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Abstract

This paper explores certain generalizations of the generating function of
Bernoulli numbers, the computation of integrals, and the investigation of the
convergence of integrals from these functions. The primary tools employed in the
research include the use of Taylor series, theorems on uniform continuity (such as
Weierstrass's and Dini's theorems), as well as special functions such as the gamma
function, incomplete gamma function, Riemann zeta function, and Lambert function.
Various examples for specific parameter values are considered in the article. The
obtained results can be strengthened in subsequent works and generalized to a broader
class of functions. The derived estimates can be applied in various tasks related to the
assessment of similar integrals.

Keywords: Bernoulli numbers, generating function, Taylor series, uniform
convergence, special functions, incomplete gamma function, Riemann zeta function,
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I. Introduction

Swiss mathematician Jacob Bernoulli and Japanese mathematician Seki
Takakazu independently discovered Bernoulli numbers at approximately the same time
while solving the same problem. Takakazu's discovery [III] was published in 1712,
while Bernoulli's discovery was published in 1713.

The Bernoulli numbers refer to a sequence of rational numbers discovered when
calculating the sum of identical powers of consecutive natural numbers:

- 1 -
Tnot nf =¥ o CiyqBsNFTS
Another definition exists. Bernoulli numbers are formally defined as the coefficients in
the expansion of the exponential generating function:
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Additionally, there exists a recurrent formula for Bernoulli numbers, expressed as:
_ 1 k+1
Bn - —mmﬂ Cn+1 Bn—k

The Bernoulli numbers find applications in various areas of mathematics, namely: in
the expansion of different trigonometric and hyperbolic functions into Taylor series; in
a certain representation of the digamma function; in topology, specifically in
determining the order of the cyclic group of diffeomorphism classes; and in
combinatorics. The Bernoulli numbers can be approached in different ways, as they
have various definitions: through a recurrent relation, as an explicit formula, or using
a generating function. This study investigates the characteristics of improper integrals
arising from various modifications of the generating function. The main tasks involve
finding the integrals directly or investigating their convergence. These problems will
be addressed by introducing a series. Such an approach is quite commonly employed
in the analysis and exploration of various problems, such as problems in complex
analysis [V], approximation of functions to polynomials for simplified modeling in
software complexes [II], [I], and the estimation of computation errors [IV].

This paper describes the solution of the integral of the generating function for Bernoulli

numbers, as well as its various generalizations, for example, in the form f(x,a,s) =
S

where s > 1,a = 1. Various estimates are proven for improper integrals of
fx)

ebx—1’
demonstrating its uniform convergence to the sum using the Weierstrass and Dini
theorems. Geometric problems related to finding the volume of a solid generated by
rotating a curve are also addressed. The results obtained may later be extended to a
wider class of functions.

edx—-1’

functions of the form by expanding this function into a Taylor series and

II. Main results

The generalized generating function of Bernoulli numbers is considered:

xS
fxa,8) =2

Let's start by considering the special case when s = 1 and a = 1. In this case, let's
evaluate the integral:

S, 1) = [ fx,1,Ddx = f, 7—dx (1)

eX-1

Let's transform f(x, 1,1) :

X

f(x' 1,1) = ) = ZTIZO xe_(n+1)x = D(x’ 1'1) (2)

Substituting (2) into (1), we obtain:
SG,1L1) = [§ nzo xe™MHD¥dx (3)
Let's prove that in the equality (3), the change of the integral and the sum sign is correct.

Theorem 1. The series Y,-0xe” ™*Y* does not uniformly converge to its sum
D(x,1,1) on any interval [0, a] for a > 0.

M. V. Gasanov

86



J. Mech. Cont.& Math. Sci., Vol.-15, No.-9, September (2020) pp 85-95
Proof. Indeed, for x = 0, the sum D(x,1,1) = 0. However,

lim — = lim —— =1
x—0t e¥—1 x—0+ x+0(x)
Thus, the function is not continuous at x =0, and consequently, the series
3os xe~ M+ DX does not converge uniformly to D (x, 1,1) on any interval [0, a].
n=0 g Yy y

Theorem 2. The series ¥,50xe~™*D* uniformly converges to its sum D(x,1,1) on
any interval [¢,a] for 0 < ¢ < a.

