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Abstract  

This study investigates the magnetohydrodynamic (MHD) natural convection 

flow of micropolar fluid in a semi-circular enclosure, incorporating the effects of 

thermal radiation. The analysis encompasses the interaction between buoyancy-driven 

flow, magnetic fields, radiative heat transfer, and the unique properties of micropolar 

fluids, which include microrotation and microstructure effects. The fundamental 

relations describing motion, thermal behavior, and rotational dynamics are 

established, incorporating the effects of the Lorentz force and radiative energy transfer. 

The Rosseland approximation is employed to model thermal radiation, and boundary 

conditions appropriate for a semi-circular geometry are applied. The governing 

relations are expressed in dimensionless form through characteristic parameters 

including the Rayleigh number (Ra), Prandtl number (Pr), Hartmann number (Ha), 

micropolar parameter (K), and radiation parameter (Rd). The modelled partial 

differential equations were carried out with a vorticity stream function algorithm to 

explore the influence of magnetic field strength, orientation, micropolar fluid 

properties, and radiative heat transfer on the flow and thermal characteristics. Results 

indicate significant alterations in flow patterns, temperature distribution, and 

microrotation behavior under varying magnetic field and radiative conditions. This 

comprehensive analysis provides insights into the complex dynamics of MHD natural 

convection in micropolar fluids with thermal radiation, with implications for advanced 

thermal management systems and materials processing applications. 

Keywords: Semi-circular enclosure; Micropolar fluid; Stream function–vorticity 

formulation; Magneto-hydrodynamic; Finite differences. 
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I.      Introduction  

Micropolar fluids, first proposed by Eringen [VI], [VII], constitute a subclass 

of non-Newtonian fluids distinguished by intrinsic microstructural effects and an 

asymmetric stress tensor, thereby deviating from the conventional framework of the 

Navier–Stokes equations. This theory incorporates microrotation and additional 

velocity components, enabling more accurate modelling of flows in complex systems. 

Micropolar fluids are applicable in processes involving colloids, suspensions, metallic 

plate cooling, biological fluids, and rigid liquid crystals. Natural convection, driven by 

buoyancy from temperature-induced density variations, plays a crucial role in heat 

transport. When magnetic fields are applied (MHD effects), the flow behaviour 

becomes more intricate. Venkatadri et al. [XXVI] investigated such effects in 

enclosures, showing significant changes in flow and thermal profiles. Javed et al. [XI] 

extended the study to porous media, highlighting the combined impact of magnetism 

and micro polarity on convection structures. The role of thermal radiation in 

micropolar MHD flows has drawn attention. Perdikis et al. [XX] and Abd-El Aziz [II] 

demonstrated that radiation significantly modifies temperature and velocity fields. 

Hajatzadeh et al. [VIII] examined nanofluids under MHD convection and found 

enhanced heat transport due to magnetic and radiative effects. Similarly, Mahmoud 

[XV] and Bejawada et al. [IV] demonstrated that radiation may amplify or attenuate 

convection based on the characteristics of the fluid and boundary conditions. 

Investigations involving Casson fluids further advance the comprehension of intricate 

convective phenomena. Pop and Sheremet [XXI] analysed natural convection in 

square enclosures, observing that increasing the Casson parameter improves heat 

transfer. Devi et al. [V] explored Casson viscoplastic fluids, revealing similar 

enhancements under varied Rayleigh and radiation parameters. Ismail et al. [III] 

evaluated tri-hybrid Casson nanofluids in different cavity shapes, concluding that 

thermal radiation, porosity, and Casson parameters stabilize and enhance thermal 

performance. 

