its demonstrated advantages, the use of CSS remains limited in the context of sediment-informed reservoir design and policymaking. There exists a pressing need to review, classify, and critically evaluate the current body of literature to identify knowledge gaps, best practices, and potential directions for future research.

Accordingly, this review aims to provide a systematic and thematic synthesis of recent advances in reservoir optimization using CSS, with an emphasis on sediment accumulation and multi-scenario decision-making. By integrating insights into modelling, algorithm development, and case study applications, the review seeks to answer the following key questions:

- How has the CSS algorithm been adapted to account for sedimentation in reservoir systems?
- What are the dominant scenarios and operational objectives considered in CSSbased studies?
- How does CSS compare with other metaheuristic or classical approaches in terms of performance and adaptability?
- What are the methodological limitations and opportunities for hybrid approaches involving CSS?

The remainder of this review is structured as follows: Section 2 presents a comprehensive literature synthesis, highlighting the evolution of optimization techniques in reservoir management. Section 3 details the methodological characteristics of CSS and its variants. Section 4 focuses on the specific mechanisms and case applications through which supra-harmonic sediment dynamics are integrated into CSS frameworks. Section 5 concludes with recommendations for future research and implementation pathways.

II. Literature Synthesis

The most recent research on reservoir management using the CSS algorithm demonstrates a few similar methodological trends and a few significant differences in the application domain. A common trend that is present in the literature reviewed has been the use of CSS as a metaheuristic algorithm for solving complex, nonlinear optimization models of water resource allocation, hydropower generation, and sedimentation control. All the studies follow a scenario-based modelling framework, usually with stochastic hydrological inputs, to evaluate the extent of robustness in the models used in the optimization. Despite the common methodology, some stark differences are seen in terms of implementation and definition of the problem. Others have used the basic CSS algorithm, whilst some have been able to optimize its performance by incorporating it with additional optimization methodologies like the Particle Swarm Optimization (PSO), the Sequential Quadratic Programming (SQP), or the Genetic Algorithms (GA). Such hybridizations are done to enhance the speed and accuracy of convergence. Goals are also not identical in different studies; some lean towards maximizing the yield of the reservoir and energy production, some towards reducing the accumulation of sediments, and some towards a trade-off between conflicting objectives. Another point of discretion is system scale. Some of the models are applied to single reservoir systems and are constructed such that they have a shortterm operational costs attitude, while others take the multi-reservoir view that encompasses long-term sediment dynamics. Also, computational systems vary, and CSS algorithms are applied with tools such as MATLAB, Python, or hydrologicalspecific modelling programs. Other works aim to address multi-objective optimization, which provides Pareto-optimal solutions, whereas some works keep it single-object formulation that allows one operational objective. Together, these differences show how CSS is flexible and adaptable to the different problems in the management of reservoirs, as well as to illustrate the importance of individualized optimizing strategies driven by a particular hydrological, ecological, and operational setting. The conceptual flow chart of literature synthesis of the recent works is given in Fig. 2.

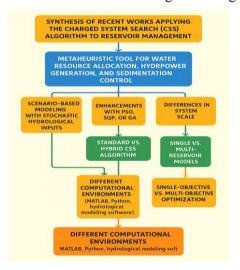


Fig. 2. A diagram showing literature synthesis

J. Mech. Cont. & Math. Sci., Vol.-20, No.-10, October (2025) pp 155-173 Table 1: Comparison of Selected Studies on Reservoir Optimization using CSS.

Dof	Ohiootivo	Mothodology	Danahmankad	Limitations
Ref.	Objective	Methodology	Benchmarked results	Limitations
(Adeyemo and Stretch)	Optimize water distribution design using CSS to minimize costs while meeting demand and pressure.	Applied CSS to minimize water network costs by simulating charged particle movements for optimization.	CSS algorithm found low-cost solutions for benchmark water networks. Outperformed other methods in cost and speed. Achieved near- optimal results with fewer	Tested on benchmarks only, sensitive to parameters, with high computational demands, and limited robustness analysis.
(M. A. Almubaidin et al.)	Develop optimal operating rule curves for a reservoir using seven metaheuristic algorithms.	applying optimization algorithms, generating rule curves, and evaluating performance through validation and sensitivity analysis	evaluations. All seven methods outperformed the current strategy; TLBO performed best overall.	Includes model simplifications, limited uncertainty, algorithm bias, and no climate change integration.
(M. A. A. Almubaidin et al.)	To optimize the Mujib reservoir operations under sedimentation, water demand, and storage scenarios using CSS	Applied CSS algorithm with MUSLE model for sediment estimation; scenario-based simulation with reliability metrics	Water deficit reduced by up to 53.59% under combined sediment removal, demand reduction, and storage increase.	Lack of consistent sediment data; challenges in monthly sediment simulation
(Asadieh and Afshar)	To test CSS for water supply and hydropower optimization of the Dez reservoir	Applied CSS over 3 operation periods (60, 240, 480 months); benchmarked against GA, ACO, PSO, and NLP.	CSS outperformed traditional and heuristic methods in convergence and solution quality	Limited to a single-reservoir model; it does not account for sediment dynamics.
(Chou et al.)]	Optimize water and energy use in Vietnam's multi- reservoir system.	Used GWASIM with BOBYQA to optimize multireservoir operations.	Improved water use and power generation.	Did not account for climate change or sediment impacts.
(Dahal et al.)	Use HEC-HMS and HEC-RAS to predict how sediment deposits in the KCMP reservoir over decades. Measure resulting storage loss to inform sustainable	Used HEC-HMS for runoff and sediment inflow modelling. Used HEC-RAS (1D) to simulate how sediment deposits in the KCMP reservoir over time.	Sedimentation causes up to 32.5% storage loss in 100 years at KCMP. Sediment mostly builds up upstream.	The study relies on simplified 1D modelling with limited data, leading to reduced accuracy and long-term results based on assumptions rather than realtime validation.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-10, October (2025) pp 155-173