Proof. Let's use the following theorem:

Dini's Theorem. Let the terms of the series Y.pso frn(X) be continuous and nonnegative
on the interval [a,b], and suppose that the series converges to a function F(x) €
Cla, b] on this interval. Then the series Y5 fn(X) converges uniformly to its sum on
[a, b].

Since the series and the sum from the statement of the theorem satisfy Dini's Theorem
on the specified interval, the series >0 xe~™*1D* converges to the sum D (x, 1,1) on
the interval [g, a].

As is known, under uniform convergence, interchanging the integral and the sum sign
is valid. Therefore, applying Theorem 2, it follows that:

S [ xem0Rdx = gy (LT e _ae

n n2 n n2

“)

&n e—en ae—an e—an)

—Xn —-Xn
xe e
+

n n2

Theorem 3. The series T,,(x) = Xin-o (
[0, +0).

) uniformly converges on the ray
Proof. Let's use the Weierstrass Uniform Convergence Theorem and the inequality
e*>xvx>0:

o (2

Thus, the series uniformly converges on the ray.

—-Xxn —XTleXTL+1 2

) =y e M (nx+1) <y e =y e _em
n=0 n2 n=0 n2 n=0 ,2 6

—-Xn
e
+
n2

n

Considering € » 0%, a - +o0 we get:

S(,1,1) = limg g+ limg g0 X, [ xe ™ (DY dy

i ZOO ce~EN N e &N . ZOO qge~an p-an
= 11m + — — lim _ —
-0 n=0 n n2 a—+oo n=0 n n2

- ' ge—sn e—sn - ' ae—an e—an
=Yoo | limg o+ - + 2 — Yo | imgo i 3

= Zn=0ﬁ_2n=00 = ?
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Now, let's switch to the general form, namely, we will consider the integral:
S(x,a,s) = fooo f(x,a,s)dx = fooo ﬁdx

Using the theorems mentioned above, let's calculate this integral:

N

x
f(x,a,s) = = Z xSe~(M*Dax = p(x q,s).

et —1
nz0
i xS i xS i x5-1 0,ifs>1
im = lim = lim = . .
x>0t e —1  x-0tax+o(x) x-0t a —,ifs=1
a

In the case of s > 1, the series Yo x e~ D% yniformly converges to the sum
D(x, a,s) on the set [0, t] for t > 0, in the case of s = 1 continuity is not maintained
at x = 0, so we need to use Theorem 2.

Let's consider the case s > 1 :

t t
Si(x,a,s) = f Z xSe~(MHDaxgy — Z f xSe~ MDA gy = |x = z(n + 1)a|
0 n=0 n=0 0

t
1 ZV(S+1,n+1)< 1 I(s+1) _r(s+1)z 1
0(n+1)5+1
nz

- as*+1 (Tl + 1)s+1 = qstl (Tl + 1)s+1 - as+1l
nz0 nz0

The last series uniformly converges, so it is permissible to perform a limit transition —
+oo0 :

t
s = limy 4o — i Lyt
(x, a, S) =1M¢s 40 t(x' a, S) =My 40 ast1 ano (n+1)5+1
t
1y V(1) _ 1 T(s+1)
= oo iMoo Xinzo — 5™ = o7t 220 Gy gyort
__I'(s+1) 1 _ I(s+1){(s+1)
T gst+1 ZTIZO (n+1)s+1 - as+1

where
{(s + 1) is the Riemann zeta function.

For numerical implementation, consider the estimate of the remainder term
Yoo I'(s+1)
Ry = Xn=n+1 @t
We use an analogue of Taylor's theorem for a monotonically decreasing series to
estimate the remainder:

o TI'(s+1) _ TI(s+1)
RN < fN (ax)s+1 T gstigns
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It follows that the error decreases like 1/N®. The formula for the convergence rate is

r'(s+1)
IS(x,a,s) —Sy(x,a,5)| S —Srigys
e The larger s, the faster the error decreases.
e  The larger a, the smaller the absolute value of the integral and the error.

