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Abstract 

  Multi-objective Linear Programming (MOLP) traditionally optimizes 

multiple conflicting objectives simultaneously. This research extends the De Novo 

Programming (DNP) concept, which focuses on optimal system design, to situations 

with uncertainty in resource allocation and budget constraints. A novel mathematical 

model, Rough Interval Multi-Objective De Novo Programming (RIMODNP), has 

been introduced. This model incorporates the Rough Interval (RI) concept, where all 

problem coefficients are represented by lower and upper interval bounds, each 

having two terms (upper and lower). 

The study outlines the mathematical formulation of the RIMODNP model, detailing 

the methodology used to transform its uncertain nature into deterministic sub-

problems. It presents two primary approaches, Zeleny's and the Optimum-Path Ratio 

Method, for finding optimal designs. Applied to the Baghdad Water Department, the 

model optimizes resource allocation for increased water production, improved water 

quality, and reduced water loss while considering unknown constraints. 
The results, obtained by solving the deterministic sub-problems, provide the decision-

maker with a range of optimal system designs. The application to the Baghdad Water 

Department shows significant increases in profit and cost savings across different 

scenarios, highlighting the model's ability to offer robust and effective solutions 

under conditions of uncertainty. 

Keywords: De Novo programming; Multi-objective linear programming; Resource 

allocation; Rough Interval; Tong-Shaoching method; Zeleny Approach; Optimal 

path-ratios. 
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I.     Introduction 

Multi-objective linear programming (MOLP) is a powerful branch of 

mathematical optimization focused on problems with several conflicting objectives 

that need to be optimized at the same time. Unlike traditional linear programming, 

which usually deals with just one goal, MOLP tackles situations where two or more 

objectives are at play. This makes MOLP a specific type of vector linear 

programming and part of the broader field of multi-objective optimization. A standard 

MOLP model is defined by its mathematical structure, including objective functions, 

constraints, and decision variables. Various techniques and algorithms, such as linear 

programming solvers and evolutionary algorithms, can be used to solve MOLP 

problems and find effective solutions [II]. 

While MOLP excels at optimizing within existing systems, the challenge often lies in 

designing optimal systems from scratch. To address this, Zeleny expanded the 

concept of multi-objective programming to De Novo Programming (DNP). DNP is 

essentially a tool for reshaping potential combinations within linear systems, 

specifically aiming for optimal system designs. It provides a strategic approach to 

finding the best possible system configuration, rather than just optimizing within 

given limitations [IX]. Despite Zeleny's de novo programming (DNP) approach being 

effective under conditions of certainty, it is not suitable for situations with uncertain 

data. To address this limitation, many researchers have developed various methods 

for solving DNP problems under uncertainty, including fuzzy (FDNP) and stochastic 

programming (SDNP). The two suggested models provide a single subjective solution 

[XI], [XV]. 

Building on this body of research, our study introduces a new model called Rough 

Interval Multi-Objective De Novo Programming (RIMODNP) to address the problem 

of resource allocation under uncertainty with an undetermined budget. This problem 

is solved using two distinct methods: Zeleny's approach and the Optimal-Path Ratios 

Method, with the latter two assuming the right-hand side of constraints is unknown. 

Our article is structured into four sections: the first is this introduction, followed by 

the materials and methods, then the application of the proposed mathematical model 

to a real case study (the Baghdad Water Department), and finally, the results, 

discussion, and conclusion. 

II.     Materials and Methods 

i) Multi-Objective Linear Programming (MOLP) 

  The standard model of MOLP is characterized by its mathematical 

representation, which includes the objective functions, constraints, and decision 

variables involved in the optimization problem, as shown in problem (1) below: 

𝑚𝑎𝑥 𝑜𝑟 𝑚𝑖𝑛 𝑍𝑘 = ∑ 𝐶𝑘𝑗
𝑛
𝑗=1 𝑌𝑗 ,                k = 1,2, … , 𝑙,    

      subject to : 

 ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑌𝑗𝑖

≤=≥ 𝑏𝑖,    𝑖 = 1,2, … , 𝑚,                                                           (1) 

     𝑌𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛    
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Where the parameters 𝑏𝑖 (𝑖 = 1,2, … , 𝑚) represents the given available resources as 

constants. The efficient solution concept results from the solution of the MOLP 

model [X], [VI]. 

ii) Multi-Objective De Novo Programming (MODNP) 

  DNP is used for reshaping feasible sets in linear systems; it is utilized as an 

approach to optimum system design. Given resource pricing and a budget, the MOLP 

problem is reformulated to get the MODNP formulation from the problem (2), it is 

necessary to convert 𝑏𝑖 from constants to variables, and then determine their values in 

(2) as follows: 

𝑚𝑎𝑥  𝑍𝑘 = ∑ 𝐶𝑘𝑗
𝑛
𝑗=1 𝑌𝑗 ,                k = 1,2, … , 𝑙,    

      subject to : 
   ∑ 𝑎𝑖𝑗

𝑛
𝑗=1 𝑌𝑗 ≤=≥ 𝑏𝑖,    𝑖 = 1,2, … , 𝑚,    

   ∑ 𝑝𝑖
𝑛
𝑗=1 𝑏𝑖 ≤ 𝛽      ,    𝑋𝑗 ≥ 0, 𝑗 =  1,2, … , 𝑛                                               (2) 

Where: Yi.bi:  are decision variables for products and available resources, 

respectively; Pi, 𝛽: are the given values of both the unit price of resource i and total 

available budget, respectively. 

Where Z: maximize profit for single or multiple objective problems. Now, the 

problem is to allocate the budget so that the resulting portfolio of resources 

maximizes the value of the product mix (with given unit prices of m resources, and 

with given total available budget [XII]. 

iii)  Rough Interval Linear Programming Model:  

The Rough Interval Linear Programming (RILP) model is designed to address 

situations where data values are uncertain. It expands upon standard linear 

programming by using rough interval coefficients, which allow for the estimation of 

data through upper and lower interval bounds when exact figures are unavailable. 

This enables predictions even when precise knowledge of a data value is lacking, the 

general form of RILP is as follows: 

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛  𝑓 = ∑ ([𝑐𝑗
𝐿𝑛

𝑗=1 , 𝑐𝑗
𝑈], [𝑐𝑗

𝐿
, 𝑐𝑗

𝑈
])𝑦𝑗  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ ([𝑎𝑖𝑗
𝐿𝑛

𝑗=1 𝑎𝑖𝑗
𝑈 ], [𝑎𝑖𝑗

𝐿
, 𝑎𝑖𝑗

𝑈
])𝑦𝑗 ≤ ([𝑏𝑖

𝐿, 𝑏𝑖
𝑈], [𝑏𝑖

𝐿
, 𝑏𝑖

𝑈
])                         ( 3)                                            

𝑦𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛,     𝑖 = 1,2, … , 𝑚  

Where: ([𝑐𝑗
𝐿, 𝑐𝑗

𝑈], [𝑐𝑗
𝐿

, 𝑐𝑗
𝑈

]),([𝑎𝑖𝑗
𝐿 , 𝑎𝑖𝑗

𝑈 ], [𝑎𝑖𝑗
𝐿

, 𝑎𝑖𝑗
𝑈

]), and([𝑏𝑖
𝐿, 𝑏𝑖

𝑈], [𝑏𝑖

𝐿
, 𝑏𝑖

𝑈
])are rough 

interval coefficients of the objective function and constraints, and also, let y = 

(y1,y2,….,yn)
t represent the vector of all decision variables, see for more details [V]. 
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iv)  Proposed Mathematical Model 

Rough Interval Multi-Objective Linear Programming (RIMODNP)  

The proposed mathematical model can be formulated by assuming coefficients are a 

rough interval for problem (1), the model can be written as in problem (4): 