	reen. Cont. & mui	,	(
	reservoir planning			
	in Nepal.			
(El Harraki et	To optimize	GA optimized	GA improved	May require
al.)	reservoir operating	operating rules	reservoir operation	careful tuning of
	rules using a	with a new	efficiency and	GA parameters;
	genetic algorithm	objective and	smoothed release	applicability
	with a new	smoothing.	patterns.	tested on a single
	objective function			case study.
	and smoothing			
	constraint.			
(Goharian et	Optimize the	Uses ML,	The model showed	Concerns include
al.)]	Aswan Dam using	simulation, and	good accuracy	data reliability,
	ML, water	policy-tree	$(NSE/R^2 > 0.6),$	climate
	balance, and	learning for	but no direct	projections,
	policy trees for	adaptive dam	comparison to	model
	changing	operations	other methods.	complexity, and
	conditions.			limited
				generalizability.
(Ibrahim et	Review of	Systematic review	Metaheuristics	Limited real-
al.)	methodologies for	of 24 studies on	improve reservoir	world testing and
	reservoir	metaheuristic	optimization but	high
	optimization.	algorithms for	have some	computational
		reservoir	challenges.	demands.
		optimization using		
(T. 1 1: 1.1	T . 1 1	PRISMA.	PGO '	DG C
(Jahandideh-	Introduce and	Summarized PSO	PSO improves	PSO may get
Tehrani et al.)	review PSO in	applications for	water management	stuck in local
	water	optimizing water	optimization.	optima and
	management.	management.		requires careful
				tuning.
(17 1 1	T . 1 1	26 112 21	GGG C	37 1
(Kaveh and	Introduce and	Models' particle	CSS performs	Needs tuning and
Talatahari)	develop the	movement uses	well, often beating	may be slow on
	Charged System	electric forces for	other algorithms.	large problems.
	Search	optimization.		
	optimization			
(V agg	algorithm.	Amplied CASO	The balant	TT: -1.
(Kosasaeng	Optimize reservoir	Applied CASO and CGA to	The hybrid	High
and	operations using		algorithms	computational
Kangrang)	hybrid	optimize multi-	improved	cost and complex
	metaheuristic	reservoir operations.	efficiency in multi-reservoir	parameter tuning.
	algorithms	operations.		
(Loi et al.)	Ontimiza recorreia	Applied EA ADC	operations. SFLA was fastest	Tested on one
(Lai et al.)	Optimize reservoir	Applied FA, ABC, and SFLA to		
	operation using metaheuristic		and most accurate;	reservoir only; no sediment
	algorithms and	optimize TEMENGOR	ABC was good but slower; FA	modelling; future
	identify the best	Dam releases,	was least efficient.	conditions not
	· ·		was icasi cilicicili.	conditions not considered.
	method through a real dam case	minimizing errors and comparing		considered.
	study.	performance.		
	study.	performance.		

