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Abstract 

This paper explores certain generalizations of the generating function of 

Bernoulli numbers, the computation of integrals, and the investigation of the 

convergence of integrals from these functions. The primary tools employed in the 

research include the use of Taylor series, theorems on uniform continuity (such as 

Weierstrass's and Dini's theorems), as well as special functions such as the gamma 

function, incomplete gamma function, Riemann zeta function, and Lambert function. 

Various examples for specific parameter values are considered in the article. The 

obtained results can be strengthened in subsequent works and generalized to a broader 

class of functions. The derived estimates can be applied in various tasks related to the 

assessment of similar integrals. 

Keywords: Bernoulli numbers, generating function, Taylor series, uniform 

convergence, special functions, incomplete gamma function, Riemann zeta function, 

Lambert function.  

I.    Introduction   

Swiss mathematician Jacob Bernoulli and Japanese mathematician Seki 

Takakazu independently discovered Bernoulli numbers at approximately the same time 

while solving the same problem. Takakazu's discovery [III] was published in 1712, 

while Bernoulli's discovery was published in 1713. 

The Bernoulli numbers refer to a sequence of rational numbers discovered when 

calculating the sum of identical powers of consecutive natural numbers: 

   ∑  𝑁−1
𝑛=1 𝑛𝑘 =

1

𝑘+1
∑  𝑘

𝑠=0 𝐶𝑘+1
𝑠 𝐵𝑠𝑁𝑘+1−𝑠 

Another definition exists. Bernoulli numbers are formally defined as the coefficients in 

the expansion of the exponential generating function: 

   
𝑥

𝑒𝑥−1
= ∑  ∞

𝑘=0
B𝑘𝑥𝑘

𝑘!
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Additionally, there exists a recurrent formula for Bernoulli numbers, expressed as: 

   B𝑛 = −
1

𝑛+1
∑  𝑛

𝑘=1 𝐶𝑛+1
𝑘+1 B𝑛−𝑘 

The Bernoulli numbers find applications in various areas of mathematics, namely: in 

the expansion of different trigonometric and hyperbolic functions into Taylor series; in 

a certain representation of the digamma function; in topology, specifically in 

determining the order of the cyclic group of diffeomorphism classes; and in 

combinatorics. The Bernoulli numbers can be approached in different ways, as they 

have various definitions: through a recurrent relation, as an explicit formula, or using 

a generating function. This study investigates the characteristics of improper integrals 

arising from various modifications of the generating function. The main tasks involve 

finding the integrals directly or investigating their convergence. These problems will 

be addressed by introducing a series. Such an approach is quite commonly employed 

in the analysis and exploration of various problems, such as problems in complex 

analysis [V], approximation of functions to polynomials for simplified modeling in 

software complexes [II], [I], and the estimation of computation errors [IV]. 

This paper describes the solution of the integral of the generating function for Bernoulli 

numbers, as well as its various generalizations, for example, in the form 𝑓(𝑥, 𝑎, 𝑠) =
𝑥𝑠

𝑒𝑎𝑥−1
, where 𝑠 ≥ 1, 𝑎 ≥ 1. Various estimates are proven for improper integrals of 

functions of the form 
𝑓(𝑥)

𝑒𝑏𝑥−1
, by expanding this function into a Taylor series and 

demonstrating its uniform convergence to the sum using the Weierstrass and Dini 

theorems. Geometric problems related to finding the volume of a solid generated by 

rotating a curve are also addressed. The results obtained may later be extended to a 

wider class of functions. 

II.   Main results 

The generalized generating function of Bernoulli numbers is considered: 

   𝑓(𝑥, 𝑎, 𝑠) =
𝑥𝑠

𝑒𝑎𝑥−1
 

Let's start by considering the special case when 𝑠 = 1 and 𝑎 = 1. In this case, let's 

evaluate the integral: 

  𝑆(𝑥, 1,1) = ∫  
∞

0
𝑓(𝑥, 1,1)𝑑𝑥 = ∫  

∞

0

𝑥

𝑒𝑥−1
𝑑𝑥    (1) 

Let's transform 𝑓(𝑥, 1,1) : 

  𝑓(𝑥, 1,1) =
𝑥

𝑒𝑥−1
= ∑  𝑛≥0 𝑥𝑒−(𝑛+1)𝑥 = 𝐷(𝑥, 1,1)   (2) 

Substituting (2) into (1), we obtain: 

  𝑆(𝑥, 1,1) = ∫  
∞

0
∑  𝑛≥0 𝑥𝑒−(𝑛+1)𝑥𝑑𝑥     (3) 

Let's prove that in the equality (3), the change of the integral and the sum sign is correct. 

Theorem 1. The series ∑𝑛≥0  𝑥𝑒−(𝑛+1)𝑥 does not uniformly converge to its sum 

𝐷(𝑥, 1,1) on any interval [0, 𝑎] for 𝑎 > 0. 
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Proof. Indeed, for 𝑥 = 0, the sum 𝐷(𝑥, 1,1) = 0. However, 

   lim
𝑥→0+

 
𝑥

𝑒𝑥−1
= lim

𝑥→0+
 

𝑥

𝑥+𝑜(𝑥)
= 1 

Thus, the function is not continuous at 𝑥 = 0, and consequently, the series 

∑  𝑛≥0 𝑥𝑒−(𝑛+1)𝑥 does not converge uniformly to 𝐷(𝑥, 1,1) on any interval [0, 𝑎]. 