The study of non-Newtonian fluids continues to expand. Venkatadri et al. [XXVIII] 

applied the Buongiorno model to analyze magnetic nanofluid flow in a 2D porous fuel 

cell. Using a finite difference method (FDM) and vorticity–stream function (VSF) 

approach, they showed that stronger magnetic fields (higher Hartmann number) 

suppress local Nusselt numbers while Brownian motion increases both Nusselt and 

Sherwood numbers at the cold walls. Various cavity shapes, such as square, circular, 

and alphabet-based geometries (L, T, H, C, V, W, M, I) have been explored to improve 

thermal transport efficiency [X, XXIV, XVI, XVIII, XXV, XVII, I]. Such geometrical 

configurations affect convection patterns and heat transfer rates according to the fluid 

characteristics and flow regime. Examining micropolar fluid motion within a semi-

circular enclosure is especially significant owing to its practical applications in thermal 

insulation, electronic cooling, and heat exchanger design. In such systems, the 

interaction between the Lorentz force and micropolar fluid properties can significantly 

enhance heat transfer. Environmental applications like pollutant transport and 

subsurface flow also benefit from understanding such convective behaviors. 

However, limited studies address the combined effect of thermal radiation and 

magnetic fields in micropolar fluid convection, particularly in non-rectangular 
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domains. Therefore, the current computational work focuses on natural convection of 

micropolar fluid in a semi-circular heated enclosure under a transverse uniform 

magnetic field. The objective is to analyze the resulting fluid dynamics and heat 

transfer characteristics, contributing to improved design in thermal management 

systems. 

II.     Mathematical Formulation 

A two-dimensional computational semi-circular domain occupied by 

micropolar fluid and a magnetic field (B0) is present in the y-direction. This is depicted 

in Figure 1. The applied magnetic field induces a Lorentz body force acting 

perpendicularly, while the semi-circular enclosure is subjected to uniform heating 

along the bottom wall and maintained at a constant cold temperature along the curved 

wall. To account for density variations in the buoyancy term, the Boussinesq 

approximation is employed. The electroconductive micropolar fluid is assumed to 

possess constant thermophysical properties, with viscous dissipation, chemical 

reactions, and Joule heating effects neglected. Under these assumptions, the 

dimensional governing equations for the conservation of momentum, mass, and energy 

can be formulated, following the framework outlined in [XIV, XXIII], as: 

Continuity Equation: 

  𝛻 ∙ 𝒖 = 0          (1) 

Momentum Equation:  

  𝜌 (
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛻)𝒖) = −𝛻𝑃 + 𝜇𝛻2𝒖 + 𝜅𝛻2𝑁 + 𝜌𝒈𝛽(𝑇 − 𝑇𝑐) + 𝑱 × 𝑩   (2) 

P – Pressure, 𝜇 - Dynamic viscosity, 𝜅 - coupling coefficient, 𝑁 - microrotation vector, 

𝒈 - gravitational acceleration, 𝛽 - thermal expansion coefficient, T - temperature, 𝑇𝑐 - 

reference temperature, 𝑱 - current density, 𝑩 - magnetic field. 

𝑱 = 𝜎(𝑬 + 𝒖 × 𝑩) 

𝛻 × 𝑩 = 𝜇0𝑱 

Angular Momentum Equation: 

  𝜌𝑗 (
𝜕𝑵

𝜕𝑡
+ (𝒖 ∙ 𝛻)𝑵) = 𝛾𝛻2𝑁 − −2𝜅𝑵 + 𝜅𝛻 × 𝒖     (3) 

𝛾 - spin gradient, 𝑗 - gyration parameter, 𝜅 - signifies vortex viscosity. 

Energy Equation: 

  𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ (𝒖 ∙ 𝛻)𝑇) = 𝑘𝛻2𝑇 − 𝛻𝑞𝑟       (4) 

𝑐𝑝 - specific heat capacity, 𝑞𝑟 - radiative heat flux, 𝑘 - thermal conductivity. 
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Fig. 1. Computational Flow Geometry 

 

The Cartesian form of the above modelling equations is as follows: 

 

  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                         (5) 

  𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ (𝜇 + 𝑘) (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) + 𝑘
𝜕𝑁∗

𝜕𝑦
                     (6) 

 𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ (𝜇 + 𝑘) (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) − 𝜎𝐵0
2𝑣 − 𝑘

𝜕𝑁∗

𝜕𝑥
+ 𝜌𝑔(𝑇 − 𝑇𝑐)         (7) 