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛  𝑍1 = ∑ ([𝑐𝑗
𝐿𝑛

𝑗=1 , 𝑐𝑗
𝑈], [𝑐𝑗

𝐿
, 𝑐𝑗

𝑈
])𝑌𝑗  

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛  𝑍2 = ∑ ([𝑐𝑗
𝐿𝑛

𝑗=1 , 𝑐𝑗
𝑈], [𝑐𝑗

𝐿
, 𝑐𝑗

𝑈
])𝑌𝑗  

                       ⋮  

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛  𝑍𝑙 = ∑ ([𝑐𝑗
𝐿𝑛

𝑗=1 , 𝑐𝑗
𝑈], [𝑐𝑗

𝐿
, 𝑐𝑗

𝑈
])𝑌𝑗  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

 ∑ ([𝑎𝑖𝑗
𝐿𝑛

𝑗=1 𝑎𝑖𝑗
𝑈 ], [𝑎𝑖𝑗

𝐿
, 𝑎𝑖𝑗

𝑈
])𝑌𝑗 ≤ ([𝑏𝑖

𝐿, 𝑏𝑖
𝑈], [𝑏𝑖

𝐿
, 𝑏𝑖

𝑈
])                                               (4) 

𝑌𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛,     𝑖 = 1,2, … , 𝑚, 𝑘 = 1,2, … , 𝑙    

Where ([𝑐𝑗
𝐿 , 𝑐𝑗

𝑈], [𝑐𝑗
𝐿

, 𝑐𝑗
𝑈

]), ([𝑎𝑖𝑗
𝐿 , 𝑎𝑖𝑗

𝑈 ], [𝑎𝑖𝑗
𝐿

, 𝑎𝑖𝑗
𝑈

]), 𝑎𝑛𝑑([𝑏𝑖
𝐿, 𝑏𝑖

𝑈], [𝑏𝑖

𝐿
, 𝑏𝑖

𝑈
])are rough 

interval coefficients of objective functions and constraints, and also, 𝑥𝑗 :
 represent the 

decision variables.  By reshaping RIMOLP, we obtained Rough Interval Multi-

Objective De Novo Programming (RIMODNP) as in problem (5) below:   

 𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥 𝑓𝐾(𝑌)  = ∑ ∑ ([𝐶𝑖𝑗
𝐾𝐿 , 𝐶𝑖𝑗

𝐾𝑈𝑛
𝑗=1

𝑚
𝑖=1 ], [𝐶𝑖𝑗

𝐾𝐿
, 𝐶𝑖𝑗

𝐾𝑈
])𝑌𝑖𝑗             

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

∑ ([𝑎𝑖𝑗
𝐿𝑛

𝑗=1 , 𝑎𝑖𝑗
𝑈 ], [𝑎𝑖𝑗

𝐿
, 𝑎𝑖𝑗

𝑈
])𝑌𝑗 ≤ 𝑏𝑖  

∑ ([𝑃𝑖
𝐿𝑛

𝑗=1 , 𝑃𝑖
𝑈], [𝑃𝑖

𝐿
, 𝑃𝑖

𝑈
])𝑏𝑖 ≤ ([𝛽𝐿, 𝛽𝑈], [𝛽

𝐿
, 𝛽

𝑈
]), 𝑌𝑗 ≥ 0 ,                                 (5)                                                                

𝑖 = 1,2, … . , 𝑚, 𝑗 = 1,2, … . , 𝑛, 𝑎𝑛𝑑  𝑘 = 1,2, … . , 𝑙……..   

Where:  ([𝐶𝑖𝑗
𝐾𝐿 , 𝐶𝑖𝑗

𝐾𝑈],[𝐶𝑖𝑗

𝐾𝐿
, 𝐶𝑖𝑗

𝐾𝑈
]): is a vector of rough interval coefficients for the 

multi-objective function ([𝑎𝑖𝑗
𝐿 , 𝑎𝑖𝑗

𝑈 ], [𝑎𝑖𝑗
𝐿

, 𝑎𝑖𝑗
𝑈

]): is a matrix of rough interval 

coefficients for  constraints of the multi-objective function  , ([𝑃𝑖
𝐿 , 𝑃𝑖

𝑈], [𝑃𝑖

𝐿
, 𝑃𝑖

𝑈
]): is a 

vector of rough interval coefficients of the unit price of resources i and 

([𝛽𝐿, 𝛽𝑈] , [𝛽
𝐿

, 𝛽
𝑈

]): is a rough interval of the total available budget. 

where (𝑖 = 1,2, … . , 𝑚;    𝑗 = 1,2, … . , 𝑛)  , 𝑌 = (𝑦1, 𝑦2, … . , 𝑦𝑛)𝑡 denote the 

vector of all decision variables. 

𝑓𝑅𝐼(𝑘) = ([𝑓𝑘𝐿, 𝑓𝑘𝑈] : [𝑓
𝑘𝐿

, 𝑓
𝑘𝑈

]) Respectively and 𝑘 = 1,2, … . ,    𝐾 is the number 

of objectives.  

The conditions for the validity of the mathematical model (RIMODNP):[V] 

[VII], 

• The rough interval ([𝑓𝑘𝐿, 𝑓𝑘𝑈] : [𝑓
𝑘𝐿

, 𝑓
𝑘𝑈

])is called the surely (possibly) optimal 

range of model (5), if the optimal range is a subset of ([𝑓𝑘𝐿, 𝑓𝑘𝑈] : [𝑓
𝑘𝐿

, 𝑓
𝑘𝑈

]). 
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• Let [𝑓𝑘𝐿, 𝑓𝑘𝑈] : [𝑓
𝑘𝐿

, 𝑓
𝑘𝑈

] be surely optimal (possibly) optimal range of the model 

(5). Then the rough interval ([𝑓𝑘𝐿, 𝑓𝑘𝑈] , [𝑓
𝑘𝐿

, 𝑓
𝑘𝑈

]) is called the rough optimal 

range of model (5). 

• The optimal solution of each corresponding MODNP model (5), whose optimal value 

belongs to [𝑓𝑘𝐿, 𝑓𝑘𝑈] : [𝑓
𝑘𝐿

, 𝑓
𝑘𝑈

] is called a completely (rather) satisfactory solution 

of the model (5).   

• [𝑃𝑖
𝐿 , 𝑃𝑖

𝑈] ⊆ [𝑃𝑖

𝐿
, 𝑃𝑖

𝑈
] ⇒ 𝑃𝑖

𝐿
≤ 𝑃𝑖

𝑈 ≤ 𝑃𝑖
𝐿 ≤ 𝑃𝑖

𝑈
 

•  [𝛽𝐿, 𝛽𝑈] ⊆ [𝛽
𝐿

, 𝛽
𝑈

] ⇒ 𝛽
𝐿

≤ 𝛽𝑈 ≤ 𝛽𝐿 ≤ 𝛽
𝑈

      

 

Finding the Optimal Design 

   i)   Zeleny Approach is a method used to find the optimal system design for each 

sub-problem by calculating and replacing budget constraints with specific sub-

problem constraints [IX]. 

Steps to Implement Zeleny's Approach (De Novo Programming) 

Zeleny's approach for optimal system design, especially within the context of multi-

objective de novo programming (MODNP), can be generally outlined as follows: 

Step 1: Define the System and Objectives. 

Step 2:  Identify Available Resources and Their Costs. 

Step 3:  Formulate the Multi-Objective Problem. 

Step 4:  Determine the Budget Constraint for Each Sub-problem. 

Step 5:  Solve Each Sub-problem as a Single-Objective Optimization Problem (often 

via scalarization) 

Step 6: Identify the Optimal System Design for Each Sub-problem. 

Step 7: Present the Results to the Decision-Maker [IX]. 

      

ii) Optimum-Path Ratio Method  

The optimum-path ratio for achieving the best performance for a given budget B is 

defined as: 𝜸𝟏 =
𝛽

𝛽∗  the given budget level ≤ 𝛽∗ . Optimal system design for B: 𝑌 =

𝜸1𝑌∗, 𝑏 = 𝜸1𝑏∗, 𝑍 = 𝜸1𝑓∗ , the optimum-path ratio represents an effective and fast 

tool for the efficient optimal redesign of large-scale linear systems [IV].  

It is possible to define six types of optimum-path ratios as shown in Table 1.:  

Table1. Six types of optimum-path ratios 
Ratio (1) Ratio (2) Ratio (3) Ratio (4) Ratio (5) Ratio (6) 

𝜸𝟏 =
𝜷

𝜷∗
 𝛾2 =

𝛽

𝛽∗∗
 𝛾3 =

∑ 𝛼𝑖𝛽𝑖
𝑗

𝑖

𝛽∗∗
 

 

𝛾4 =
𝛽

𝛽∗∗
 

 

𝛾5 =
∑ 𝛼𝑖𝛽𝑖

𝑗
𝑖

𝛽∗
 

 

𝛾6 =
∑ 𝛼𝑖𝛽𝑖

𝑗
𝑖

𝛽∗∗
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Optimal System Design 

 A series of optimal system designs can be determined by examining the design 

configurations, which are discoverable through the optimum-path ratios listed in 

Table 1. 