J. Mech. Cont.& Math. Sci., Vol.-20, No.-10, October (2025) pp 155-173

(Lai et al.)	Study and	Test metaheuristic	Metaheuristics	Algorithm
(Lai ct ai.)	compare methods	algorithms on	improved	performance
	for reservoir	reservoir models	reservoir	
				depends on
	optimization.	and compare	operations.	parameters; it
		results.		may require high
(T. (10) 1)	TT GGG	GGG 60 -: 1	GGG . C 1	computation time.
(Latif et al.)	Use CSS to	CSS effectively	CSS outperformed	CSS shows
	optimize Klang	optimized	other	promise but needs
	Gates Dam	reservoir policies,	metaheuristics in	broader testing,
	releases, reduce	reducing deficits	optimizing Klang	complex
	shortages,	and outperforming	Gates Dam	modelling, and
	compare with	traditional	releases,	real-world
	other methods, and	methods.	minimizing	validation.
	enhance		deficits, and	
	sustainability.		boosting	
			reliability.	
(Lee et al.)	To assess long-	Used CIR and	With desilting	High sediment
	term	CSR indices and	projects, 70.3% of	concentration risk
	sedimentation	hydro	initial storage can	during flushing;
	effects and	morphological	be retained vs.	site-specific to
	downstream	modelling for	32.9% without	SHIHMEN
	impacts from	sediment impact		
	desilting	analysis		
	operations			
(Ma et al.)	To reconstruct	Developed	Significant WLS	Dependent on
	WLS curves	capacity loss rate	underestimation:	historical
	considering	(LR) index;	up to 7.11 m Z*	sediment records;
	sedimentation and	applied flood	and 3% γ	applicability
	assess flood	regulation		limited to large-
	regulation risk	simulation to a 9-		scale systems
		reservoir cascade		
(Motlagh et	Optimize	Used Grey Wolf	Grey Wolf	Single reservoir;
al.)	TALEGHAN Dam	and Genetic	Optimization	no sediment or
	reservoir operation	Algorithms to	outperformed	climate factors;
	using Grey Wolf	optimize reservoir	Genetic	real-time use not
	and Genetic	releases based on	Algorithms in	tested.
	Algorithms and	historical data.	speed and	
	compare their		accuracy,	
	performance.		providing better	
			reservoir operation	
			policies for	
			TALEGHAN Dam.	
(Müller et al.)	Different inflow	Lab experiments	Inflow/outflow	Lab-scale setup
(and outflow	with basins to test	patterns	may not fully
	sequences affect	inflow/outflow	significantly	represent real
	the rate of	effects on	impact sediment	reservoir
	suspended	sediment.	exchange rates.	conditions.
	sediment exchange	Journal III.	Chomange rates.	Conditions.
	in reservoirs.			
	in reservoirs.			

J. Mech. Cont.& Math. Sci., Vol.-20, No.-10, October (2025) pp 155-173

			•	· · · · · · · · · · · · · · · · · · ·
(Niu and	The overarching	Economic	The results	The study
Shah)	goal is to optimize	optimization	highlight the	presents useful
	reservoir	model; Sediment	economic	economic insights
	planning and	management	importance of	but is constrained
	operations using	considerations;	incorporating	by a hypothetical
	an economic life-	Dam	sediment	case, simplified
	cycle perspective,	decommissioning	management and	sediment
	where	Cost;	decommissioning	strategies, and
	sedimentation and	Sensitivity	into reservoir	limited
	decommissioning	analysis;	planning, showing	consideration of
	are treated as core	Illustrative	that neglecting	broader system
	design	application.	them significantly	dynamics.
	considerations, not	appiroution.	lowers reservoir	ay namics.
	afterthoughts.		value.	
(Obialor et	Explain	Reviewed and	Sedimentation	Qualitative
al.)	sedimentation	synthesized	reduces reservoir	review, lacks
ai.)	causes, impacts,	literature on	capacity and	data, regional
	management	reservoir	affects operations.	focus, long-term
	_	sedimentation	•	_
	methods, and stress-integrated	without new	Mitigation methods help, but	monitoring, and specific
	solutions.	experiments.	need integrated	mitigation details.
	solutions.	experiments.	management.	illingation details.
(Ren et al.)	The study	Long term	Sediment inflow	Limited by short
(Ken et al.)	examines	Long-term sediment and flow		sediment records.
	sedimentation in	data from the	reduced by ~70%	,
	the Three Gorges		due to upstream	complex river
	_	Three Gorges Reservoir were	trapping and conservation.	dynamics, narrow
	Reservoir, evaluates		Sediment	management
		statistically		strategies, minimal climate
	management	analyzed to assess	deposition in the	
	strategies,	deposition patterns	reservoir is ~33%	change
	analyzes upstream	and the	of the original	consideration, and
	trapping effects,	effectiveness of	design estimates.	context-specific
	and offers	management	80–85% of	findings tied to
	recommendations	strategies such as	suspended	the Three Gorges
	for enhancing	trapping,	sediment is	Reservoir.
	reservoir	regulation, and	retained by the	
	sustainability.	dredging.	Three Gorges and GEZHOUBA dams.	
(SaberChenari	To optimize short-	Optimize release	PSO improved	PSO may
et al.)	term reservoir	decisions based on	reservoir operation	converge
Ct ui.j	operation using	objective	efficiency and met	prematurely and
	PSO.	functions like	objectives	is sensitive to
	150.	water supply or	effectively.	parameter
		hydropower	circuively.	settings.
		generation.		settings.
(Sun et al.)]	To maximize both	Applied	MOEA/D-AWA	No sediment
(Sun et al.)]	water diversion	MOEA/D-AWA;	provided better	consideration;
	and hydropower	compared with	Pareto solutions	case-specific to
		NSGA-II and	than baselines	HUANGJINXIA
	using the MOEA/D-AWA	original MOEA/D	man baselines	reservoir
	algorithm.			reservoir
	aigoriuiii.	using hyper-		
		volume index		