  𝜌𝑗 (𝑢
𝜕𝑁∗

𝜕𝑥
+ 𝑣

𝜕𝑁∗

𝜕𝑦
+

𝜕𝑁∗

𝜕𝑡
) + 2𝑘𝑁∗ = 𝑘 (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) + 𝛾 (

𝜕2𝑁∗

𝜕𝑥2 +
𝜕2𝑁∗

𝜕𝑦2 )         (8) 

  
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑓 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) −
1

(𝜌𝐶𝑝)
𝑓

(
𝜕𝑞𝑥

𝜕𝑥̅
+

𝜕𝑞𝑦

𝜕𝑦̅
)              (9) 

where (𝑞𝑟𝑥 , 𝑞𝑟𝑦) = (−
4𝜎

3𝑘∗

𝜕𝑇4

𝜕𝑥
, −

4𝜎

3𝑘∗

𝜕𝑇4

𝜕𝑦
) 

The prescribed initial boundary conditions of the present semi-circular enclosure are 

as follows: 

At t=0 with for 0 ≤ 𝑥, 𝑦 ≤ 𝐿 : 0 = 𝑢 = 𝑇 = 𝑣 = 𝑁∗ 

𝑇 = 𝑇𝑐, 𝑁∗ = 𝑛
𝜕𝑣

𝜕𝑛
at the curved boundary 

𝑇 = 𝑇ℎ, 𝑁
∗ = 𝑛

𝜕𝑣

𝜕𝑥
 at the bottom wall 

  All boundaries , 0 = 𝑢 = 𝑣                                                     (10) 

The equations (5) - (9) can be written in dimensionless form with the help of quantities 

defined below: 

  𝜏 =
𝑡𝛼

𝐿2 , 𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
, 𝑈 =

𝑢𝐿

𝛼
, 𝑉 =

𝑣𝐿

𝛼
, 𝜃 =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
, 𝑁 =

𝑁∗𝐿2

𝛼
𝑃 =

𝐿2𝑝

𝛼2𝜌𝑓
    (11) 

The non-dimensional form of the interpreted governing equations is: 

  
𝜕𝑈

𝜕𝑋
= −

𝜕𝑉

𝜕𝑌
                                                                                                   (12) 

  
𝜕𝑈

𝜕𝜏
+

𝜕𝑃

𝜕𝑋
= (1 + 𝐾) 𝑃𝑟 (

𝜕2𝑈

𝜕𝑋2 +
𝜕2𝑈

𝜕𝑌2) − (𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
) + 𝐾 𝑃𝑟

𝜕𝑁

𝜕𝑌
              (13)    
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𝜕𝑉

𝜕𝜏
+

𝜕𝑃

𝜕𝑌
= (1 + 𝐾)Pr (

𝜕2𝑉

𝜕𝑋2 +
𝜕2𝑉

𝜕𝑌2) − (𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
) − 𝐾Pr

𝜕𝑁

𝜕𝑋
− 𝐻𝑎2𝑃𝑟𝑉 + 𝑅𝑎𝑃𝑟𝜃 (14) 

  
𝜕𝑁

𝜕𝜏
+ 𝑈

𝜕𝑁

𝜕𝑋
+ 𝑉

𝜕𝑁

𝜕𝑌
= (1 +

𝐾

2
) 𝑃𝑟 (

𝜕2𝑁

𝜕𝑋2 +
𝜕2𝑁

𝜕𝑌2) − 2𝐾𝑁 𝑃𝑟 + 𝐾 𝑃𝑟 (
𝜕𝑉

𝜕𝑋
−

𝜕𝑈

𝜕𝑌
)       (15) 

  
𝜕𝜃

𝜕𝜏
+ 𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
= (1 +

4

3
𝑅𝑑) (

𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃

𝜕𝑌2)                        (16) 

The boundary conditions applied to the computational domain are specified as 

follows: 

On the enclosure walls (base and curved walls):𝑈 = 0, 𝑉 = 0 

  Base wall:  𝜃 = 1, 𝑁 = 𝑛
𝜕𝑉

𝜕𝑋
. 