(i) 𝑦1 = 𝜸1𝑥∗∗,       𝑏1 = 𝜸1𝑏∗∗       𝑎𝑛𝑑  𝑓1 = 𝜸1𝑓∗∗                                  (6a)   

(ii) 𝑦2 = 𝜸2𝑥∗∗,       𝑏2 = 𝜸2𝑏∗∗       𝑎𝑛𝑑  𝑓2 = 𝜸2𝑓∗∗                                  (6b)   

(iii) 𝑦3 = 𝜸3𝑥∗∗,       𝑏3 = 𝜸3𝑏∗∗        𝑎𝑛𝑑  𝑓3 = 𝜸3𝑓∗∗                                 (6c)   

(iv) 𝑦4 = 𝜸4𝑥∗,         𝑏4 = 𝜸4𝑏∗          𝑎𝑛𝑑  𝑓4 = 𝜸4𝑓∗                                  (6d)  

(v) 𝑦5 = 𝜸5𝑥∗,         𝑏5 = 𝜸5𝑏∗          𝑎𝑛𝑑  𝑓5 = 𝜸5𝑓∗                                  (6e)  

(vi)   𝑦6 = 𝜸6𝑥𝑛𝑑 ,       𝑏6 = 𝜸6𝑏𝑛𝑑        𝑎𝑛𝑑  𝑓6 = 𝜸6𝑓𝑛𝑑                              (6f)         

The optimum system design above (𝑦𝑖 , 𝑏𝑖, 𝑓𝑖), i=1,….,6, Where:  𝑏𝑖: optimum 

portfolio of resources to be acquired at the current market prices, p, allows one to 

produce 𝑥𝑖 and realize the multi-criteria performance 𝑓𝑖 [IX]. 

III.   Method for converting proposed model (RIMODNP) to MODNP 

 In this section, two methods are used to convert the uncertainty proposed 

mathematical model (RIMODNP) into four deterministic sub-problems (MODNP),   

 The Separation Method  

Separation method (SM) is one of the methods that is used to convert the main model 

into two sub-models: (the lower model and the upper model) and then solve each sub-

model separately. The results corresponding to the sub-model are 𝑓
∗𝑈

,𝑓∗𝐿, and 

𝑥𝑖𝑗
∗ , 𝑥𝑖𝑗

∗
 respectively.  

The steps of the method can be summarized as follows [VI],[XI]: 

Step 1: Converting the total interval into two sub-models.  

Step 2: Solve the lower interval (the first bound) to get an optimal solution 𝑥𝑖𝑗
∗ , and 

optimal value  𝑓∗𝐿. 

Step 3: Solve the upper interval (the second bound) to get an optimal solution 𝑥𝑖𝑗
∗

, 

and optimal value  𝑓
∗𝑈

. 

Step 4: The optimal solution of the major problem is 𝑋∗𝐼 = [ 𝑥𝑖𝑗
∗ , 𝑥𝑖𝑗

∗
], 𝑓∗𝐼 =

[𝑓∗𝐿, 𝑓
∗𝑈

].  

i) Tong-Shaocheng Method (TSM)  

TSM is a major important method used to obtain the best and the worst optimal value 

for the objective function. In this method, the main model is converted into two 

classical sub-models, LP (lower sub-model and the upper sub-model). 

The process of converting to obtain the best and the worst values of the objective 

function can be summarized as follows [II], [VII]: 

a) By solving sub-model (7) below to find “The Worst Optimal Solution” 

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛  𝑓 = ∑ 𝑐𝑗
𝑛
𝑗=1 𝑥𝑗  
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗 ≤=≥ [𝑏𝑖]                                                                           (7) 

𝑥𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛,     𝑖 = 1,2, … , 𝑚  

b) By solving sub-model (8) below to find “The Best Optimal Solution” 

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛  𝑓 = ∑ 𝑐𝑗
𝑛
𝑗=1 𝑥𝑗   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗 ≤=≥ [𝑏𝑖]                                                                           (8) 

𝑥𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛,     𝑖 = 1,2, … , 𝑚  

And then solving each sub-model separately. The sub-model (7) has three possible 

solutions, as follows: 

• The sub-model (7) has a Finite, bounded optimal range, if sub-model (7) and sub-

model (8) have optimal solutions. 

• Sub-model (7) is unbounded, then sub-model (8) is unbounded. 

• Sub-model (7) is infeasible, then sub-model (8) is infeasible. 

This method used for solving the problem to find the best and the worst optimal value 

for objective function, the major problem converted into two classical sub-problems 

LP (Lower problem and Upper problem) the steps of method can be summarized as 

follows: an operations converting to obtain of the best and the worst values of the 

objective function is as the following: [I] 

By solving below problem (9) to find “The Worst Optimal Solution”: 

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛  𝑍 = ∑ 𝑐𝑗
𝑛
𝑗=1 𝑦𝑗  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑦𝑗 ≤=≥ 𝑏𝑖                                                                            (9) 

𝑦𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛,     𝑖 = 1,2, … , 𝑚  

By solving below problem (10) to find “The Best Optimal Solution”: 

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛  𝑍 = ∑ 𝑐𝑗
𝑛
𝑗=1 𝑦𝑗  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑦𝑗 ≤=≥ [𝑏𝑖]                                                                       (10) 

𝑦𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛,     𝑖 = 1,2, … , 𝑚  

and then solve each problem separately. The problem (9) has three possible solutions, 

as follows: 

- Problem (9) has a Finite, bounded optimal range, if problem (9) and 

problem (10) have optimal solutions. 

- If Problem (9) is unbounded, then Problem (10) is unbounded. 

- If Problem (9) is infeasible, then Problem (10) is infeasible. 

• Approaches for Transforming RIMODNP into MODNP 

In order to transform the model RIMODNP into four sub-models, two methods (SM 

& TSM) will be used to achieve this purpose. Fig.1 represents the general flowchart 

for applying these methods. 
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Fig 1. General flowchart to convert (RIMODNP) into (MODNP) 

The solution steps of the proposed mathematical model 

Fig2. Illustrates the formulation and solution procedures for the mathematical model 

presented in this study. 

 

 
Fig. 2. The solution steps of the proposed mathematical model 

 

 
 

R 

 

Identify the problem 

Rough interval linear 

programming problem (RILP) 

Multi-Objectives De Novo 

programming problem (MODNP) 

Multi-Objectives linear 

programming problem (MOLP) 

Proposed mathematical 

Model: Rough interval Multi-

Objectives De Novo 

programming (RIMODNP) 

Convert Proposed mathematical 

Model: (RIMODNP) into four sub-

problems using Tong-shaocheng 

method 

First bound (lower) sub-

problem (1) 

The worst optimal solution 

First bound (Upper) sub-

problem (2) 

The best optimal solution 

Second bound (lower) sub-

problem (3) 

The worst optimal solution 

Second bound (Upper) sub-

problem (4) 

The best optimal solution 

Solve each sub-problem using two 

methods: 

Method one: Zeleny 

Approach 

Method two: Optimal-Path 

ratios (use three ratios 

only) 

Four optimal system 

designs 

Twelve optimal system 

designs  

Method Performance Overview 

• Method One: 25% 

• Method Two: 75% 

The second method was chosen 

because it yields more designs.  