The table and plots of the numerical calculation are presented below

Table 1: Numerical calculation of Sy

Sy (a=2, Error Relative
s=3) Estimate Error

Convergence of partial sums te analytic integral Decay of error with number of terms

8=1,8-1
/ R
"

/ 8=2,5=21

~

=
-
=]

15 a=1,5=1
— a=l5=2
— a=2,5=1

=
A

a=2,5=1

Partial sum S_N
Relative error |S - 5_N|/S

-
=3

0 10 20 30 I % 0 10 20 30 I %
N (number of terms} N (number of terms)

Fig. 1. Numerical analysis convergence of Sy(x,a,s)

M. V. Gasanov

&9



J. Mech. Cont.& Math. Sci., Vol.-15, No.-9, September (2020) pp 85-95
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Fig. 2. Absolute error S(x, a, s)

Let's consider another generalization of the generating function of Bernoulli numbers.
Theorem 4. Suppose the following conditions are satisfied:

l. f(x)=0Vx € [0,+x),

2. f(0)=0,
3. f(x) is aregular function on R,
(n)
4. fU(0) < T +1)Vne Ny,
5. limgr 25 =0Vh > 1,
Then the following estimate holds:
© f) 1
e 1% <51

Proof. Let's use the classical triangle inequality from mathematical analysis, which also
works well for integrals:

© f) VGOl IS —b(n+1)x
dx‘<J;) p dx—J;) [f(x)|e dx

ebx_1 bx_l

J ; ). f(k)(O) k| e=b+Dx gy o nz(; ; e 1)k'f K o—b(+1)x g,
% G, e Y (g, )
= kZ) (bkig\&; )1)k! ¢k + U) = kZ) (%) = kZ) b"’-1+1 = b%l
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Theorem 5 (strengthening of Theorem 4). Suppose conditions 1-4 of Theorem 4 are

,;gx) = A < oo Vb > 1, then the estimate from Theorem 4 holds.

satisfied, and 11r(r)1

This fact is proven using Theorem 2 and the auxiliary Dini's Theorem.
Theorem 6. Suppose the following conditions are satisfied:

1. f®(x) > 0vx € [0,+),Vk € Ny,
2. f(0)=0,

3. f(x) is aregular function on R,

4. llmn—>00 f(n)(O)i(n) ’
5. 11mx—>0+ f( ) =0vb>1,

Then the 1ntegral f f ( )

dx converges.

Proof. Based on the methods described earlier and the presented theorems, we obtain:

ooe {x( %) f F e by = f Z Z f(k)(O) K g-b+Dx gy
0

n=0 k=0
0 (x)
:Z Z f kl(o) k —b(n+1)Xd Z Z f (0) ke_b(n"'l)xdx
n=0 k=0 0 e L
_ f(k) Ork+1) 1 3 f(k) (O)'(k + 1)
= ; ( pl+1kl o (n+ 1)k+1> - ;) ( pk+1[l (k + 1))
FOO)(k + 1)
pk+1
k=0

Let's use the classical criteria for the convergence of constant sign series, from which
we obtain:

(k+1) 0 k+2
e sl P AT
kmw fOO)(k+1)  biow FO0)(k+1)
bk

from which we derive the required by the theorem.

Theorem 7. For the generating function of Bernoulli numbers f (x, a, s), the following
inequalities hold:

5 n
Iy e sy < x (A=) TR s> 1y <1,

n
2. f) fh(xa,8)dx < 2)(( axs 1) + F(S+;2E§S+1), ifs>1,y>1,
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3 fooo f*(x,a,8)dx < wj

where x: f(x,a,5) = fiax -

Proof. Let's prove the first statement of the theorem by examining the generating
function of Bernoulli numbers for monotonicity:

e o) xS n oo xS
n d = d = —d
J;) f*(x,a,s)dx L <eax_1> X fo e — 1) X

Note that f(x,1,1) monotonically decreases over the entire interval.
Indeed,

if s=1,

st—l(eax —1) — axSe™

f,(x' a, S) = (eax _ 1)2 = 0'
sx571(e®™ — 1) — axSe?* =0,
e S(ax —s) = —se”5,

W(e**S(ax —s)) = W(—se™),
v Wp(—se™®)+s
a

)

Where W (x) is the Lambert function.

The first solution is obvious, x = 0. The sign of the second root depends on the
parameter s as follows:

1,ifs>1
sgn(x) = {0, ifs=1
—1,ifs € (0,1)
From this, two cases arise: s>1 and s=1.