  Curved wall:  𝜃 = 0, 𝑁 = −𝑛
𝜕𝑈

𝜕𝑌
.               (17) 

The heat transfer rate (Local Nusselt number) along the base hot wall is measured 

the follows: 

  Nu = 
𝜕𝜃

𝜕𝑌
                 (18) 

The representative measure of heat transfer, expressed through the average Nusselt 

number, can be written as 

  Nu_avg = ∫
𝜕𝜃

𝜕𝑌
𝑑𝑋

1

0
                          (19) 

It should be emphasized that all reported computations were performed with n=0, i.e., 

under the strong anchoring (no-spin) boundary condition. This ensures that 

microrotation vanishes identically at the solid walls, consistent with rigid-wall 

assumptions in micropolar theory. While alternative treatments (e.g., weak anchoring 

or spin–velocity coupling) are possible, the strong anchoring case was selected here as 

it is the most widely used and provides a baseline for comparison with published 

results. 

     
Hussain et al., [IX] Results 
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Present Work Results 

 

Fig. 2. Comparative visualization of temperature distributions (isotherms) and flow 

structures (streamlines). 

III.     Numerical methodology and code validation 

The pressure-based governing momentum equations are highly complex; 

therefore, their solution is obtained as follows:  

   𝑈 =
𝜕𝜓

𝜕𝑌
, 𝑉 = −

𝜕𝜓

𝜕𝑋
        (20) 

   (
𝜕2𝜓

𝜕𝑋2 +
𝜕2𝜓

𝜕𝑌2) = −𝜔         (21)  

  
𝜕𝜔

𝜕𝜏
+ 𝑈

𝜕𝜔

𝜕𝑋
+ 𝑉

𝜕𝜔

𝜕𝑌
= (1 + 𝐾)𝑃𝑟 (

𝜕2𝜔

𝜕𝑋2 +
𝜕2𝜔

𝜕𝑌2) 

                − 𝐾 𝑃𝑟 (
𝜕2𝑁

𝜕𝑋2 +
𝜕2𝑁

𝜕𝑌2) − 𝐻𝑎2𝑃𝑟
𝜕𝑉

𝜕𝑋
+ 𝑅𝑎. 𝑃𝑟

𝜕𝜃

𝜕𝑋
                     (22) 

The vorticity stream function approach was used to solve the modelled partial 

differential equations numerically. Collocated grid is the advancement of the 

computational grid system. A second-order finite difference approximation is used to 

discretise the equations under control. The iterative Linear Successive Over-Relaxation 

(LSOR) approach is employed to solve the discretised algebraic equations. The 

numerical computation was proceeded until they met the convergent criterion of each 

variable (i.e., 𝜔, 𝜓, 𝜃), which was∑ |𝛺𝑖,𝑗
𝑘+1 − 𝛺𝑖,𝑗

𝑘 |𝑖,𝑗 < 10−8, here k refers to the 

iteration levels. The readers found complete details of the vorticity stream function 

approach in Ref. [XXII, XXVII, XXX, XXIX, XII]. Computational stability was 

maintained by adhering to standard Fourier and Courant–Friedrichs–Lewy (CFL) 

criteria. For the explicit parts of the scheme, CFL numbers were kept below unity (CFL 

≤ 1), while the Fourier number for thermal diffusion satisfied Fo ≤ 0.5. These conditions 

ensured stability across all simulations 

It is important to emphasize that the numerical scheme validation for the research data 

of the closed study. In a study conducted by Hussain et al. [IX], Figure 2 illustrates the 

findings of natural convection within an air-filled square enclosure at Ra =103. In 

contrast, the present study rigorously examined with the Finite Difference Method 

(FDM) and then compared the results to those reported by Hussain et al. [IX]. Studied 

the flow driven by buoyancy in a square chamber using a heated circular cylinder, and 

then compared with the previous research conducted by Kim et al. [XIII, XIX]. Hence, 
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the present numerical simulation compares and verifies both the performance is 

presented in Table 1. Here, the current numerical scheme results give good agreement 

with the work of Kim et al. [XIII] and Kim et. al. [XIX]. 