END 
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III.  Results and Discussion 

         Application Proposed mathematical Model: Real Case Study (Baghdad Water 

Department) the model (RIMODNP) is applied on drinking water filtration stations 

for the city of Baghdad, Fig.3. the distribution of water stations in Baghdad according 

to Municipalities: (AL-Karkh & AL-Rusafa) 

 
Fig.3 General Flowchart for distribution water stations in Baghdad 

IV.       Formulation general mathematical model (RIMODNP) of the case study: 

This model was used to solve a case study, assuming the right-hand side of 

the constraints 𝑏𝑖 is unknown. The general mathematical model (RIMODNP) (11), 

which was derived previously, can be applied to the case study as follows: 

𝑴𝒂𝒙 𝒇(𝟏)(𝒙) = [850,890], [875,925]𝑥1 + [560,654], [620,675]𝑥2 +
[615,650], [640,700]𝑥3 + [47,70], [66,80]𝑥4 + [86,100], [88,120]𝑥5 +
[42,66], [49,75]𝑥6 + [55,66], [60,75]𝑥7 + [36,49], [38,53]𝑥8 + [28,39], [29,42]𝑥9 +
[37.5,47], [38,50]𝑥10 + [25,34.5], [28,41]𝑥11 + [59,71.5], [67,89]𝑥12 +
[34.5,67], [45,77]𝑥13  

𝑴𝒂𝒙 𝒇(𝟐)(𝒙)  = [2.1,3.2], [2.8,3.5]𝑥1 + [2.5,4], [3.5,5]𝑥2 + [1.7,2.7], [2.5,4]𝑥3 +
[1.9,4], [3.5,5]𝑥4 +  [2.2,4], [3.5,4.5]𝑥5 + [2.9,3.6], [3,4.2]𝑥6 + [2.6,3.8], [2.9,4.5]𝑥7 +
[1.6,2.9], [2.1,3.9]𝑥8 + [2.8,3.9], [2.9,4.2]𝑥9 + [3.2,3.7], [3.5,4]𝑥10 +
[2.5,3.4], [2.8,4.1]𝑥11 + [2.9,4.1], [3.4,4.7]𝑥12 + [3.4,4.4], [3.5,4.8]𝑥13  

𝑴𝒊𝒏 𝒇(𝟑)(𝒙) = −[212,222.5], [218.75,231.25]𝑥1 − [140,163.5], [155,168.5]𝑥2 −
[153.75,162.5], [160,175]𝑥3 − [11.75,17.5], [16.2,20]𝑥4 − [21.5,25], [22,30]𝑥5 −
[10.5,16.5], [12.5,18.75]𝑥6 − [13.75,16.5], [15,18.75]𝑥7  
−[9,12.25], [9.5,13.25]𝑥8 − [7,9.75], [7.25,10.5]𝑥9 − [9.25,11.75], [9.5,12.5]𝑥10 −
[6.25,8.625], [7,10.5]𝑥11 − [14.75,17.875], [16.75,22.25]𝑥12 −
[8.625,16.75], [11.25,19.25]𝑥13   
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s.to 
[0.75,4.375], [1,6.25]𝑥1 +
[0.933,2.141], [1.68,3.175]𝑥2 +[0.775,1.125],[1.1,1.55]𝑥3 +[0.225,0.391],[0.3,0.4]𝑥4 +[0.
266,0.333],[0.287,0.433]𝑥5+ [0.158,0.233],[0.191,0.55]𝑥6 +
[0.083,0.091], [0.083,0.091]𝑥7 + [0.017,0.066], [0.033,0.075]𝑥8 +
[0.25,0.33], [0.29,0.41]𝑥9 + [0.133,0.19], [0.15,0.208]𝑥10 +
[0.308,0.425], [0.317,0.5]𝑥11 + [0.191,0.275], [0.266,0.35]𝑥12 +
[0.22,0.26], [0.24,0.28]𝑥13 ≤ 𝑏1 (The amount of Alum consumed Ton/ 𝒎𝟑 of water per day) 
[1,1.75], [1.4,2]𝑥1 + [1,1.6], [1.25,1.9]𝑥2 + [1.5,2.6], [1.85,3]𝑥3 + [0.1,0.5], [0.35,0.95]𝑥4 + 
[0.175,0.3], [0.2,0.45]𝑥5 + [0.13,0.16], [0.14,0.18]𝑥6 + [0.13,0.15], [0.14,0.19]𝑥7 + 
[0.14,0.16], [0.15,0.19]𝑥8 + [0.125,0.16], [0.145,0.2]𝑥9 + [0.2,0.35], [0.26,0.41]𝑥10 + 
[0.21,0.33], [0.27,0.4]𝑥11 + [0.1,0.14], [0.125,0.18]𝑥12 + [0.075,0.13], [0.09,0.2]𝑥13 ≤ 𝑏2 
(The amount of Chlorine consumed Ton/ 𝒎𝟑 of water per day) 
[10,25],[16,30]𝑥1 + [12,96], [72,106]𝑥2 +
[10,22], [16,25]𝑥3 +[42,55],[50,60]𝑥4 +[28,87],[77,116]𝑥5 + [22,29], [25,38]𝑥6 +
[26,54], [44,63]𝑥7 +[50,129],[110,183]𝑥8 + [25,183], [163,282]𝑥9 +
[84,210], [173,224]𝑥10 + [94,262], [210,270]𝑥11 + [29,85], [45,154]𝑥12 +
[48,60], [52,72]𝑥13 ≤ 𝑏3 (The number of daily examinations: (Chlorine, Turbidity, 

Bacteriology, Hardness, conductivity, chemical) 
[1200,2500], [2000,4320]𝑥1 + [955,1500], [1100,2333]𝑥2 +
[894,1440], [1250,2055]𝑥3 + [164,250], [220,300]𝑥4 + [115,180], [155,250]𝑥5 +
[107,150], [115,210]𝑥6 +[94,120],[99,200]𝑥7 + [70,95], [85,100]𝑥8 +
[65,83], [75,95]𝑥9 + [94,125], [117,210]𝑥10 +
[62,87], [73,180]𝑥11 +[110,185],[166,225]𝑥12 + [160,225], [185,310]𝑥13 ≤ 𝑏4 (The 

amount of fuel consumed /Liters) 
[1,3], [2,4]𝑥1 +[1,2],[2,3]𝑥2 +[5,9],[7,15]𝑥3 +[1,2],[2,3]𝑥4 +[1,2],[2,3]𝑥5 +
[2,4], [3,5]𝑥6 +[1,2],[2,3]𝑥7 + [1,2], [2,3]𝑥8 + [2,4], [3,6]𝑥9 + [1,1], [1,1]𝑥10 +
[1,1], [1,1]𝑥11 + [1,1], [1,1]𝑥12 + [2,4], [3,6]𝑥13 ≤ 𝑏5 (The number of contracts) 
[23,23], [23,23]𝑥1 +[18.2,18.2],[18.2,18.2]𝑥2 + [17,17], [17,17]𝑥3+[2,2], [2,2]𝑥4 +
[3,3], [3,3]𝑥5 + [2.2,2.2], [2.2,2.2]𝑥6 + [1.8,1.8], [1.8,1.8]𝑥7 + [1.2,1.2], [1.2,1.2]𝑥8 +
[1.3,1.3], [1.3,1.3]𝑥9 + [1.8,1.8], [1.8,1.8]𝑥10 + [1.16,1.16], [1.16,1.16]𝑥11 +
[2,2], [2,2]𝑥12 + [3,3], [3,3]𝑥13 ≤ 𝑏6 (The design capacity of the water production stations, 

measured m3 /day) 

[𝑃1
𝐿 , 𝑃1

𝑈], [𝑃1

𝐿
, 𝑃1

𝑈
] 𝑏1 + [𝑃2

𝐿 , 𝑃2
𝑈], [𝑃2

𝐿
, 𝑃2

𝑈
] 𝑏2 + [𝑃3

𝐿 , 𝑃3
𝑈], [𝑃3

𝐿
, 𝑃3

𝑈
] 𝑏3 + [𝑃4

𝐿 , 𝑃4
𝑈], [𝑃4

𝐿
, 𝑃4

𝑈
] 𝑏4 +

[𝑃5
𝐿 , 𝑃5

𝑈], [𝑃5

𝐿
, 𝑃5

𝑈
] 𝑏5 + [𝑃6

𝐿 , 𝑃6
𝑈], [𝑃6

𝐿
, 𝑃6

𝑈
] 𝑏6 ≤ ([𝛽𝐿 , 𝛽𝑈], [𝛽

𝐿
, 𝛽

𝑈
])  

𝑏1 ≥ 0, 𝑏2 ≥ 0, 𝑏3 ≥ 0, 𝑏4 ≥ 0, 𝑏5 ≥ 0, 𝑎𝑛𝑑 𝑏6 ≥ 0   

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0, 𝑥4 ≥ 0, 𝑥5 ≥ 0, 𝑥6 ≥ 0, 𝑥7 ≥ 0, 𝑥8 ≥ 0, 𝑥9 ≥ 0, 𝑥10 ≥ 0, 𝑥11 ≥
0, 𝑥12 ≥ 0, & 𝑥13 ≥ 0                                                                                                                   (11)                                                                                                                                                                                      

Transforming Model RIMODNP to MODNP 

Transforming RIMODNP into IMODNP sub-problems using the SM method, and 

then converting IMODNP into four sub-problems using the Tong-Shaoching method, 

problem (11) was used to divided into four sub-problems were named: 

- Sub-problem (12) 1st bound of lower rough interval. 

