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Abstract

Multi-objective  Linear Programming (MOLP) traditionally optimizes
multiple conflicting objectives simultaneously. This research extends the De Novo
Programming (DNP) concept, which focuses on optimal system design, to situations
with uncertainty in resource allocation and budget constraints. A novel mathematical
model, Rough Interval Multi-Objective De Novo Programming (RIMODNP), has
been introduced. This model incorporates the Rough Interval (RI) concept, where all
problem coefficients are represented by lower and upper interval bounds, each
having two terms (upper and lower).

The study outlines the mathematical formulation of the RIMODNP model, detailing
the methodology used to transform its uncertain nature into deterministic sub-
problems. It presents two primary approaches, Zeleny's and the Optimum-Path Ratio
Method, for finding optimal designs. Applied to the Baghdad Water Department, the
model optimizes resource allocation for increased water production, improved water
quality, and reduced water loss while considering unknown constraints.

The results, obtained by solving the deterministic sub-problems, provide the decision-
maker with a range of optimal system designs. The application to the Baghdad Water
Department shows significant increases in profit and cost savings across different
scenarios, highlighting the model's ability to offer robust and effective solutions
under conditions of uncertainty.

Keywords: De Novo programming; Multi-objective linear programming; Resource
allocation; Rough Interval, Tong-Shaoching method; Zeleny Approach; Optimal
path-ratios.
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I. Introduction

Multi-objective linear programming (MOLP) is a powerful branch of
mathematical optimization focused on problems with several conflicting objectives
that need to be optimized at the same time. Unlike traditional linear programming,
which usually deals with just one goal, MOLP tackles situations where two or more
objectives are at play. This makes MOLP a specific type of vector linear
programming and part of the broader field of multi-objective optimization. A standard
MOLP model is defined by its mathematical structure, including objective functions,
constraints, and decision variables. Various techniques and algorithms, such as linear
programming solvers and evolutionary algorithms, can be used to solve MOLP
problems and find effective solutions [II].

While MOLP excels at optimizing within existing systems, the challenge often lies in
designing optimal systems from scratch. To address this, Zeleny expanded the
concept of multi-objective programming to De Novo Programming (DNP). DNP is
essentially a tool for reshaping potential combinations within linear systems,
specifically aiming for optimal system designs. It provides a strategic approach to
finding the best possible system configuration, rather than just optimizing within
given limitations [IX]. Despite Zeleny's de novo programming (DNP) approach being
effective under conditions of certainty, it is not suitable for situations with uncertain
data. To address this limitation, many researchers have developed various methods
for solving DNP problems under uncertainty, including fuzzy (FDNP) and stochastic
programming (SDNP). The two suggested models provide a single subjective solution
[XT], [XV].

Building on this body of research, our study introduces a new model called Rough
Interval Multi-Objective De Novo Programming (RIMODNP) to address the problem
of resource allocation under uncertainty with an undetermined budget. This problem
is solved using two distinct methods: Zeleny's approach and the Optimal-Path Ratios
Method, with the latter two assuming the right-hand side of constraints is unknown.
Our article is structured into four sections: the first is this introduction, followed by
the materials and methods, then the application of the proposed mathematical model
to a real case study (the Baghdad Water Department), and finally, the results,
discussion, and conclusion.

II. Materials and Methods
i) Multi-Objective Linear Programming (MOLP)

The standard model of MOLP is characterized by its mathematical
representation, which includes the objective functions, constraints, and decision
variables involved in the optimization problem, as shown in problem (1) below:
max or min Z, =Z;-‘=1ij Y, k=12 ..,1,
subject to :

Ji —

Toia;Y <=2b;, i=12,.,m, (1)
Y;20,j=12,..,n
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Where the parameters b; (i = 1,2, ..., m) represents the given available resources as
constants. The efficient solution concept results from the solution of the MOLP
model [X], [VI].

ii) Multi-Objective De Novo Programming (MODNP)

DNP is used for reshaping feasible sets in linear systems; it is utilized as an
approach to optimum system design. Given resource pricing and a budget, the MOLP
problem is reformulated to get the MODNP formulation from the problem (2), it is
necessary to convert b; from constants to variables, and then determine their values in
(2) as follows:

max Zk = Z?:l Ck] Y}, k= 1,2, ...,l,

subject to :
Yjmiaij Yy <==b;, i=12,..,m,
?=1Pi by =B , X;=20,j=12,..,n 2)

Where: Yi.bi: are decision variables for products and available resources,
respectively; P;, 3: are the given values of both the unit price of resource i and total
available budget, respectively.