To ensure numerical accuracy, a systematic grid refinement study was performed. 

Three progressively refined meshes were considered: 80×40 (coarse), 120×60 

(medium), and 160×80 (fine). The average Nusselt number along the heated bottom 

wall was monitored for each case. The variation in Nu between the medium and fine 

grids was found to be less than 2%, demonstrating grid-independent solutions. Table 1 

summarizes the Nu values for the different grids, while Figure 2 shows the comparison 

of isotherms and streamlines for the medium and fine meshes, which are nearly 

identical. 

Table 1: Validation of Nu with the benchmark results. 
 

Ra Nu Error Percentage 

 

Kim et. al. [25] 

 

Kim et. al. [26] 

 

3. Present 

study 

 

1&3 

 

2&3 

103 5.02 5.093 5.039 1.06 

 

1.06 

 

104 5.113 5.108 

 

5.131 0.35 0.35 

105 7.75 7.767 7.807 0.73 0.512 

 

106 14.2 14.11 14.13 0.49 

 

0.1415 

IV.     Results and Discussion 

The effects of key emerging parameters, including the magnetic number (0 ≤ 

Ha ≤ 30), vortex viscosity parameter (1 ≤ K ≤ 5), Rayleigh number (10³ ≤ Ra ≤ 10⁶), 

and thermal radiation parameter (0 ≤ Rd ≤ 5), on hydromagnetic micropolar fluid flow 

and heat transfer in a semi-circular enclosure are examined in this section. Contour 

plots are provided to illustrate the influence of these parameters. 

 Figure 3 depicts the effect of thermal buoyancy (Ra) on flow structures, temperature 

fields (isotherms), and microrotation contours within the semi-circular enclosure for 

Rd = 1, K = 1, Ha = 2, and Pr = 6.2, where Ra increases from 10³ at the bottom to 10⁶ 

at the top. As Ra increases, the flow patterns (first column) transition from weak, 

symmetric circulations to strong, complex convective currents. The temperature 

distribution (second column) shifts from nearly uniform, conduction-dominated 

isotherms to highly distorted, convection-dominated patterns. Similarly, the 

microrotation fields (third column) evolve from minimal variations to intricate and 

dynamic contours, reflecting stronger interactions between the fluid flow and 

microrotation. These changes highlight the enhanced convective heat transfer and fluid 

mixing capabilities at higher Rayleigh numbers within the enclosure. 

Figure 4 illustrates the influence of the vortex-viscosity parameter K on streamlines, 

isotherms, and iso-microrotation in a semi-circular enclosure with Rd =1, Ra=105, Ha 

= 2, and Pr = 6.2, where K increases from 1 at the bottom to 5 at the top. As K increases, 
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the flow intensity decreases. The streamlines (first column) show that at K=1, the 

convective currents are vigorous and display complex, well-defined circulation 

patterns. As K increases to 3, 4, and finally 5, the intensity of these circulations 

diminishes, and the flow patterns become simpler and less pronounced, indicating 

weaker convective activity. The temperature distribution (second column) also shows 

a decrease in intensity with increasing K. At K=1, the isotherms are highly distorted, 

reflecting strong convective heat transfer and significant temperature gradients. As K 

increases, the isotherms become more uniform and parallel, indicating a reduction in 

convective effects and a dominance of conductive heat transfer. Similarly, the 

microrotation fields (third column) exhibit a decrease in complexity and intensity as 

K increases. At K=1, the iso-microrotation lines are complex and dynamic, showing 

significant microrotation activity. As K increases to 3, 4, and 5, these lines become 

more uniform and less varied, reflecting diminished microrotation effects and 

interactions with the fluid flow. Overall, as the vortex-viscosity parameter 𝐾 increases, 

both the flow intensity and temperature gradients within the semi-circular enclosure 

decrease, leading to simpler, less dynamic fluid motion, temperature distribution, and 

microrotation fields 

Figure 5 illustrates the influence of the magnetic field on streamlines, thermal 

distribution, and iso-microrotation for a semicircular cavity with parameters Rd =1, 