- Sub-problem(13)  2nd bound of lower rough interval 

- Sub-problem (14) 1st bound of upper rough interval 
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- Sub-problem (15) 2nd bound of upper rough interval 

Results of Zeleny approach  

The optimal system design for the initial lower bound of the rough interval problem 

in RIMODNP was determined using Zeleny's approach. This involved the budget 

constraint for sub-problem (12) being calculated, and the existing budget constraint 

was then replaced by the specific constraints of sub-problem (12). 

The same methodology was applied to find the optimal system design for sub-

problems (13, 14, and 15). The results from applying Zeleny's approach to these sub-

problems are presented in Table 2. 

 

Table 2: Results from Zeleny's Approach for Sub-problems 12, 13, 14, and 15 

1
st
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te
rv
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S
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Optimal system design 
 

400.7102 𝑥1
2𝐿 274.0547 𝑥3

3𝐿 105.6345 

𝑏1
1𝐿 857.519828 𝑏1

2𝐿 1200.359586 𝑏1
3𝐿 132.043125 

𝑏2
1𝐿 641.13632 𝑏2

2𝐿 479.595725 𝑏2
3𝐿 274.6497 

𝑏3
1𝐿 38468.1792 𝑏3

2𝐿 10017.755 𝑏3
3𝐿 2323.959 

𝑏4
1𝐿 601065.3 𝑏4

2𝐿 1001775.5 𝑏4
3𝐿 152113.68 

𝑏5
1𝐿 801.4204 𝑏5

2𝐿 822.1641 𝑏5
3𝐿 950.7105 

𝑏6
1𝐿 7292.92564 𝑏6

2𝐿 6303.2581 𝑏6
3𝐿 1795.7865 

𝑓2
1𝐿 1001.7755 

 
𝑓1

2𝐿 232946.495 

 
𝑓3

3𝐿 16162.0785 

𝛽2
1𝐿 39999988 𝛽1

2𝐿 39999996 𝛽3
3𝐿 39999953 
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𝑥2
1𝑈 797.5087 𝑥1

2𝑈 747.4105 𝑥3
3𝑈 205.1924 

𝑏1
1𝑈 744.0756 𝑏1

2𝑈 560.5512 𝑏1
3𝑈 191.4445 

𝑏2
1𝑈 797.5087 𝑏2

2𝑈 747.4016 𝑏2
3𝑈 307.7886 

𝑏3
1𝑈 9570.104 𝑏3

2𝑈 7474.016 𝑏3
3𝑈 2051.924 

𝑏4
1𝑈 761620.8 𝑏4

2𝑈 896881.9 𝑏4
3𝑈 183442 

𝑏5
1𝑈 797.5087 𝑏5

2𝑈 747.4016 𝑏5
3𝑈 1025.962 

𝑏6
1𝑈 14514.66 𝑏6

2𝑈 17190.24 𝑏6
3𝑈 3488.271 

𝑓2
1𝑈 3190.0348 𝑓1

2𝑈 665187.335 

 
𝑓3

3𝑈 33343.765 

 

𝛽2
1𝑈 54999995 𝛽1

2𝑈 54999996 𝛽3
3𝑈 54999972 

𝛽𝑈 55000000  
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1𝐿
 2395.0288 𝑥1
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 1802.2726 𝑥3

3𝐿
 2591.8822 

𝑏1

1𝐿
 7604.216 𝑏1
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 11264.20375 𝑏1
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 4017.41741 



 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-20, No.- 10, October (2025)  pp 96-117 

Iftikhar Ali Hussein et al  
 
 

107 

 

𝑏2

1𝐿
 4550.555 𝑏2

2𝐿
 3604.5452 𝑏2

3𝐿
 7775.6466 

𝑏3

1𝐿
 253873.1 𝑏3

2𝐿
 54068.178 𝑏3

3𝐿
 64797.055 

𝑏4

1𝐿
 5587602 𝑏4

2𝐿
 7785817.632 𝑏4

3𝐿
 5326317.921 

𝑏5

1𝐿
 7185.086 𝑏5

2𝐿
 7209.0904 𝑏5

3𝐿
 38878.233 

𝑏6

1𝐿
 43589.52 𝑏6

2𝐿
 41452.2698 𝑏6

3𝐿
 44061.9974 

𝑓
2

1𝐿
 8382.6008 

 
𝑓

1

2𝐿
 1576988.525 

 
𝑓

3

3𝐿
 -414701.152 

 

𝛽
2

1𝐿
 49999998.37 𝛽

1

2𝐿
 49999998.17 𝛽

3

3𝐿
 49999999.52 
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𝑥2
1𝑈

 322.3201 𝑥1
2𝑈

 241.5151 𝑥3
3𝑈

 70.6547 

𝑏1

1𝑈
 1023.366 𝑏1

2𝑈
 1509.469 𝑏1

3𝑈
 109.5149 

𝑏2

1𝑈
 612.4082 𝑏2

2𝑈
 483.0302 𝑏2

3𝑈
 211.9642 

𝑏3

1𝑈
 34165.93 𝑏3

2𝑈
 7245.453 𝑏3

3𝑈
 1766.369 

𝑏4

1𝑈
 751972.8 𝑏4

2𝑈
 1043345 𝑏4

3𝑈
 145195.5 

𝑏5

1𝑈
 966.9603 𝑏5

2𝑈
 966.0604 𝑏5

3𝑈
 1059.821 

𝑏6

1𝑈
 5866.226 𝑏6

2𝑈
 5554.847 𝑏6

3𝑈
 1201.131 

𝑓
2

1𝑈
 1128.12 𝑓

1

2𝑈
 211325.7 𝑓

3

3𝑈
 11304.8 

𝛽
2

1𝑈
 649999981.92 𝛽

1

2𝑈
 64999985.3 𝛽

3

3𝑈
 64999957.07 

 

𝛽
𝑈

 65000000  

  

Table 2 presents the results of Zeleny's approach, showcasing the optimal system 

design for each sub-problem within the main problem (11). These results provide the 

decision-maker (DM) at the Baghdad Water Department with four distinct designs, 

allowing them to select the most suitable option. 

• Results of optimal-path ratios Method 

Optimal system design is achieved through the use of optimal path-ratios, which 

necessitates the following: 

Sub-problem Ratios: The ratios for each sub-problem are calculated using the 

formulas provided in Table 1; the results are displayed in Table 3. 

Table 3: Ratios for each sub-problem 

Ratios 1st bound of lower 

rough interval 

sub-problem (12) 

2nd bound of 

lower rough 

interval sub-

problem (13) 

1st bound of 

upper rough 

interval sub-

problem (14) 

2nd bound of 

upper rough 

interval sub-

problem (15) 

r1 0.370195177 0.376027359 0.414136627 0.341815309 

r2 0.33333348 0.333333392 0.333333342 0.333333463 

r3 0.332999972 0.332999984 0.332999991 0.333 
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Optimal systems design for the optimal path-ratios:  

After getting the values of ratios for each sub-problem, Optimal system designs are 

obtained by applying formulas (6a,6b, and 6c), the results are shown in Tables (4,5, 6, 

and 7): 

 

Table 4: Designs for the 1st Lower Rough Interval Bound of Sub-problem (12) 