Where Z: maximize profit for single or multiple objective problems. Now, the
problem is to allocate the budget so that the resulting portfolio of resources
maximizes the value of the product mix (with given unit prices of m resources, and
with given total available budget [XII].

iii) Rough Interval Linear Programming Model:

The Rough Interval Linear Programming (RILP) model is designed to address
situations where data values are uncertain. It expands upon standard linear
programming by using rough interval coefficients, which allow for the estimation of
data through upper and lower interval bounds when exact figures are unavailable.
This enables predictions even when precise knowledge of a data value is lacking, the
general form of RILP is as follows:

. _L U
Max or Min f =37 1([c}, ¢/ [cj, ¢ Dy;

. L —U —L U
subject to: ¥7_,([af; af}], [@;, ai;y; < ([bf, b1, [b;i,b; ) (3)
yj = 0,j=12,..,n, i=12,..,m

—L =-U —L —U —L —U

Where:  ([ch, ¢/1. 2}, & Dula, %), [@h, D), and([b}, bV, [b;, by Dare  rough
interval coefficients of the objective function and constraints, and also, let y =
(Y1,y2.....,yn) represent the vector of all decision variables, see for more details [V].
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iv) Proposed Mathematical Model
Rough Interval Multi-Objective Linear Programming (RIMODNP)

The proposed mathematical model can be formulated by assuming coefficients are a
rough interval for problem (1), the model can be written as in problem (4):
Max or Min Z, = X% ([c}, V1, [, DY

Max or Min Z, = ¥, ([cf . c]], [E]L'E]U])Y

Max or Min Z; = ¥ 1([ ] [c],cJ DY;

subject to:
L L vy ok U
1([ ij _l]] [al]'al]])Yj < ([Qz 'Ql ] [bi'bi ]) (4)
Y201—12.., i=12,..mk=12..,1
Where  (cf,¢f1,[¢/. 5], ( gl,,gl,] [al,,al,]) and([b}, bY), (b, b; are  rough

interval coefficients of objective functions and constraints, and also, x; : represent the

decision variables. By reshaping RIMOLP, we obtained Rough Interval Multi-
Objective De Novo Programming (RIMODNP) as in problem (5) below:

KL —KU

Min or Max f*(v) = X, Xj_,([Cff*, C§V). [Cyy . Cij DYy
subject to
—L —U
Z?:l([gfj'giuj] [al]'al]])Y} < bi
—L —U
j=1([P} P, [Py, Pi Db; < ([EL.EU JAB LB DY 20, 5)
i=12,...m j=12,...,nand k=12,...,1........
Where: ([g{jL, gju] [C ij ]) is a vector of rough interval coefficients for the

multi-objective function ([gij,_ij ,[aij,aij]). is a matrix of rough interval

—L —U

coefficients for constraints of the multi-objective function ([BL-L, PY],[P;/,P; ]:isa

vector of rough interval coefficients of the unit price of resources i and
—L —U

([,BL, ,BU] ) [ﬂ B D is a rough interval of the total available budget.

where (i=12,....,m; j=12,...,n) , Y= (y,Ys ...,Vp)t denote the
vector of all decision variables.

—kL —kU

fRIG) — ([ka,ka] : [f f ]) Respectively and k = 1,2,...., K is the number
of objectives.

The conditions for the validity of the mathematical model (RIMODNP):[V]
V1],

—kL —kU . '
e The rough interval ([ Ji ku] : [ f . f ])is called the surely (possibly) optimal
e . KL —kU
range of model (5), if the optimal range is a subset of ([sz,j_ka] : [f f )
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kL pkul. [FF 7Y - - -
oLect [i , i ]:[f f ] be surely optimal (possibly) optimal range of the model

—kL —kU
(5). Then the rough interval ([j_f L f kU],[f f D is called the rough optimal

range of model (5).
e The optimal solution of each corresponding MODNP model (5), whose optimal value

kL cku|. [F5F 2RV ~ ~
belongs to [Z f ] : [f f ] is called a completely (rather) satisfactory solution
of the model (5).
—L —U
[P P] < [Pi'Pi]
—L —U
« 518" < [F
Finding the Optimal Design

i) Zeleny Approach is a method used to find the optimal system design for each
sub-problem by calculating and replacing budget constraints with specific sub-
problem constraints [IX].