Ra=105, K = 1, and Pr = 6.2. Each row represents different Ha values: 0, 10, 20, and 

30 (from top to bottom), while the columns depict streamlines, isotherms, and iso-

microrotation (from left to right). As Ha increases, the Lorentz force, which opposes 

the motion of conducting fluids in the presence of a magnetic field, becomes more 

significant. This force damps the fluid motion, leading to more streamlined and less 

complex flow patterns, with fewer vortices at higher Ha values. The isotherms 

transition from wavy to more horizontal, indicating a suppression of buoyancy-driven 

convection and a dominance of conductive heat transfer as the magnetic field strength 

increases. The iso-microrotation contours show a decrease in complexity and more 

uniform distribution, reflecting the stabilizing influence of the magnetic field on 

rotational motion within the fluid. Overall, increasing Ha stabilizes the flow, reduces 

the complexity of temperature and microrotation distributions, and suppresses 

convective effects, consistent with the physical understanding that a stronger magnetic 

field enhances flow stability and reduces turbulence through the damping effect of the 

Lorentz force. 

Figure 6 shows the local Nusselt number (Nu) distribution along the bottom wall of a 

semicircular enclosure for various Rayleigh number values (Ra = 103, 104, 105, 106) 

with other fixed parameters, Rd = K=1, Ha = 2. As Ra increases, the Nu distribution’s 

amplitude rises, indicating stronger buoyancy-driven convection. For Ra = 103, the 

distribution is relatively smooth with lower values, suggesting weak convection. As 

Ra increases to 104 and 105, the amplitude and the peaks and valleys become more 

pronounced, reflecting enhanced convective effects. At Ra = 106, the highest 

amplitude and significant variations in Nu indicate very strong convective heat 

transfer. Maximum and minimum Nu values are observed near the edges, while the 

central region shows lower values for all Ra cases. This trend emphasizes the growing 

dominance of buoyancy forces and the shift from conduction-controlled to convection-

controlled heat transfer as Ra increases. 
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Figure 7 displays the local Nusselt number (Nu) distribution along the hot bottom wall 

of a semicircular cavity for different Hartmann numbers (Ha = 0, 10, 20, 30) with 

parameters Rd = K=1, Ra = 106. As Ha increases, the Nu distribution's amplitude 

decreases, indicating a reduction in convective heat transfer and a shift towards 

conductive heat transfer. For Ha = 0, the distribution shows higher peaks and valleys, 

reflecting strong convection. As Ha increases to 10 and 20, the peaks and valleys 

moderate, and at Ha = 30, the distribution becomes the smoothest, indicating the 

significant damping effect of the Lorentz force on fluid motion. The maximum and 

minimum Nu values are near the edges, with the central region showing the lowest 

values for all Ha cases. This trend highlights the stabilizing influence of the magnetic 

field, reducing buoyancy-driven convection and enhancing flow stability. 

Figure 8 presents the distribution of the local Nusselt number (Nu) along the heated 

bottom wall (X-axis) for different values of the radiation parameter (Rd), with the 

magnetic field parameter fixed at Ha = 2 and the vortex viscosity parameter at K = 1. 

The X-axis extends from 0 to 1, while the Y-axis spans 0 to 180. Four curves 

correspond to Rd = 0 (blue), Rd = 1 (black), Rd = 3 (green), and Rd = 5 (red). The 

results show that the Nusselt number, which characterizes the ratio of convective to 

conductive heat transfer, decreases from both ends toward the mid-section for all Rd 

values, signifying enhanced heat transfer near the enclosure walls and reduced transfer 

at the center. As Rd increases, the local Nusselt number also increases, reflecting the 

enhanced radiative heat transfer contribution. This trend shows that radiation 

significantly boosts the overall heat transfer, especially at higher Rd values. The 

magnetic field (Ha=2) and thermal conductivity ratio (K=1) remain constant, 

suggesting that the observed variations in heat transfer are primarily due to changes in 

the radiative parameter (Rd). The Rd=0 curve has the lowest Nusselt values, while the 

Rd=5 curve has the highest, demonstrating the substantial impact of radiation on local 

heat transfer along the wall. 