J. Mech. Cont. & Math. Sci., Vol.-20, No.-10, October (2025) pp 155-173

Shirgir et al.	Minimize the cost	Non-dominated	Achieved	Focuses only on
	and CO2	sorting genetic	significant	one bridge type;
	emissions of a	algorithm II	reduction in cost	applicability to
	real-size RC	(NSGA-II) with	and emissions;	other structures
	bridge via multi-	parametric	optimal designs	needs validation;
	objective	modelling and	generated with	ignores
	optimization.	finite element	better trade-offs	uncertainties like
		analysis.	than traditional methods.	material variation.
(Thomas et	Develop an	Applied	Improved	Did not include
al.)	optimal reservoir	optimization under	reservoir	sediment
	operation for	climate scenarios.	performance under	dynamics in the
	climate adaptation		climate change.	model.
(Trivedi and	Optimize reservoir	Hybrid Invasive	The hybrid model	Study limited to
Shrivastava)	operation to	Weed and Cuckoo	improved	one reservoir;
	minimize	Search Algorithm	performance by 5-	needs testing
	irrigation and	(HIWCSA), tested	9% over	across different
	hydropower	against standard	individual	hydrological and
	deficits.	WOA and CSA on	methods; reduced	climatic settings;
		Indira Sagar	water deficits by	lacks real-time
		Reservoir (ISR).	62% over the	implementation.
			study period.	

III. Theoretical Concept of CSS Algorithm

The CSS algorithm is a metaheuristic optimization technique rooted in the fundamental principles of electrostatics and Newtonian mechanics. It belongs to the family of nature-inspired algorithms, utilizing the metaphor of charged particles interacting in a physical space to guide the search for optimal solutions. CSS is especially suited for nonlinear, multi-modal, and constrained optimization problems, making it ideal for applications such as reservoir operation planning, where complex interdependencies and competing objectives exist.

• Initialization and Charge Assignment

CSS starts with N agents (particles), the representatives of the possible solutions to the search space with a dimension n. The location of the i^{th} agent of iteration t is represented as:

$$\vec{x}_i^t = \left(x_{i1}^t, x_{i2}^t, \dots, x_{in}^t\right) \tag{1}$$

The fitness function is predetermined to evaluate each agent f(x) based on this fitness, and a charge q_i is given to each agent, which represents the quality of the solution. One of the most popular charge determination formulas is:

$$q_i = \frac{f_{worst} - f_i}{f_{worst} - f_{best}}, for f_{worst} \neq f_{best}$$
 (2)

where:

- $f_i = f(x_i^{-1})$ is the fitness of the i^{th} agent,
- f_{best} and f_{worst} are the best and worst fitness values in the current population, respectively.

This will make superior solutions (lower f_i) have more charge value.

• Electrostatic Force Calculation

The algorithm used by CSS is a simulation of the Coulomb law, according to which every two charged particles will attract or repel each other. The force F_{ij} is the force put on agent i by agent j as:

$$\vec{F}_{ij} = k \cdot \frac{q_i q_j}{\|\vec{x}_j^t - \vec{x}_i^t\|^2 + \epsilon} \cdot \frac{\vec{x}_j^t - \vec{x}_i^t}{\|\vec{x}_j^t - \vec{x}_i^t\|}$$

$$\tag{3}$$

where:

- κ is a constant analogous to Coulomb's constant,
- ϵ is a small positive value to avoid division by zero,
- || . || denotes the Euclidean norm.

The forces of all other agents added as vectors give the resulting force on the agent *i*:

$$\vec{F}_i = \sum_{j=1}^N {}_{j \neq i} \qquad \vec{F}_{ij} \tag{4}$$

• Motion Dynamics

The particles are supposed to all have a unit mass. The acceleration a_i^t of the particle i at iteration t is then:

$$\vec{a}_i^t = \vec{F}_i \tag{5}$$

With the acceleration provided, velocity and the new position of the particle are obtained because of the use of the simplest kinetic equations:

$$\vec{v}_i^{t+1} = r_1 \cdot \vec{v}_i^t + r_2 \cdot \vec{a}_i^t \tag{6}$$

$$\vec{x}_i^{t+1} = \vec{x}_i^t + \vec{v}_i^{t+1} \tag{7}$$

 r_1 and r_2 in this case are random numbers that tend to have numbers between zero and one, resulting in the addition of stochastic behavior to increase the ability of global search.