Steps to Implement Zeleny's Approach (De Novo Programming)

Zeleny's approach for optimal system design, especially within the context of multi-
objective de novo programming (MODNP), can be generally outlined as follows:
Step 1: Define the System and Objectives.

Step 2: Identify Available Resources and Their Costs.

Step 3: Formulate the Multi-Objective Problem.

Step 4: Determine the Budget Constraint for Each Sub-problem.

Step 5: Solve Each Sub-problem as a Single-Objective Optimization Problem (often
via scalarization)

Step 6: Identify the Optimal System Design for Each Sub-problem.

Step 7: Present the Results to the Decision-Maker [1X].

ii) Optimum-Path Ratio Method
The optimum-path ratio for achieving the best performance for a given budget B is

defined as: y1 = Bﬁ the given budget level < f* . Optimal system design for B: Y =

y.Y*,b=y.b",Z = y,f", the optimum-path ratio represents an effective and fast
tool for the efficient optimal redesign of large-scale linear systems [IV].
It is possible to define six types of optimum-path ratios as shown in Table 1.:

Tablel. Six types of optimum-path ratios
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Optimal System Design

A series of optimal system designs can be determined by examining the design
configurations, which are discoverable through the optimum-path ratios listed in
Table 1.

() ¥y =vx", bl=yb"  and fl=yif" (6a)
(i) y?=vy%*x*, b®2=y?b"™ and f2 = yzf** (6b)
(111) y3 =y X**, b3 — y3b** and f3 — y3f** (6C)
(iv) y* = y*x*, b* = y*b* and f*=y*f* (6d)
V) ¥y =vx",  b>=y°bh"  and f°=y%f" (6e)
(Vl) y6 — y6xnd' b6 — y6bnd and f6 — y6fnd (6f)

The optimum system design above (y!,b%, f!), i=1,....,6, Where: b': optimum
portfolio of resources to be acquired at the current market prices, p, allows one to
produce x' and realize the multi-criteria performance f* [IX].

III. Method for converting proposed model (RIMODNP) to MODNP

In this section, two methods are used to convert the uncertainty proposed
mathematical model (RIMODNP) into four deterministic sub-problems (MODNP),

The Separation Method

Separation method (SM) is one of the methods that is used to convert the main model
into two sub-models: (the lower model and the upper model) and then solve each sub-

—xJ
model separately. The results corresponding to the sub-model are f ,f*f, and
X X; ; respectively.
The steps of the method can be summarized as follows [VI],[X1]:

Step 1: Converting the total interval into two sub-models.
Step 2: Solve the lower interval (the first bound) to get an optimal solution x;;, and

optimal value f*L. —
Step 3: Solve t_he upper interval (the second bound) to get an optimal solution X; >
and optimal value f*U.

Step 4: The optimal solution of the major problem is X*/ = [&-*j,ffj], =
FuF

i) Tong-Shaocheng Method (TSM)

TSM is a major important method used to obtain the best and the worst optimal value
for the objective function. In this method, the main model is converted into two
classical sub-models, LP (lower sub-model and the upper sub-model).

The process of converting to obtain the best and the worst values of the objective
function can be summarized as follows [II], [VII]:

a) By solving sub-model (7) below to find “The Worst Optimal Solution”
Max or Min f = ¥7_;cjx;
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subject to: ¥j_; a;j x; <=2 [b;] (7)
Xj = 0,j=12,...,n, i=12,...m
b) By solving sub-model (8) below to find “The Best Optimal Solution”
Max or Min f =¥7_,C; x;
subject to: ¥j_; a;;x; <=2 [Ei] (8)
xp20,j=12,..,n, i=12,..,m

And then solving each sub-model separately. The sub-model (7) has three possible

solutions, as follows:

e The sub-model (7) has a Finite, bounded optimal range, if sub-model (7) and sub-
model (8) have optimal solutions.

e Sub-model (7) is unbounded, then sub-model (8) is unbounded.

e Sub-model (7) is infeasible, then sub-model (8) is infeasible.