V.  Conclusion  

Using the vorticity stream function approach, two-dimensional magnetized 

micropolar fluid flow of natural convection in a semi-circular enclosure has been 

numerically analyzed. The present analysis investigates the effects of thermal radiation, 

Lorentz forces, and the vortex viscosity parameter using the finite difference method. 

The semi-circular enclosure is assumed to contain an electrically conducting 

micropolar fluid in thermal equilibrium. The governing nonlinear partial differential 

equations of momentum, energy, and mass conservation are solved subject to the 

prescribed wall boundary conditions for a conventional micropolar fluid. The 

numerical computations yield several significant findings, which are summarized 

below: 

• Increasing the vortex-viscosity parameter K results in a weakening of the 

convective flow. This is evidenced by the elongation and reduced intensity of 

the streamlines, the more uniform distribution of isotherms, and the increased 

complexity in iso-microrotation contours. 

• The two symmetric circulations are developed in all the cases except the high 

(or strong) buoyancy force Ra = 106. 
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• There is a noticeable upward trend in the local Nusselt number with increasing 

Rd values, indicating a stronger heat transfer effect with higher Rd. 

• For all Ra values, the Nusselt number starts high at X=0, dips towards the 

middle, and then rises again towards X=1. The significant dips and peaks for 

higher Ra suggest that the system is more sensitive to changes in X for higher 

Rayleigh numbers.  

• Increasing Ha boosts 𝑁𝑢 on the hot wall, showing that stronger magnetic 

fields suppress convective currents and reduce heat transfer efficiency. 
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Nomenclature: 

Symbol Description Symbol Description 

𝐵0 Magnetic field p Pressure 

𝐶𝑝 Specific heat t Time 

Ha Hartmann number T Temperature 

g gravitational acceleration N * Dimensionless micro rotation 

angular velocity 

Pr Prandtl number (U, V) Dimensionless velocity 

component in X, Y-direction 

N Dimensional micro rotation 

angular velocity 

(x,y) Cartesian coordinates in 

horizontal and vertical 

directions 

 Vortex viscosity parameter Rd Thermal radiation 

L Length of the enclosure H Height of the enclosure 

Ra Rayleigh number Greek letters 

K Dimensionless vortex viscosity  𝜇 Dynamic viscosity 

(X, Y) Dimensionless coordinate in 

horizontal and vertical 

directions 

𝜌 Fluid density 

(u,v) Dimensional component of fluid 

velocity in x, y-direction 

𝛾 Spin-gradient viscosity 

𝑇𝑐 Temperature at cold wall  𝜏 Non-dimensional time 

𝑇ℎ Temperature at hot wall 𝛼 Thermal diffusivity 

Nu Local Nusselt number 𝜃 Non-dimensional temperature 
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Fig. 3. The influence of the Ra on streamlines, isotherms, and iso-microrotation with 

Rd =1, K=1, Ha = 2, and Pr = 6.2. 
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Fig. 4. The influence of the vortex-viscosity parameter K= 1, 3, 4, and 5 (from 

bottom to top) on streamlines, isotherms, and iso-microrotation with Rd =1, Ra=105, 

Ha = 2, and Pr = 6.2. 

   

   

   

   
 

Fig. 5. The influence of the Ha = 30, 20, 10, and 0 (from bottom to top) on 

streamlines, isotherms, and iso-microrotation with Rd =1, Ra=105, K = 1, and Pr = 

6.2. 
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Fig. 6. Local Nusselt number distribution for various Ra values at Rd = 1, K = 1, and 

Ha = 2 along the heated bottom wall. 

 

 
Fig. 7. Distribution of the local Nusselt number along the heated bottom wall for 

various Ha values at Rd = 1, K = 1, and Ra = 10⁶. 

 
Fig. 8. Distribution of the local Nusselt number along the heated bottom wall for 

various Rd values at K = 1 and Ha = 2. 
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