Boundary Conditions and Constraints

Beyond basic repair and penalty strategies, several advanced constraint-handling mechanisms have been applied in reservoir optimization. Feasibility-based rules prioritize feasible solutions to ensure hydrological safety and ecological flows, while adaptive and dynamic penalties progressively tighten constraint enforcement to enhance convergence. Hybrid and multi-population approaches as well as ε-constraint methods further improve search efficiency, although their integration with CSS remains limited. Table 2 summarizes the main strategies, their applications, and reported outcomes in the literature, highlighting the research gap in CSS studies.

Table 2: Summary of constraint-handling strategies in reservoir optimization studies

Authors	Constraint-Handling Method	Application	Key Findings
Adeyemo & Stretch (2018	Hybrid evolutionary approaches	Review of hybrid algorithms in reservoir optimization	Highlighted the advantages of hybridization to address complex and multiple constraints

J. Mech. Cont.& Math. Sci., Vol.-20, No.- 10, October (2025) pp 155-173

Almubaidin et al. (2024a)	Enhanced optimization with penalties	Multi-reservoir system	Developed optimal rule curves under multiple constraints; penalties improved solution feasibility.
Almubaidin et al. (2024b)	CSS is considering sediment-related constraints	Reservoir sediment accumulation	Integrated storage loss due to sediment into CSS optimization; maintained feasible reservoir levels
Goharian et al. (2022)	Policy tree–based rules	High Aswan Dam, Nile River	Incorporated hydrological and safety constraints directly into the decision-tree structure
Ibrahim et al. (2022)	Review of penalty & feasibility-based methods	Literature review on metaheuristics	Identified penalties and feasibility rules as the most common constraint-handling mechanisms in reservoir studies
Kosasaeng & Kangrang (2023)	Hybrid conditional algorithms (Atom Search + GA)	Networking reservoirs	Conditional handling of operational limits improved feasibility but increased computational effort.
Latif et al. (2021)	Penalty functions within CSS	Klang Gates Dam, Malaysia	Applied CSS with operational constraints; penalty terms ensured feasible releases.

Convergence and Stopping Criteria

The algorithm repeats cycles of updating positions and accelerations until a stop criterion is reached. Such common conditions are:

- A maximum number of iterations,
- No improvement in the best solution for a defined number of iterations,
- Achieving a predefined objective function threshold.

The CSS algorithm mimics the interaction of physical charged particles to explore and exploit a complex solution space. Through dynamic updates driven by electrostatic principles and Newtonian motion, it offers a robust framework for solving constrained and multi-objective problems. Its flexibility and extendibility (e.g., CSS-GA, CSS-PSO hybrids) allow it to be tailored to specific applications, including reservoir operation under sedimentation and hydrological variability. Fig. 3 and Fig. 4 show the conceptual diagram and the pseudocode description of the CSS algorithm, respectively.

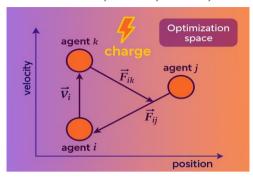


Fig. 3. Conceptual diagram of CSS algorithm.

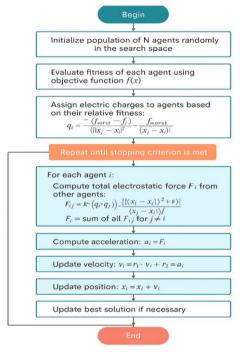


Fig. 4. Flowchart showing the pseudocode description of the CSS algorithm.

Sensitivity and Robustness Analysis in Reservoir Optimization Studies

Most CSS-based and metaheuristic reservoir studies have not systematically examined sensitivity to parameter variations or the robustness of solutions under uncertainty. For example, Latif et al. (2021) applied CSS to Klang Gates Dam without analyzing the effect of parameter changes, while Goharian et al. (2022) optimized the High Aswan Dam without testing policies under stochastic inflows or demand variability. Similarly, Kosasaeng and Kangrang (2023) introduced a conditional hybrid approach but did not include robustness tests, and Ibrahim et al. (2022) highlighted this lack of practice across the literature. The absence of such analyses limits confidence in the reported results, suggesting that future research should integrate sensitivity and robustness testing under extreme scenarios such as droughts and floods.

Performance Metrics and Statistical Validation in Reservoir Optimization Studies

Most CSS-based and metaheuristic reservoir optimization studies primarily report performance through convergence plots and final best solutions. However, such reporting does not fully capture the stochastic variability of these algorithms. Table 3 summarizes how different studies have addressed performance metrics and statistical validation. The review shows that while some papers reported average values or multiple runs, only a limited number incorporated rigorous statistical testing, such as Wilcoxon or Friedman tests. This indicates a clear gap in the literature: the lack of standardized reporting of mean, standard deviation, confidence intervals, and significance testing across ≥30 runs, which is essential to establish the robustness and reliability of reservoir optimization results.