Theorem 2. The series ∑𝑛≥0  𝑥𝑒−(𝑛+1)𝑥 uniformly converges to its sum 𝐷(𝑥, 1,1) on 

any interval [𝜀, 𝑎] for 0 < 𝜀 < 𝑎. 

Proof. Let's use the following theorem: 

Dini's Theorem. Let the terms of the series ∑  𝑛≥0 𝑓𝑛(𝑥) be continuous and nonnegative 

on the interval [𝑎, 𝑏], and suppose that the series converges to a function 𝐹(𝑥) ∈
𝐶[𝑎, 𝑏] on this interval. Then the series ∑  𝑛≥0 𝑓𝑛(𝑥) converges uniformly to its sum on 

[𝑎, 𝑏]. 
Since the series and the sum from the statement of the theorem satisfy Dini's Theorem 

on the specified interval, the series ∑  𝑛≥0 𝑥𝑒−(𝑛+1)𝑥 converges to the sum 𝐷(𝑥, 1,1) on 

the interval [𝜀, 𝑎]. 

As is known, under uniform convergence, interchanging the integral and the sum sign 

is valid. Therefore, applying Theorem 2, it follows that: 

  ∑  ∞
𝑛=0 ∫  

𝑎

𝜀
𝑥𝑒−(𝑛+1)𝑥𝑑𝑥 = ∑  ∞

𝑛=0 (
𝜀𝑒−𝜀𝑛

𝑛
+

𝑒−𝜀𝑛

𝑛2 −
𝑎𝑒−𝑎𝑛

𝑛
−

𝑒−𝑎𝑛

𝑛2 )  (4) 

Theorem 3. The series 𝑇𝑛(𝑥) = ∑  ∞
𝑛=0 (

𝑥𝑒−𝑥𝑛

𝑛
+

𝑒−𝑥𝑛

𝑛2 ) uniformly converges on the ray 

[0, +∞). 

Proof. Let's use the Weierstrass Uniform Convergence Theorem and the inequality 

𝑒𝑥 > 𝑥 ∀𝑥 ≥ 0 : 

  ∑  ∞
𝑛=0 (

𝑥𝑒−𝑥𝑛

𝑛
+

𝑒−𝑥𝑛

𝑛2 ) = ∑  ∞
𝑛=0

𝑒−𝑥𝑛(𝑛𝑥+1)

𝑛2 < ∑  ∞
𝑛=0

𝑒−𝑥𝑛𝑒𝑥𝑛+1

𝑛2 = ∑  ∞
𝑛=0

𝑒

𝑛2 =
𝑒𝜋2

6
 

Thus, the series uniformly converges on the ray. 

Considering 𝜀 → 0+, 𝑎 → +∞ we get: 

𝑆(𝑥, 1,1) = lim𝜀→0+  lim𝑎→+∞  ∑𝑛=0
∞  ∫𝜀

𝑎
 𝑥𝑒−(𝑛+1)𝑥𝑑𝑥

 = lim𝜀→0+  ∑𝑛=0
∞  (

𝜀𝑒−𝜀𝑛

𝑛
+

𝑒−𝜀𝑛

𝑛2 ) − lim𝑎→+∞  ∑𝑛=0
∞  (

𝑎𝑒−𝑎𝑛

𝑛
−

𝑒−𝑎𝑛

𝑛2 )

= ∑𝑛=0
∞  (lim𝜀→0+  (

𝜀𝑒−𝜀𝑛

𝑛
+

𝑒−𝜀𝑛

𝑛2 )) − ∑𝑛=0
∞  (lim𝑎→+∞  (

𝑎𝑒−𝑎𝑛

𝑛
−

𝑒−𝑎𝑛

𝑛2 ))

 = ∑𝑛=0
∞  

1

𝑛2
− ∑𝑛=0

∞  0 =
𝜋2

6
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Now, let's switch to the general form, namely, we will consider the integral: 

   𝑆(𝑥, 𝑎, 𝑠) = ∫  
∞

0
𝑓(𝑥, 𝑎, 𝑠)𝑑𝑥 = ∫  

∞

0

𝑥𝑠

𝑒𝑎𝑥−1
𝑑𝑥 

Using the theorems mentioned above, let's calculate this integral: 

𝑓(𝑥, 𝑎, 𝑠) =
𝑥𝑠

𝑒𝑎𝑥 − 1
= ∑  

𝑛≥0

  𝑥𝑠𝑒−(𝑛+1)𝑎𝑥 = 𝐷(𝑥, 𝑎, 𝑠).

lim
𝑥→0+

 
𝑥𝑠

𝑒𝑎𝑥 − 1
= lim

𝑥→0+
 

𝑥𝑠

𝑎𝑥 + 𝑜(𝑥)
= lim

𝑥→0+
 
𝑥𝑠−1

𝑎
= {

0, if 𝑠 > 1
1

𝑎
, if 𝑠 = 1

.