In the first case, we obtain that on the interval (y,+o0) the function f(x,a,s)
monotonically decreases. Next, we consider two subcases:

1. x < 1. Under this condition, the following estimate holds:

o) o xs n
fo f”(x,a,s)dx=f0 <eax_1> dx
X xS n +o0 xS n
=J;) (eax_1> dx+£( (eax_1> dx
X xS n +oo 48
<_[0 pr— dx+jx eax—ldx

XS n +00 xS
<
_X(ea)(—1> +f0 eax—ldx

( xS )" (s +1){(s+1)
=x +

eax —1 as+1
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2. x> 1. Due to the fact that the function f(x, a, s) monotonically decreases on
the interval (y,+o0) and limy,,.f(x,a,s)=0, then 3I¥(¥>
x):f(x,a,s) <1Vx € [}, +00). Taking this into account, the integral estimate
has the following form:

o) [o%e) xs n
fo f™(x,a,s)dx =J;) (eax_ 1) dx
X xS n X xS n +00 xS n
:fo (eax_1> dx+fx (eax—l) dx+£~( <eax_1> dx

X xS n too s xS n +o s
<2 d dx <2y|——— d
fo <e“"—1> X+L gax — 1= X(ea)f—1> +f0 eax —1%

( x° )” I(s+1D(s+1)
X +

e — 1 as+1

In the second case s = 1. Under this condition, the function f(x, a, s) monoton ically
decreases on the interval (0,+o0), and lim,_y+f(x,a,s) = i < 1, therefore, the
integral estimate will be as follows:

. e o \" too xS T+ DIs+1)
J;) f (x,a,s)dx—f0 ( )dx<f0 dx = e

e —1 e — 1

These integrals play an important role in practical applications, including the
computation of surface areas generated by rotating a curve, the determination of
volumes of solids of revolution, and the calculation of the length of a curve segment.

Theorem 8. Let the function be given by f(x,1,1) = ﬁ, which is the generating

function of Bernoulli numbers. Then, the volume of the solid formed by rotating this
curve around the x-axis, for x € (0, +0), is equal to:

(n® — 6m((3))
]/x -
3
Proof. Let's use the classic method of integration by parts:
oo x2 0o xZe—Zx (2] S 1
Vx=7T-[0 Wd)f:ﬂo md?(:ﬂj;) x-e d(ex—l)
x2e~*1|” ® (2x —x%)e™™
(o=,
When substituting the limits of integration and finding the limit, the expression

xZe~ 7%
[ p ] becomes zero.
e*—11lp
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2,-x 2 L'Hopital
. x“e . X el . 2x . 2
Indeed, lim = lim —[ ] =  lim -—5—= lim ——=0
x—>+00 e*¥—1 x—+00 x—+o0o 2e%X—e* x—+00 4e?X—e*

e2X_px ~ |oo

2,—X 2

. xce 0 . — X
and lim = H = lime™ - .
x—0 e*¥—1 0 x—0 eX-1

2

. — . . . X .
Since e ™ — 1 as x — 0, it remains to analyze lll’r(l) Sx_; e can write
x— -
e*—1=x+o0x)(x-0)
2 2 2,—X
. X . X . X . xce

hence lim = lim = lim ——— = 0, thus, lim = 0.

x—0 e*—1 x—0 X+0(x) x—0 1+0(1) x—0 e¥—1

With this in mind, we get

® (2x —x%)e™™ ® xe™¥ ® xZe=*
V;Cznj —dsznf dx—nf dx
0 0 0

e*—1 e*—1 e*x—1
o] xe—Zx o) xze—Zx nz
:ZHL mdx—ﬂj; deZZTT(?—l)—ZT[(((?))—l)
 (n® - 61(3))
3 .

III. Conclusion

In this work, an investigation of generalized generating functions of Bernoulli
numbers and some of their modifications was conducted. Integrals were calculated in
specific cases, and more general cases were examined for convergence. The main
method of investigation involved the use of the Taylor series. In addition to the Taylor
series, special functions were utilized, such as the gamma function, the incomplete
gamma function, the Riemann zeta function, and the Lambert function. The proofs of
estimates were reduced to examining the uniform convergence of subintegral series to
their sums, which was demonstrated using Weierstrass's theorem on the estimation of
a functional series and Dini's theorem. The volumes of solids formed by rotating
curves, represented as generating functions of Bernoulli numbers, were determined. In
addition to the analytic derivations, we provided numerical evaluations confirming the
correctness of the formulas. The tables demonstrate the agreement between truncated
series and exact integrals, and error estimates show that the convergence is sufficiently
fast for practical computations, even for moderate indices n.
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