Table 3: Reporting of performance metrics and statistical analysis in reservoir optimization

Study	# Runs Reported	Metrics Reported	Statistical Test Used	Notes
Adeyemo & Stretch (2018)	Not specified	Narrative review of hybrid EA methods	None	The review paper highlights the lack of consistent statistical reporting
Almubaidin et al. (2024a)	Not specified	Best solutions, convergence curves	None	Focused on deriving optimal rules; limited statistical evidence
Almubaidin et al. (2024b)	Not specified	Best and average solutions	None	Addressed sedimentation constraints; statistical variability not analyzed
Goharian et al. (2022)	Case study, not repeated	Best solutions only	None	Policy-tree optimization; no statistical tests reported
Ibrahim et al. (2022)	Systematic review	Mean, Std, CI discussed conceptually	Wilcoxon, Friedman (reported in some studies)	Identified need for ≥30 runs and rigorous statistical validation
Kosasaeng & Kangrang (2023)	20 runs	Best, Mean, Std	None	Conditional hybrid approach; reported average performance but no significance testing.
Lai et al. (2022)	Not specified	Convergence plots, best results	None	Comparative study of metaheuristics; lacks statistical rigor
Latif et al. (2021)	20 runs	Best and average solutions	None	CSS applied to Klang Gates Dam; no statistical test used

IV. Results for Sediment Accumulation

Sediment accumulation poses a critical threat to reservoir functionality by reducing effective storage capacity and impacting operational performance. Among the reviewed studies, two works, [Ma et al 2025.] and [Almubaidin et al 2024.], present in-

depth quantitative analyses on sediment deposition and its consequences, while others either neglect sedimentation or address it tangentially. Ref. [Almubaidin et al 2024] conducted a comprehensive simulation of sediment accumulation in the Mujib reservoir using the Modified Universal Soil Loss Equation (MUSLE). The study revealed that by the end of 2019, 14.6% of the reservoir's capacity had been lost due to sedimentation. The authors demonstrated that removal of accumulated sediment could reduce the water deficit by 19.42%, and when combined with a reduction in agricultural water demand by 11%, the deficit dropped further by 42.40%. This underscores the major operational improvements achievable through sediment management strategies. Furthermore, increasing the reservoir's storage by 30% in addition to sediment removal and demand reduction led to a 53.59% reduction in water deficit, showcasing the synergistic benefits of integrated strategies. [Ma et al 2025.] investigated the impact of sediment accumulation on flood control and storage curves in a cascade of nine reservoirs in China's WUJIANG River. The authors reconstructed the water level-storage (WLS) relationship based on observed sediment-induced capacity loss. Notably, the Suofengying reservoir experienced a 25.02% loss in storage capacity, the highest rate in the study, while the HONGJIADU reservoir recorded the largest absolute loss, at 180.3 million m³. Using outdated WLS curves, flood control risks were severely underestimated. The maximum flood regulation level (Z^*) was off by up to 7.11 meters, and risk exceedance periods (γ) by up to 3%, especially at longer return intervals. These findings strongly emphasize the necessity of updating operational models to reflect current sediment realities. Other studies: [Lee et al 2022.], [Latif et al 2021], and [Thomas et al 2021] did not quantify sediment accumulation in the same detail. While sediment management was acknowledged in broader discussions of operational efficiency and reservoir optimization, no explicit models or metrics on volume loss or its operational impact were presented. Their focus leaned more on hydropower optimization, water supply, or general system modelling.

Table 4: Comparison of Sediment Accumulation Results

Ref.	Reservoir / Study Area	Sediment Accumulation Results	Operational Impact	Notes / Limitations
(M. A. A. Almubaidi n et al.)	Mujib Reservoir, Jordan	14.6% storage loss due to sediment accumulation	Water deficit reduced by up to 53.59% with sediment removal, demand reduction, and storage expansion.	Monthly sediment simulation challenges; lack of consistent data

J. Mech. Cont.& Math. Sci., Vol.-20, No.- 10, October (2025) pp 155-173

(Ma et al.)	WUJIANG River Cascade, China	Up to 25.02% capacity loss (Suofengying); 180.3 million m³ lost	Flood regulation level underestimated by 7.11 m; exceedance period	Results dependent on historical sediment data; focused on the
		(HONGJIADU)	γ underestimated by 3%	large-scale system
(Lee et al.)	SHIHMEN Reservoir, Taiwan	Without desilting: only 32.9% capacity retained; with desilting: 70.3% retained	Desilting significantly improved storage retention	Site-specific findings: high sediment concentration risk during flushing
(Latif et al.)	Dez Reservoir, Iran	Not assessed	Focus on water supply and hydropower optimization	Sediment dynamics are not considered
(Thomas et al.)	HUANGJI NXIA, China	Not assessed	Multi-objective optimization for diversion and power	Sediment accumulation was excluded from analysis