This method used for solving the problem to find the best and the worst optimal value
for objective function, the major problem converted into two classical sub-problems
LP (Lower problem and Upper problem) the steps of method can be summarized as
follows: an operations converting to obtain of the best and the worst values of the
objective function is as the following: [I]

By solving below problem (9) to find “The Worst Optimal Solution™:

Max or Min Z = 2?:121' Yj
subject to: ¥j_,a;;y; <==b; ©)
y; 20, j=12,..,n, i=12,..,m

By solving below problem (10) to find “The Best Optimal Solution”:

Max or Min Z = 2i=16Yj
subject to: ¥1_; a;; y; <=2 [by] (10)
yi =0, j=12,..,n, i=12,..,m
and then solve each problem separately. The problem (9) has three possible solutions,
as follows:

- Problem (9) has a Finite, bounded optimal range, if problem (9) and

problem (10) have optimal solutions.

- If Problem (9) is unbounded, then Problem (10) is unbounded.

- If Problem (9) is infeasible, then Problem (10) is infeasible.
e Approaches for Transforming RIMODNP into MODNP

In order to transform the model RIMODNP into four sub-models, two methods (SM
& TSM) will be used to achieve this purpose. Fig.1 represents the general flowchart
for applying these methods.
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| Separation Method (SM) J
Main Problem: RIMOLP or RIMODNP I
v
I Converting Rough interval to Interval I

Lower Interval (IMOLP or IMODNP) ‘

= el

l Tong-Shaoching Method (TSM)

== - =¥ == > =

1* bound of lower 224 bound of lower 1* bound of uppet 17 bound of upper

‘ Upper Interval (IMOLP or IMODNP)

rough interval rough interval rough interval rough interval

worst best worst best

Fig 1. General flowchart to convert (RIMODNP) into (MODNP)

The solution steps of the proposed mathematical model
Fig2. Illustrates the formulation and solution procedures for the mathematical model
presented in this study.

Identify the problem

[ N2 1
Rough interval linear Multi-Objectives linear Multi-Objectives De Novo
programming problem (RILP) programming problem (MOLP) programming problem (MODNP)

L | J
Y
Proposed mathematical
Model: Rough interval Multi-
Objectives De Novo
programming (RIMODNP)

N2

Convert Proposed mathematical
Model: (RIMODNP) into four sub-
problems using Tong-shaocheng

method
First bound (lower) sub- First bound (Upper) sub- Second bound (lower) sub- Second bound (Upper) sub-
problem (1) problem (2) problem (3) problem (4)
The worst optimal solution The best optimal solution The worst optimal solution The best optimal solution

X

Solve each sub-problem using two
methods:

X

Method one: Zeleny Method two: Optimal-Path
ratios (use three ratios
Approach
only)
Four optimal system Twelve optimal system
designs designs

~ P

Method Performance Overview

e Method One: 25%
e Method Two: 75%

N2

The second method was chosen
because it yields more designs.

)

END

Fig. 2. The solution steps of the proposed mathematical model

Iftikhar Ali Hussein et al

103



J. Mech. Cont.& Math. Sci., Vol.-20, No.- 10, October (2025) pp 96-117
II1. Results and Discussion

Application Proposed mathematical Model: Real Case Study (Baghdad Water
Department) the model (RIMODNP) is applied on drinking water filtration stations
for the city of Baghdad, Fig.3. the distribution of water stations in Baghdad according
to Municipalities: (AL-Karkh & AL-Rusafa)

I Baghdad Water Department I

)\
[ A}

| AlL-Karkh side (west side) | 1 AL-Rusafa side (east side) |

3 L

Municipalities of AL-Karkh side Municipalities of AL-Rusafa side

| 2o
Acroci-

New Baghdad

Stations of AL-Rusafa side

AL-Kadhimiya
AL-Karama
AL-Qadisya

AL-Dora

AL-Rusafa
Sharq Dijla
AL-Ghadir
AL-Sader
AL-Baladiat
AL-Rasheed
AL-Jadiria
New Baghdad