Design 1 Design 2 Design 3 

𝒓𝟏𝑳 𝑟2𝐿 𝑟3𝐿 

0.370195177 0.33333348 0.332999972 

𝒙𝟏𝑳 𝑥2𝐿 𝑥3𝐿 

𝒙𝟏
𝟐𝑳∗∗ 148.3409834 𝑥1

2𝐿∗∗ 133.5700725 𝑥1
2𝐿∗∗ 133.4364854 

𝒙𝟐
𝟏𝑳∗∗ 101.4537282 𝑥2

1𝐿∗∗ 91.35157069 𝑥2
1𝐿∗∗ 91.26020743 

𝒙𝟑
𝟑𝑳∗∗ 39.10538242 𝑥3

3𝐿∗∗ 35.21150155 𝑥3
3𝐿∗∗ 35.17628554 

𝒃𝟏𝑳 𝑏2𝐿 𝑏3𝐿 

𝒃𝟏
𝟏𝑳∗∗ 810.6987619 𝑏1

1𝐿∗∗ 729.9745009 𝑏1
1𝐿∗∗ 729.2441442 

𝒃𝟐
𝟏𝑳∗∗ 516.5635921 𝑏2

1𝐿∗∗ 465.127453 𝑏2
1𝐿∗∗ 464.662082 

𝒃𝟑
𝟏𝑳∗∗ 17637.39603 𝑏3

1𝐿∗∗ 15881.17555 𝑏3
1𝐿∗∗ 15865.28606 

𝒃𝟒
𝟏𝑳∗∗ 532457.5462 𝑏4

1𝐿∗∗ 479438.7876 𝑏4
1𝐿∗∗ 478959.0978 

𝒃𝟓
𝟏𝑳∗∗ 952.9915932 𝑏5

1𝐿∗∗ 858.0987109 𝑏5
1𝐿∗∗ 857.2401629 

𝒃𝟔
𝟏𝑳∗∗ 5698.033147 𝑏6

1𝐿∗∗ 5130.659004 𝑏6
1𝐿∗∗ 5125.525659 

𝒇𝟏𝑳 𝑓2𝐿 𝑓3𝐿 

𝒇𝟏𝑳∗∗ 623.0106701 𝑓1𝐿∗∗ 560.9752035 𝑓1𝐿∗∗ 560.4139346 

𝒇𝟐𝑳∗∗ 169345.725 𝑓2𝐿∗∗ 152483.3476 𝑓2𝐿∗∗ 152330.7844 

𝒇𝟑𝑳∗∗ 42365.76032 𝑓3𝐿∗∗ 38147.24555 𝑓3𝐿∗∗ 38109.07833 

 

Based on the calculations using the Optimal Path-Ratios method, six optimal system 

designs were derived for the first bound of the lower rough interval in sub-problem 

(12), as presented in Table 9. In the first design, the production capacities of the three 

drinking water purification projects, Al-Karkh, Al-Rusafa, and Sharq-Dijla water 

stations, increased by 148.34, 101.45, and 39.11 thousand cubic meters, respectively. 

This increase required resource allocations of 810.70, 516.56, 17,637.40, 532,457.55, 

952.99, and 5,698.03 units. As a result, the design achieved a profit increase of 

623.01 DI per 1000 cubic meters of water produced. Additionally, improvements in 

water quality contributed to a profit of 169,345.73 DI per unit, while reducing water 

loss led to cost savings of 42,365.76 DI per 1000 cubic meters. 

Throughout the six optimal designs obtained for sub-problem (12), the first, second, 

and third designs corresponding to the weight ratios 0.3702, 0.3333, and 0.3330 

demonstrated significant improvements across all three projects mentioned above. 

These designs achieved profit increases ranging from 560.41 to 623.01 DI. In terms 

of water quality enhancement, the gains ranged from 152,330.78 to 169,345.73 DI, 

and the reduction in water loss resulted in cost savings between 38,109.08 and 

42,365.76 DI. 
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For the second bound of the lower rough interval in sub-problem (13), the results 

obtained using the Optimal Path-Ratios method are presented in Table 5. 

 

Table 5. Designs for 2nd Lower Rough Interval Bound of Sub-problem (13) 

Design 1 Design 2 Design 3 

𝒓𝟏𝑼 𝑟2𝑈 𝑟3𝑈 

0.376027359 0.333333392 0.332999984 

𝒙𝟏𝑼 𝑥2𝑈 𝑥3𝑈 

𝒙𝟏
𝟐𝑼∗∗ 281.046834 𝑥1

2𝑈∗∗ 249.1373051 𝑥1
2𝑈∗∗ 248.8877178 

𝒙𝟐
𝟏𝑼∗∗ 299.8850902 𝑥2

1𝑈∗∗ 265.8367012 𝑥2
1𝑈∗∗ 265.5703843 

𝒙𝟑
𝟑𝑼∗∗ 77.15795626 𝑥3

3𝑈∗∗ 68.39758705 𝑥3
3𝑈∗∗ 68.32906592 

𝒃𝟏𝑼 𝑏2𝑈 𝑏3𝑈 

𝒃𝟏
𝟏𝑼∗∗ 562.5662878 𝑏1

1𝑈∗∗ 498.6935697 𝑏1
1𝑈∗∗ 498.1939754 

𝒃𝟐
𝟏𝑼∗∗ 696.6688586 𝑏2

1𝑈∗∗ 617.5703869 𝑏2
1𝑈∗∗ 616.9517011 

𝒃𝟑
𝟏𝑼∗∗ 7180.668986 𝑏3

1𝑈∗∗ 6365.389336 𝑏3
1𝑈∗∗ 6359.01245 

𝒃𝟒
𝟏𝑼∗∗ 692625.6748 𝑏4

1𝑈∗∗ 613986.2586 𝑏4
1𝑈∗∗ 613371.1634 

𝒃𝟓
𝟏𝑼∗∗ 966.7217055 𝑏5

1𝑈∗∗ 856.9619416 𝑏5
1𝑈∗∗ 856.1034318 

𝒃𝟔
𝟏𝑼∗∗ 13233.67108 𝑏6

1𝑈∗∗ 11731.14496 𝑏6
1𝑈∗∗ 11719.39263 

𝒇𝟏𝑼 𝑓2𝑈 𝑓3𝑈 

𝒇𝟏𝑼∗∗ 496409.2029 𝑓1𝑈∗∗ 440047.8358 𝑓1𝑈∗∗ 439606.9931 

𝒇𝟐𝑼∗∗ 2307.216712 𝑓2𝑈∗∗ 2045.259666 𝑓2𝑈∗∗ 2043.210712 

𝒇𝟑𝑼∗∗ 124102.3007 𝑓3𝑈∗∗ 110011.959 𝑓3𝑈∗∗ 109901.7483 

 

After applying the Optimal Path-Ratios method, six optimal system designs were 

obtained for Problem (13), as presented in Table 10. In Design 1, under the ratio of 

0.376027359, the production capacities increased significantly across all three water 

treatment stations. Specifically, the Al-Karkh Water Station increased by 281.05 

thousand m³/day, the Al-Rusafa Water Station by 299.89 thousand m³/day, and the 

Sharq-Dijla Water Station by 77.16 thousand m³/day. Achieving this required the 

allocation of resources in the amounts of 562.57, 696.67, 7,180.67, 692,625.67, 

966.72, and 13,233.67 units across various resource categories. 

As a result, the design met several objectives. The first objective, increasing water 

production capacity per 1000 m³, generated a profit of 496,409.20 DI. The second 

objective, enhancing water quality, resulted in profits of 2,307.22 DI. Regarding the 

third objective, reducing water loss contributed to a cost reduction of 124,102.30 DI 

per 1000 m³. 

In Designs 2 and 3, associated with ratios 0.3333333392 and 0.332999984, it was 

observed that the values of the ratios—and consequently, the resulting designs—were 

nearly identical. The difference between the two designs is minimal and practically 

negligible. 