V. Conclusions

This review emphasized three critical aspects in the optimization of multi-constraint reservoir systems using the Charged System Search (CSS) algorithm. First, sediment accumulation has been shown to cause substantial capacity loss in reservoirs such as Wujiang (25.02%) and Mujib (14.6%), directly affecting water availability, flood regulation, and sustainability. Integrated sediment management strategies, including desilting and adaptive demand reduction, have proven effective in mitigating shortages and enhancing long-term operational efficiency.

Second, most reviewed CSS-based studies rely primarily on **basic penalty or repair functions** to address operational constraints, while more advanced methods—such as feasibility rules, adaptive penalties, hybrid, and ε-constraint approaches—remain underutilized. This reveals a methodological gap in the literature.

Third, the reporting of **performance metrics and statistical validation** is often insufficient. While convergence plots and best solutions are frequently presented, only a few studies systematically report averages, standard deviations, confidence intervals, or apply non-parametric tests such as Wilcoxon and Friedman. This limits the robustness and comparability of results.

Overall, future research should integrate sediment processes, adopt more sophisticated constraint-handling mechanisms, and apply standardized statistical validation protocols across multiple runs. These improvements will strengthen the credibility and applicability of reservoir optimization studies and support the sustainable management of water resources.

V. Acknowledgement:

The authors would like to express their sincere gratitude to Universiti Tenaga Nasional, Malaysia, for its continuous support and encouragement in facilitating the publication of this article. The institutional resources and academic environment provided were instrumental to the successful completion of this work.

Conflict of Interest:

There was no relevant conflict of interest regarding this paper.

References

- I. Adeyemo, Josiah, and Derek Stretch. "Review of Hybrid Evolutionary Algorithms for Optimizing a Reservoir." *South African Journal of Chemical Engineering*, vol. 25, no. November 2017, 2018, pp. 22–31. 10.1016/j.sajce.2017.11.004.
- II. Almubaidin, Mohammad Abdullah, et al. "Deriving Optimal Operation Rule for Reservoir System Using Enhanced Optimization Algorithms." Water Resources Management, vol. 38, no. 4, 2024, pp. 1207–23. 10.1007/s11269-023-03716-5.
- III. Almubaidin, Mohammad Abdullah Abid, et al. "Enhancing Reservoir Operations with Charged System Search (CSS) Algorithm: Accounting for Sediment Accumulation and Multiple Scenarios." *Agricultural Water Management*, vol. 293, no. February, 2024, p. 108698. 10.1016/j.agwat.2024.108698.
- IV. Asadieh, Behzad, and Abbas Afshar. "Optimization of water-supply and hydropower reservoir operation using the charged system search algorithm." *Hydrology* 6.1(2019):5. 10.3390/hydrology6010005
- V. Chou, Frederick N. F., et al. "Optimizing the Management Strategies of a Multi-Purpose Multi-Reservoir System in Vietnam." *Water (Switzerland)*, vol. 12, no. 4, 2020, pp. 1–20, https://doi.org/10.3390/W12040938.
- VI. Dahal, Vishan, et al. "Analyzing sedimentation patterns in the Naumure Multipurpose Project (NMP) reservoir using 1D HEC-RAS modeling." *Scientific Reports* 14.1 (2024): 22134. 10.1038/s41598-024-73883-x
- VII. El Harraki, W., Ouazar, D., Bouziane, A., & Hasnaoui, D. (2021). Optimization of reservoir operating curves and hedging rules using genetic algorithm with a new objective function and smoothing constraint: application to a multipurpose dam in Morocco. *Environmental Monitoring and Assessment*, 193(4), 196. 10.1007/s10661-021-08972-9
- VIII. Goharian, Erfan, et al. "Developing an Optimized Policy Tree-Based Reservoir Operation Model for High Aswan Dam Reservoir, Nile River." *Water (Switzerland)*, vol. 14, no. 7, Apr. 2022. 10.3390/w14071061.