Fig.3 General Flowchart for distribution water stations in Baghdad
IV.  Formulation general mathematical model (RIMODNP) of the case study:

This model was used to solve a case study, assuming the right-hand side of
the constraints b; is unknown. The general mathematical model (RIMODNP) (11),
which was derived previously, can be applied to the case study as follows:

Max f®(x) = [850,890],[875,925]x, + [560,654],[620,675]x, +
[615,650],[640,700]x; + [47,70], [66,80]x, + [86,100], [88,120]x5 +
[42,66],[49,75]xs + [55,66], [60,75]x, + [36,49], [38,53]xg + [28,39], [29,42]x, +
[37.5,47],[38,50]x;0 + [25,34.5],[28,41]x;, + [59,71.5],[67,89]x,, +

[34.5,67], [45,77]x13

Max f®(x) =[2.1,3.2],[2.8,3.5]x; + [2.5,4],[3.5,5]x, + [1.7,2.7],[2.5,4]x5 +
[1.9,4],[3.5,5]x, + [2.2,4],[3.5,4.5]x5 + [2.9,3.6], [3,4.2]x¢ + [2.6,3.8],[2.9,4.5]x, +
[1.6,2.9],[2.1,3.9]xg + [2.8,3.9],[2.9,4.2]xy + [3.2,3.7], [3.5,4]x10 +
[2.5,3.4],[2.8,4.1]x;; + [2.9,4.1],[3.4,4.7]x,, + [3.4,4.4],[3.5,4.8]x,3

Min f® (x) = —[212,222.5],[218.75,231.25]x, — [140,163.5],[155,168.5]x, —
[153.75,162.5],[160,175]x; — [11.75,17.5], [16.2,20]x, — [21.5,25],[22,30]x5 —
[10.5,16.5],[12.5,18.75]x, — [13.75,16.5], [15,18.75]x,

—[9,12.25],[9.5,13.25]xg — [7,9.75],[7.25,10.5]x — [9.25,11.75],[9.5,12.5]x;¢ —
[6.25,8.625],[7,10.5]x,, — [14.75,17.875],[16.75,22.25]x;, —
[8.625,16.75],[11.25,19.25]x;3
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s.to

[0.75,4.375], [1,6.25]x, +

[0.933,2.141], [1.68,3.175]x, +[0.775,1.125],[1.1,1.55] x5 +[0.225,0.391],[0.3,0.4]x, 0.
266,0.333],[0.287,0.433] x5+ [0.158,0.233],[0.191,0.55]x, +

[0.083,0.091], [0.083,0.091]x, + [0.017,0.066], [0.033,0.075]x5 +

[0.25,0.33], [0.29,0.41]x, + [0.133,0.19], [0.15,0.208]x,0 +

[0.308,0.425], [0.317,0.5]x, + [0.191,0.275], [0.266,0.35]x;, +
[0.22,0.26],[0.24,0.28]x,5 < b; (The amount of Alum consumed Ton/ m3 of water per day)
[1,1.75], [1.4,2]x; + [1,1.6], [1.25,1.9]x, + [1.5,2.6], [1.85,3]x5 + [0.1,0.5], [0.35,0.95]x, +
[0.175,0.3], [0.2,0.45] x5 + [0.13,0.16], [0.14,0.18]x, + [0.13,0.15],[0.14,0.19]x, +
[0.14,0.16], [0.15,0.19]x + [0.125,0.16], [0.145,0.2]xs + [0.2,0.35], [0.26,0.41]x;, +
[0.21,0.33], [0.27,0.4]x; + [0.1,0.14], [0.125,0.18]x,, + [0.075,0.13],[0.09,0.2] x5 < b,
(The amount of Chlorine consumed Ton/ m3 of water per day)

[10,25],[16,30]x; + [12,96],[72,106]x, +

[10,22],[16,25]x5 +[42,55],[50,60]x, +[28,87],[77,116]x5 + [22,29], [25,38]x¢ +
[26,54], [44,63]x, +[50,129],[110,183]x5 + [25,183], [163,282]x, +

[84,210], [173,224]x,0 + [94,262], [210,270]x,; + [29,85], [45,154]x,, +

[48,60], [52,72]x13 < b; (The number of daily examinations: (Chlorine, Turbidity,
Bacteriology, Hardness, conductivity, chemical)