For the first bound of the upper rough interval in Problem (14), the corresponding 

optimal system designs are displayed in Table 6. Below: 
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able 6: Designs for the 1st upper Rough Interval Bound of Sub-problem (14) 

Design 1 Design 2 Design 3 

𝒓
𝟏𝑳

 𝒓
𝟐𝑳

 𝒓
𝟑𝑳

 

0.414136627 0.333333342 0.332999991 

𝒙
𝟏𝑳

 𝒙
𝟐𝑳

 𝒙
𝟑𝑳

 

𝒙𝟏
𝟐𝑳∗∗

 746.3870955 𝑥1
2𝐿∗∗

 600.757549 𝑥1
2𝐿∗∗

 600.1567596 

𝒙𝟐
𝟏𝑳∗∗

 991.8691488 𝑥2
1𝐿∗∗

 798.3429541 𝑥2
1𝐿∗∗

 797.5445688 

𝒙𝟑
𝟑𝑳∗∗

 1073.393352 𝑥3
3𝐿∗∗

 863.9607558 𝑥3
3𝐿∗∗

 863.0967493 

𝒃
𝟏𝑳

 𝒃
𝟐𝑳

 𝒃
𝟑𝑳

 

𝒃𝟏

𝟏𝑳∗∗
 

9477.86359 𝑏1

1𝐿∗∗
 7628.612732 𝑏1

1𝑈∗∗ 7620.983715 

𝒃𝟐

𝟏𝑳∗∗
 

6597.505629 𝑏2

1𝐿∗∗
 5310.248978 𝑏2

1𝑈∗∗ 5304.938448 

𝒃𝟑

𝟏𝑳∗∗
 

154364.5764 𝑏3

1𝐿∗∗
 124246.0985 𝑏3

1𝑈∗∗ 124121.8458 

𝒃𝟒

𝟏𝑳∗∗
 

7744246.313 𝑏4

1𝐿∗∗
 6233246.075 𝑏4

1𝑈∗∗ 6227012.499 

𝒃𝟓

𝟏𝑳∗∗
 

22062.05611 𝑏5

1𝐿∗∗
 17757.4704 𝑏5

1𝑈∗∗ 17739.71198 

𝒃𝟔

𝟏𝑳∗∗
 

53466.6087 𝑏6

1𝐿∗∗
 43034.59825 𝑏6

1𝑈∗∗ 42991.56137 

𝒇
𝟏𝑳

 𝒇
𝟐𝑳

 𝒇
𝟑𝑳

 

𝒇
𝟏

𝟐𝑳∗∗
 

1955019.326 𝑓
1

2𝐿∗∗
 1573570.371 𝑓

1

2𝐿∗∗
 1571996.717 

𝒇
𝟐

𝟏𝑳∗∗
 

8244.909268 𝑓
2

1𝐿∗∗
 6636.223366 𝑓

2

1𝐿∗∗
 6629.586791 

𝒇
𝟑

𝟑𝑳∗∗
 

488754.8314 𝑓
3

3𝐿∗∗
 393392.5926 𝑓

3

3𝐿∗∗
 392999.1791 

The results of solving sub-problem (14) using the Optimal Path-Ratios method, as 

presented in Table 11, reveal six optimal system designs. The first design, 

corresponding to a ratio of 0.414136627, demonstrates notable increases in 

production capacity across the three major water treatment stations. Specifically, the 

Al-Karkh station increases by 746.38 thousand m³/day, the Al-Rusafa station by 

991.87 thousand m³/day, and the Sharq-Dijla station by 1,073.39 thousand m³/day. 

Achieving these enhancements requires the allocation of key resources in the 

following amounts: 9,477.86; 6,597.51; 154,364.58; 7,744,246.31; 22,062.06; and 

53,466.61 units across various input categories. 

As a result, the design meets three primary objectives: 

• Increased water production capacity, yielding a profit of 1,955,019.33 DI per 1,000 

m³; 

• Improved water quality, generating a profit of 8,244.91 DI; 

• Reduced water loss, leading to cost savings of 488,754.83 DI per 1,000 m³. 
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Table 7: Designs for the 2nd upper Rough Interval Bound of Sub-problem (15) 

Design 1 Design 2 Design 3 

𝒓
𝟏𝑼

 𝑟
2𝑈

 𝑟
3𝑈

 

0.34181531 0.33333346 0.333 

𝒙
𝟏𝑼

 𝑥
2𝑈

 𝑥
3𝑈

 

𝒙𝟏
𝟐𝑼∗∗

 110.1739449 𝑥1
2𝑈∗∗

 107.4400742 𝑥1
2𝑈∗∗

 107.3325933 

𝒙𝟐
𝟏𝑼∗∗

 73.32454541 𝑥2
1𝑈∗∗

 71.50506051 𝑥2
1𝑈∗∗

 71.4335283 

𝒙𝟑
𝟑𝑼∗∗

 24.15085818 𝑥3
3𝑈∗∗

 23.55157562 𝑥3
3𝑈∗∗

 23.5280151 

𝒃
𝟏𝑼

 𝑏
2𝑈

 𝑏
3𝑈

 

𝒃𝟏

𝟏𝑼∗∗
 

903.1958478 𝑏1

1𝑈∗∗
 880.7838274 𝑏1

1𝑈∗∗
 879.9027092 

𝒃𝟐

𝟏𝑼∗∗
 

446.8901874 𝑏2

1𝑈∗∗
 435.8009956 𝑏2

1𝑈∗∗
 435.3650292 

𝒃𝟑

𝟏𝑼∗∗
 

14758.81638 𝑏3

1𝑈∗∗
 14392.58917 𝑏3

1𝑈∗∗
 14378.19112 

𝒃𝟒

𝟏𝑼∗∗
 

663297.201 𝑏4

1𝑈∗∗
 646838.0571 𝑏4

1𝑈∗∗
 646190.9735 

𝒃𝟓

𝟏𝑼∗∗
 

1022.998943 𝑏5

1𝑈∗∗
 997.6141124 𝑏5

1𝑈∗∗
 996.6161196 

𝒃𝟔

𝟏𝑼∗∗
 

4314.462238 𝑏6

1𝑈∗∗
 4207.402605 𝑏6

1𝑈∗∗
 4203.193606 

𝒇
𝟏𝑼

 𝑓
2𝑈

 𝑓
3𝑈

 

𝒇
𝟏𝑼∗∗

 
155998.759 𝑓

1𝑈∗∗
 152127.7853 𝑓

1𝑈∗∗
 151975.5998 

𝒇
𝟐𝑼∗∗

 
677.1359172 𝑓

2𝑈∗∗
 660.3333776 𝑓

2𝑈∗∗
 659.6727935 

𝒇
𝟑𝑼∗∗

 
38999.68974 𝑓

3𝑈∗∗
 38031.94632 𝑓

3𝑈∗∗
 37993.89993 

The results of the second bound of the upper rough interval problem (sub-problem 

15), obtained using the Optimal Path-Ratios method, led to the development of three 

new optimal system designs, as presented in Table 7. These designs represent viable 

options for the case study and can be offered to the decision maker (Baghdad Water 

Department) as potential candidates for final implementation. Furthermore, since 

three optimal designs were generated for each sub-problem outlined in Tables 4, 5, 6, 

and 7, the decision maker now has a total of twelve optimal system design 

alternatives. The final selection can be made based on available budget constraints 

and strategic priorities. 

Based on the above results from the RIMODNP, the mathematical models under 

uncertainty can be compared as shown in the table below: 

IV.   Comparison of Zeleny's Approach and Optimal-Path Ratios Method 

This comparison examines two distinct methodologies for determining optimal 

system designs within the context of a Rough Interval Multi-Objective De Novo 

Programming (RIMODNP) problem, specifically applied to the Baghdad Water 

Department.  
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Table 8: A comparison between Zeleny's Approach and Optimal-Path Ratios Method 

Method Results Advantages Disadvantages 

Zeleny's 

approach is a 

method used to 

find the optimal 

system design 

for each sub-

problem by 

calculating and 

replacing 

budget 

constraints with 

specific sub-

problem 

constraints. 

 

• Distinct Designs: 

For each sub-problem (12, 

13, 14, and 15), Zeleny's 

approach yielded one 

distinct optimal system 

design. This means that for 

the entire problem with 

four sub-problems, the 

decision-maker (DM) is 

presented with four 

distinct design options in 

total. 

• Specific Values: 

The results in Table 2 

show concrete numerical 

values for production 

capacities and resource 

allocations for each sub-

problem's optimal design. 

For example, for sub-

problem (12), the optimal 

system design includes 

specific values like 

400.7102, 274.0547, and 

105.6345 for production 

capacity, and various 

resource allocation figures. 

• Clear Single 

Solution: Zeleny's 

approach provides a 

single, clear optimal 

system design for each 

sub-problem. This can 

be beneficial when the 

decision-maker prefers 

a straightforward 

recommendation 

without extensive 

analysis of multiple 

alternatives for each 

sub-problem. 

• Foundation for De 

Novo Programming: 

Zeleny's work is 

foundational in de novo 

programming, focusing 

on designing ideal 

systems from scratch 

rather than optimizing 

existing ones, which 

can lead to innovative 

solutions. 

 

• Limited Alternatives: 

The primary drawback 

is that it offers only one 

optimal design per sub-

problem. While four 

options are presented for 

the overall problem, 

each sub-problem itself 

lacks alternative 

solutions, potentially 

limiting the decision-

maker's flexibility, 

especially under 

conditions of 

uncertainty. 