- IX. Ibrahim, Nor Shuhada, et al. "Metaheuristic Nature-Inspired Algorithms for Reservoir Optimization Operation: A Systematic Literature Review." *Indonesian Journal of Electrical Engineering and Computer Science*, vol. 26, no. 2, 2022, pp. 1050–59. 10.11591/ijeecs.v26.i2.pp1050-1059.
- X. Jahandideh-Tehrani, Mahsa, Omid Bozorg-Haddad, and Hugo A. Loáiciga. "Application of particle swarm optimization to water management: an introduction and overview." *Environmental Monitoring and Assessment* 192.5 (2020): 281. 10.1007/s10661-020-8228-z.
- XI. Kaveh, Ali, and Siamak Talatahari. "Charged system search for optimal design of frame structures." *Applied Soft Computing* 12.1 (2012): 382-393.
- XII. Kosasaeng, Suwapat, and Anongrit Kangrang. "Optimum Reservoir Operation of a Networking Reservoirs System Using Conditional Atom Search Optimization and a Conditional Genetic Algorithm." *Heliyon*, vol. 9, no. 3, 2023. 10.1016/j.heliyon.2023.e14467.
- XIII. Lai, Vivien, et al. "A review of reservoir operation optimisations: from traditional models to metaheuristic algorithms." *Archives of Computational Methods in Engineering* 29.5 (2022): 3435-3457. 10.1007/s11831-021-09701-8
- XIV. Lai, Vivien, et al. "Investigating Dam Reservoir Operation Optimization Using Metaheuristic Algorithms." *Applied Water Science*, vol. 12, no. 12, 2022, pp. 1–13. 10.1007/s13201-022-01794-1.
- XV. Latif, Sarmad Dashti, et al. "Optimizing the Operation Release Policy Using Charged System Search Algorithm: A Case Study of Klang Gates Dam, Malaysia." *Sustainability (Switzerland)*, vol. 13, no. 11, June 2021. 10.3390/su13115900.
- XVI. Lee, Fong Zuo, et al. "Reservoir Sediment Management and Downstream River Impacts for Sustainable Water Resources—Case Study of Shihmen Reservoir." *Water (Switzerland)*, vol. 14, no. 3, 2022. 10.3390/w14030479.
- XVII. Ma, Qiumei, et al. Reconstruction of Reservoir Water Level-Storage Relationship Based on Capacity Loss Induced by Sediment Accumulation and Its Impact on Flood Control Operation. no. March, 2025, pp. 1–28.
- XVIII. Motlagh, A. Davani, et al. "Optimization of Dam Reservoir Operation Using Grey Wolf Optimization and Genetic Algorithms: A Case Study of Taleghan Dam." *International Journal of Engineering, Transactions A: Basics*, vol. 34, no. 7, 2021, pp. 1644–52, 10.5829/IJE.2021.34.07A.09
- XIX. Müller, Michael, et al. "Experiments on the Effect of Inflow and Outflow Sequences on Suspended Sediment Exchange Rates." *International Journal of Sediment Research*, vol. 32, no. 2, 2017, pp. 155–70. 10.1016/j.ijsrc.2017.02.001.
- XX. Niu, Yuan, and Farhed A. Shah. "Economics of optimal reservoir capacity determination, sediment management, and dam decommissioning." *Water Resources Research* 57.7 (2021): e2020WR028198. 10.1029/2020WR028198

- J. Mech. Cont. & Math. Sci., Vol.-20, No.-10, October (2025) pp 155-173
- XXI. Obialor, C. A., et al. "Reservoir Sedimentation: Causes, Effects and Mitigation." *International Journal of Advanced Academic Research* | Sciences. vol. 5, no. 10, 2019, pp. 2488–9849.
- XXII. Ren, Shi, et al. "Sedimentation and Its Response to Management Strategies of the Three Gorges Reservoir, Yangtze River, China." *Catena*, vol. 199, Apr. 2021. 10.1016/j.catena.2020.105096.
- XXIII. SaberChenari, Kazem, Hirad Abghari, and Hossein Tabari. "Application of PSO algorithm in short-term optimization of reservoir operation." *Environmental monitoring and assessment* 188.12 (2016): 667. 10.1007/s10661-016-5689-1
- XXIV. Sun, Xiaomei, Jungang Luo, and Jiancang Xie. "Multi-objective optimization for reservoir operation considering water diversion and power generation objectives." *Water* 10.11 (2018): 1540. 10.3390/w10111540
- XXV. Shirgir, Sina, Salar Farahmand-Tabar, and Pouya Aghabeigi. "Optimum design of real-size reinforced concrete bridge via charged system search algorithm trained by nelder-mead simplex." *Expert systems with applications* 238 (2024): 121815.
- XXVI. Thomas, T., et al. "Optimal Reservoir Operation A Climate Change Adaptation Strategy for Narmada Basin in Central India." *Journal of Hydrology*, vol. 598, no. March 2020, 2021, p. 126238,
- XXVII. Trivedi, Mugdha, and R. K. Shrivastava. "Reservoir operation management using a new hybrid algorithm of Invasive Weed Optimization and Cuckoo Search Algorithm." *AQUA—Water Infrastructure, Ecosystems and Society* 72.8 (2023): 1607-1628. 10.1016/j.jhydrol.2021.126238.