[1200,2500], [2000,4320]x, + [955,1500], [1100,2333]x, +

[894,1440], [1250,2055]x5 + [164,250], [220,300]x, + [115,180], [155,250]xs +
[107,150],[115,210]x¢ +[94,120],[99,200]x, + [70,95], [85,100]xg +
[65,83],[75,95]x9 + [94,125],[117,210]x,4 +

[62,87],[73,180]x;; +[110,185],[166,225]x;, + [160,225], [185,310]x,3 < b, (The
amount of fuel consumed /Liters)

[1,3], [2,4]x; +]1,2],[2,3]x, +[5,9],[7,15]x5 +[1,2],[2,3]x, +[1,2],[2,3] x5 +

[2,4], [3,5]x6 +[1,2],[2,3]%, + [1,2], [2,3]%s + [2,4], [3.6]x + [1,1], [1,1]x10 +
[1,1],[1,1]xq1 + [1,1], [1,1] %12 + [2,4],[3,6]x13 < b5 (The number of contracts)
[23,23],[23,23]x; +[18.2,18.2],[18.2,18.2]x, + [17,17], [17,17]x5.[2,2], [2,2]x, +
[3,3], [3,3]xs + [2.2,2.2], [2.2,2.2]x¢ + [1.8,1.8], [1.8,1.8]x, + [1.2,1.2], [1.2,1.2] x5 +
[1.3,1.3],[1.3,1.3]xo + [1.8,1.8], [1.8,1.8]x, + [1.16,1.16], [1.16,1.16]x,, +
[2,2],12,2]x15 + [3,3],[3,3]x13 < bg (The design capacity of the water production stations,
measured m? /day)

[P, PP), [P Py | by + [P, PY), [P5, P2 | by + [P, PY] [P3,P3]b3 + (B4 YL [Pa Py by +
[P, PYL,[Ps, s | bs + [P, B, [P, Pe | be < (184 8°L1B B D)

by = 0,b, = 0,by = 0,b, > 0,bs > 0,and bs = 0

X1 =20,x,20,x3=20,x,20,x5=>0,x5=>0,x;, >20,x3 =0,x9 >0,x;90=>0,x; =
0,X1, > 0,&x,3 >0 (11)

Transforming Model RIMODNP to MODNP

Transforming RIMODNP into IMODNP sub-problems using the SM method, and
then converting IMODNP into four sub-problems using the Tong-Shaoching method,
problem (11) was used to divided into four sub-problems were named:

- Sub-problem (12) 1* bound of lower rough interval.
- Sub-problem(13) 2" bound of lower rough interval
- Sub-problem (14) 1* bound of upper rough interval
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- Sub-problem (15) 2™ bound of upper rough interval
Results of Zeleny approach

The optimal system design for the initial lower bound of the rough interval problem
in RIMODNP was determined using Zeleny's approach. This involved the budget
constraint for sub-problem (12) being calculated, and the existing budget constraint
was then replaced by the specific constraints of sub-problem (12).

The same methodology was applied to find the optimal system design for sub-
problems (13, 14, and 15). The results from applying Zeleny's approach to these sub-
problems are presented in Table 2.

Table 2: Results from Zeleny's Approach for Sub-problems 12, 13, 14, and 15
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Table 2 presents the results of Zeleny's approach, showcasing the optimal system
design for each sub-problem within the main problem (11). These results provide the
decision-maker (DM) at the Baghdad Water Department with four distinct designs,
allowing them to select the most suitable option.

¢ Results of optimal-path ratios Method
Optimal system design is achieved through the use of optimal path-ratios, which
necessitates the following:
Sub-problem Ratios: The ratios for each sub-problem are calculated using the
formulas provided in Table 1; the results are displayed in Table 3.