• Potential for Less 

Robustness under 

Uncertainty: As 

highlighted in external 

research (and implied by 

the text's mention of 

RIMODNP), Zeleny's 

original approach was 

primarily designed for 

certainty conditions. 

While adapted here for 

rough intervals, a single 

optimal solution might 

be less robust if 

conditions change 

significantly. 

Optimal-Path 

Ratios Method 

The Optimal-

Path Ratios 

method utilizes 

calculated 

ratios for each 

sub-problem to 

derive multiple 

optimal system 

designs. 

 

* Multiple Designs per 

Sub-problem: This method 

generates multiple optimal 

system designs for each 

sub-problem. For instance: 

*  Total Alternatives: This 

provides the decision-

maker with a significantly 

larger set of alternatives, 

totaling twelve optimal 

system design options 

across all four sub-

problems (3 designs per 

sub-problem for 4 sub-

problems). 

* Detailed Impact of 

* Enhanced 

Flexibility for 

Decision-Makers: 

The most significant 

advantage is the 

provision of multiple 

optimal design 

alternatives for each 

sub-problem. This 

allows the Baghdad 

Water Department to 

choose the most 

suitable option based 

on factors like 

available budget 

constraints and 

• Increased Complexity: 

While providing more 

options is beneficial, it 

also introduces a higher 

degree of complexity for 

the decision-maker. 

Evaluating and 

comparing twelve 

different designs, each 

with numerous 

parameters, requires 

more effort and 

potentially more 

sophisticated decision-

making tools. 

• Potential for 
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Method Results Advantages Disadvantages 

Ratios: The method 

explicitly shows how 

different ratios (e.g., r1, r2, 

r3) lead to different design 

outcomes, including 

changes in production 

capacities, resource 

allocations, and the 

resulting profits from 

increased water 

production, improved 

water quality, and reduced 

water loss. For example, in 

sub-problem (12), Design 

1 (ratio 0.370195177) led 

to a profit increase of 

623.01 DI, while other 

designs with different 

ratios yielded slightly 

lower but comparable 

profits. 

*  Near-Identical Designs 

for Similar Ratios: The 

text notes that for sub-

problem (13), Designs 2 

and 3, corresponding to 

very close ratios 

(0.3333333392 and 

0.332999984), resulted in 

nearly identical designs, 

indicating a certain level 

of sensitivity or 

insensitivity to minute 

changes in ratio values. 

strategic priorities, 

offering greater 

flexibility and 

adaptability. 

* Suitability for 

Uncertainty: The text 

explicitly states that 

this method is "more 

efficient than others 

in solving the 

proposed model 

because it provides 

alternatives to the 

decision-maker 

(DM)," implying its 

robustness and 

suitability for 

conditions of 

uncertainty, which is 

often characteristic 

of real-world water 

management. 

* Detailed Trade-off 

Analysis (Implicit): 

By presenting 

multiple designs 

based on different 

ratios, the method 

implicitly allows for 

a more nuanced 

understanding of the 

trade-offs between 

objectives and 

resource allocation 

strategies, even if 

these trade-offs aren't 

explicitly quantified 

in the provided text. 

Redundancy: As 

observed in sub-problem 

(13), very similar ratios 

can lead to nearly 

identical designs. While 

not a major flaw, it 

might mean that some of 

the "alternatives" are not 

truly distinct enough to 

warrant individual 

consideration. 

 

 

 

Table 9: Comparison of uncertainty modeling Approaches FDNP &SDNP with 

suggested model RIMODNP 

Feature Fuzzy De novo 

programming 

(FDNP) 

Stochastic De novo 

programming (SDNP) 

Rough interval De novo 

programming (RIMODNP) 

Problem 

Basis 

Uncertainty is vague 

and non-probabilistic 

Uncertainty is random with 

known probabilities  

Data is imprecise and 

incomplete 
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Model 

conversion 

Uses a satisfaction 

level (𝛼) to convert 

fuzzy numbers into 

single values. 

Calculates the expected 

value across all scenarios.  

Generates four separate 

deterministic models based 

on the upper & lower bounds 

of the rough intervals 

Outcomes Provides a single 

subjective solution 

that depends on the 

chosen (𝛼) value.  

Provides a single solution 

that is optimal “on 

average”; it does not 

account for worst-case or 

best-case scenarios.  

Provides two bounds of 

solution, lower bound 

(worst), upper bound (best), 

giving the decision-maker a 

clear trade-off between risk 

and reward. 

Advantage Handles linguistic or 

vaguely defined data. 

Optimal for problems with 

known probability 

distributions. 

Most practical when the data 

is imprecise. It avoids 

subjective assumptions of 

FDNP and data requirements 

of SDNP, providing a robust, 

comprehensive picture of the 

solution space. 

 

V.    Conclusion  

This research successfully addressed the problem of uncertainty in Multi-

Objective De Novo Programming (MODNP) by introducing a novel model, Rough 

Interval Multi-Objective De Novo Programming (RIMODNP). By integrating the 

Rough Interval (RI) concept, the model effectively represents ambiguous data in 

resource allocation and budget constraints, which is common in real-world scenarios. 

The study's key contributions and findings are as follows: 

i) Effective Uncertainty Modeling: The RIMODNP model provides a robust 

framework for handling imprecise and incomplete data. By representing 

coefficients with lower and upper interval bounds, it avoids the limitations of 

single-point solutions often found in Fuzzy or Stochastic De Novo Programming 

models, which rely on subjective assumptions or extensive probabilistic data. 

This approach offers a more practical and comprehensive picture of the solution 

space. 

ii) Generation of Robust and Actionable Solutions: The proposed methodology of 

transforming the uncertain RIMODNP model into deterministic sub-problems 

using the Separation Method (SM) and the Tong-Shaocheng Method (TSM) 

proved highly effective. This process yielded a range of optimal system designs 

that directly address the multi-objective problem. The application to the Baghdad 

Water Department case study demonstrated that these solutions can lead to 

significant increases in profit, improved water quality, and reduced water loss. 

iii) Comparison of Solution Methodologies: The research provided a valuable 

comparison between Zeleny's approach and the Optimal-Path Ratios Method. 

While Zeleny's approach provided a single, clear optimal design for each sub-

problem, the Optimal-Path Ratios Method proved to be more advantageous for 
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decision-makers. It generated multiple distinct alternatives (up to twelve in this 

case study) for the overall problem, offering greater flexibility and a clearer view 

of the trade-offs between different objectives and resource allocations. This 

makes it particularly suitable for environments with high uncertainty, as it 

empowers decision-makers to select the most fitting solution based on strategic 

priorities and budget constraints. 

iv) Practical Applicability: The successful application of the RIMODNP model to a 

real-world case study highlights its immense practical value. The results are not 

just theoretical but provide concrete, implementable plans for the Baghdad Water 

Department, demonstrating the model's potential to be a powerful decision-

support tool in water management and other industries facing similar resource 

allocation challenges under ambiguity. 

Vi.   Future Work 

Based on the research findings and identified limitations, here are the key areas 

for future improvements and explorations: 

i) Hybrid Uncertainty Models: Future research could explore the integration of 

different types of uncertainty into a single, comprehensive model. Combining the 

rough interval concept with elements of stochastic programming (for random 

data) or fuzzy programming (for linguistic and vague data) could lead to more 

sophisticated models that can handle a wider array of real-world ambiguities. 

ii) Advanced Solution Algorithms: While the current methods were effective, 

exploring more advanced optimization algorithms could enhance the model's 

efficiency and scalability. Investigating meta-heuristic algorithms, such as 

genetic algorithms or particle swarm optimization, could provide faster and 

potentially more robust solutions, especially when dealing with larger, more 

complex datasets. 

iii) Sensitivity and Risk Analysis: A more detailed sensitivity analysis is warranted 

to better understand how changes in the rough interval bounds (the degree of 

uncertainty) impact the optimal solutions. Additionally, incorporating a risk 

analysis component could help decision-makers evaluate the potential worst-case 

scenarios associated with each design alternative. 

iv) Broader Industrial Applications: The RIMODNP model could be applied to 

other sectors that deal with resource allocation and system design under 

uncertainty, such as supply chain management, production planning, or large-

scale infrastructure projects. This would validate the model's generalizability 

and demonstrate its utility across diverse industrial contexts. 
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