Table 3: Ratios for each sub-problem
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Optimal systems design for the optimal path-ratios:

After getting the values of ratios for each sub-problem, Optimal system designs are
obtained by applying formulas (6a,6b, and 6¢), the results are shown in Tables (4,5, 6,
and 7):

Table 4: Designs for the 1 Lower Rough Interval Bound of Sub-problem (12)

Based on the calculations using the Optimal Path-Ratios method, six optimal system
designs were derived for the first bound of the lower rough interval in sub-problem
(12), as presented in Table 9. In the first design, the production capacities of the three
drinking water purification projects, Al-Karkh, Al-Rusafa, and Sharg-Dijla water
stations, increased by 148.34, 101.45, and 39.11 thousand cubic meters, respectively.
This increase required resource allocations of 810.70, 516.56, 17,637.40, 532,457.55,
952.99, and 5,698.03 units. As a result, the design achieved a profit increase of
623.01 DI per 1000 cubic meters of water produced. Additionally, improvements in
water quality contributed to a profit of 169,345.73 DI per unit, while reducing water
loss led to cost savings of 42,365.76 DI per 1000 cubic meters.

Throughout the six optimal designs obtained for sub-problem (12), the first, second,
and third designs corresponding to the weight ratios 0.3702, 0.3333, and 0.3330
demonstrated significant improvements across all three projects mentioned above.
These designs achieved profit increases ranging from 560.41 to 623.01 DI. In terms
of water quality enhancement, the gains ranged from 152,330.78 to 169,345.73 DI,
and the reduction in water loss resulted in cost savings between 38,109.08 and
42,365.76 DI
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For the second bound of the lower rough interval in sub-problem (13), the results
obtained using the Optimal Path-Ratios method are presented in Table 5.

Table 5. Designs for 2" Lower Rough Interval Bound of Sub-problem (13)

After applying the Optimal Path-Ratios method, six optimal system designs were
obtained for Problem (13), as presented in Table 10. In Design 1, under the ratio of
0.376027359, the production capacities increased significantly across all three water
treatment stations. Specifically, the Al-Karkh Water Station increased by 281.05
thousand m3/day, the Al-Rusafa Water Station by 299.89 thousand m?®day, and the
Sharg-Dijla Water Station by 77.16 thousand m?®/day. Achieving this required the
allocation of resources in the amounts of 562.57, 696.67, 7,180.67, 692,625.67,
966.72, and 13,233.67 units across various resource categories.

As a result, the design met several objectives. The first objective, increasing water
production capacity per 1000 m?, generated a profit of 496,409.20 DI. The second
objective, enhancing water quality, resulted in profits of 2,307.22 DI. Regarding the
third objective, reducing water loss contributed to a cost reduction of 124,102.30 DI
per 1000 m?.

In Designs 2 and 3, associated with ratios 0.3333333392 and 0.332999984, it was
observed that the values of the ratios—and consequently, the resulting designs—were
nearly identical. The difference between the two designs is minimal and practically
negligible.

For the first bound of the upper rough interval in Problem (14), the corresponding
optimal system designs are displayed in Table 6. Below:
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able 6: Designs for the 1°** upper Rough Interval Bound of Sub-problem (14)

The results of solving sub-problem (14) using the Optimal Path-Ratios method, as
presented in Table 11, reveal six optimal system designs. The first design,
corresponding to a ratio of 0.414136627, demonstrates notable increases in
production capacity across the three major water treatment stations. Specifically, the
Al-Karkh station increases by 746.38 thousand m?®day, the Al-Rusafa station by
991.87 thousand m?*day, and the Sharg-Dijla station by 1,073.39 thousand m?/day.
Achieving these enhancements requires the allocation of key resources in the
following amounts: 9,477.86; 6,597.51; 154,364.58; 7,744,246.31; 22,062.06; and
53,466.61 units across various input categories.

As a result, the design meets three primary objectives:

Increased water production capacity, yielding a profit of 1,955,019.33 DI per 1,000
m?;

Improved water quality, generating a profit of 8,244.91 DI;

Reduced water loss, leading to cost savings of 488,754.83 DI per 1,000 m?.
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Table 7: Designs for the 2" upper Rough Interval Bound of Sub-problem (15)

The results of the second bound of the upper rough interval problem (sub-problem
15), obtained using the Optimal Path-Ratios method, led to the development of three
new optimal system designs, as presented in Table 7. These designs represent viable
options for the case study and can be offered to the decision maker (Baghdad Water
Department) as potential candidates for final implementation. Furthermore, since
three optimal designs were generated for each sub-problem outlined in Tables 4, 5, 6,
and 7, the decision maker now has a total of twelve optimal system design
alternatives. The final selection can be made based on available budget constraints
and strategic priorities.

Based on the above results from the RIMODNP, the mathematical models under
uncertainty can be compared as shown in the table below:

IV. Comparison of Zeleny's Approach and Optimal-Path Ratios Method

This comparison examines two distinct methodologies for determining optimal
system designs within the context of a Rough Interval Multi-Objective De Novo
Programming (RIMODNP) problem, specifically applied to the Baghdad Water
Department.
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Table 8: A comparison between Zeleny's Approach and Optimal-Path Ratios Method
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Table 9: Comparison of uncertainty modeling Approaches FDNP &SDNP with
suggested model RIMODNP
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Conclusion

This research successfully addressed the problem of uncertainty in Multi-

Objective De Novo Programming (MODNP) by introducing a novel model, Rough
Interval Multi-Objective De Novo Programming (RIMODNP). By integrating the
Rough Interval (RI) concept, the model effectively represents ambiguous data in
resource allocation and budget constraints, which is common in real-world scenarios.
The study's key contributions and findings are as follows:

)

iii)

Effective Uncertainty Modeling: The RIMODNP model provides a robust
framework for handling imprecise and incomplete data. By representing
coefficients with lower and upper interval bounds, it avoids the limitations of
single-point solutions often found in Fuzzy or Stochastic De Novo Programming
models, which rely on subjective assumptions or extensive probabilistic data.
This approach offers a more practical and comprehensive picture of the solution
space.

Generation of Robust and Actionable Solutions: The proposed methodology of
transforming the uncertain RIMODNP model into deterministic sub-problems
using the Separation Method (SM) and the Tong-Shaocheng Method (TSM)
proved highly effective. This process yielded a range of optimal system designs
that directly address the multi-objective problem. The application to the Baghdad
Water Department case study demonstrated that these solutions can lead to
significant increases in profit, improved water quality, and reduced water loss.

Comparison of Solution Methodologies: The research provided a valuable
comparison between Zeleny's approach and the Optimal-Path Ratios Method.
While Zeleny's approach provided a single, clear optimal design for each sub-
problem, the Optimal-Path Ratios Method proved to be more advantageous for
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decision-makers. It generated multiple distinct alternatives (up to twelve in this
case study) for the overall problem, offering greater flexibility and a clearer view
of the trade-offs between different objectives and resource allocations. This
makes it particularly suitable for environments with high uncertainty, as it
empowers decision-makers to select the most fitting solution based on strategic
priorities and budget constraints.

Practical Applicability: The successful application of the RIMODNP model to a
real-world case study highlights its immense practical value. The results are not
just theoretical but provide concrete, implementable plans for the Baghdad Water
Department, demonstrating the model's potential to be a powerful decision-
support tool in water management and other industries facing similar resource
allocation challenges under ambiguity.

Future Work

Based on the research findings and identified limitations, here are the key areas

for future improvements and explorations:

)

iii)

Hybrid Uncertainty Models: Future research could explore the integration of
different types of uncertainty into a single, comprehensive model. Combining the
rough interval concept with elements of stochastic programming (for random
data) or fuzzy programming (for linguistic and vague data) could lead to more
sophisticated models that can handle a wider array of real-world ambiguities.

Advanced Solution Algorithms: While the current methods were effective,
exploring more advanced optimization algorithms could enhance the model's
efficiency and scalability. Investigating meta-heuristic algorithms, such as
genetic algorithms or particle swarm optimization, could provide faster and
potentially more robust solutions, especially when dealing with larger, more
complex datasets.

Sensitivity and Risk Analysis: A more detailed sensitivity analysis is warranted
to better understand how changes in the rough interval bounds (the degree of
uncertainty) impact the optimal solutions. Additionally, incorporating a risk
analysis component could help decision-makers evaluate the potential worst-case
scenarios associated with each design alternative.

Broader Industrial Applications: The RIMODNP model could be applied to
other sectors that deal with resource allocation and system design under
uncertainty, such as supply chain management, production planning, or large-
scale infrastructure projects. This would validate the model's generalizability
and demonstrate its utility across diverse industrial contexts.
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