 

In the case of 𝑠 > 1, the series ∑  𝑛≥0 𝑥𝑠𝑒−(𝑛+1)𝑎𝑥 uniformly converges to the sum 

𝐷(𝑥, 𝑎, 𝑠) on the set [0, 𝑡] for 𝑡 > 0, in the case of 𝑠 = 1 continuity is not maintained 

at 𝑥 = 0, so we need to use Theorem 2. 

Let's consider the case 𝑠 > 1 : 

𝑆𝑡(𝑥, 𝑎, 𝑠) = ∫  
𝑡

0

 ∑  

𝑛≥0

  𝑥𝑠𝑒−(𝑛+1)𝑎𝑥𝑑𝑥 = ∑  

𝑛≥0

 ∫  
𝑡

0

  𝑥𝑠𝑒−(𝑛+1)𝑎𝑥𝑑𝑥 = |𝑥 = 𝑧(𝑛 + 1)𝑎|

 =
1

𝑎𝑠+1
∑  

𝑛≥0

 
𝛾 (𝑠 + 1,

𝑡
𝑛 + 1

)

(𝑛 + 1)𝑠+1
≤

1

𝑎𝑠+1
∑  

𝑛≥0

 
Γ(𝑠 + 1)

(𝑛 + 1)𝑠+1
=

Γ(𝑠 + 1)

𝑎𝑠+1
∑  

𝑛≥0

 
1

(𝑛 + 1)𝑠+1

 

The last series uniformly converges, so it is permissible to perform a limit transition →
+∞ : 

  

𝑆(𝑥, 𝑎, 𝑠) = lim𝑡→+∞  𝑆𝑡(𝑥, 𝑎, 𝑠) = lim𝑡→+∞  
1

𝑎𝑠+1 ∑𝑛≥0  
𝛾(𝑠+1,

𝑡

𝑛+1
)

(𝑛+1)𝑠+1

=
1

𝑎𝑠+1 lim𝑡→+∞  ∑𝑛≥0  
𝛾(𝑠+1,

𝑡

𝑛+1
)

(𝑛+1)𝑠+1 =
1

𝑎𝑠+1 ∑𝑛≥0  
Γ(𝑠+1)

(𝑛+1)𝑠+1

=
Γ(𝑠+1)

𝑎𝑠+1 ∑𝑛≥0  
1

(𝑛+1)𝑠+1 =
Γ(𝑠+1)𝜁(𝑠+1)

𝑎𝑠+1

 

where  

𝜁(𝑠 + 1) is the Riemann zeta function. 

For numerical implementation, consider the estimate of the remainder term 

   𝑅𝑁 = ∑  ∞
𝑛=𝑁+1

Γ(𝑠+1)

(𝑎𝑛)𝑠+1 

We use an analogue of Taylor's theorem for a monotonically decreasing series to 

estimate the remainder: 

   𝑅𝑁 ≤ ∫  
∞

𝑁

Γ(𝑠+1)

(𝑎𝑥)𝑠+1 𝑑𝑥 =
Γ(𝑠+1)

𝑎𝑠+1𝑠𝑁𝑠 
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It follows that the error decreases like 1/𝑁𝑠. The formula for the convergence rate is 

   |𝑆(𝑥, 𝑎, 𝑠) − 𝑆𝑁(x, 𝑎, 𝑠)| ≲
Γ(𝑠+1)

𝑎𝑠+1𝑠𝑁𝑠. 

• The larger 𝑠, the faster the error decreases. 

• The larger 𝑎, the smaller the absolute value of the integral and the error. 

The table and plots of the numerical calculation are presented below  

Table 1: Numerical calculation of 𝑆𝑁 

N 
𝑺𝑵 (a=2, 

s=3) 

Error 

Estimate 

Relative 

Error 

1 0.375 0.030871 7.6% 

2 0.398438 0.007433 1.8% 

5 0.404011 0.001860 0.46% 

10 0.405263 0.000608 0.15% 

20 0.405701 0.000170 0.042% 

50 0.405857 0.000014 0.0034% 

 

 

Fig. 1. Numerical analysis convergence of  𝑆𝑁(𝑥, 𝑎, 𝑠)  
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Fig. 2. Absolute error  𝑆(𝑥, 𝑎, 𝑠)  

Let's consider another generalization of the generating function of Bernoulli numbers. 

Theorem 4. Suppose the following conditions are satisfied: 

1. 𝑓(𝑥) ≥ 0∀𝑥 ∈ [0, +∞), 

2. 𝑓(0) = 0, 

3. 𝑓(𝑥) is a regular function on ℝ, 

4. 𝑓(𝑛)(0) <
1

𝜁(𝑛+1)
∀𝑛 ∈ ℕ0, 

5. lim𝑥→0+  
𝑓(𝑥)

𝑒𝑏𝑥−1
= 0 ∀𝑏 > 1, 

Then the following estimate holds: 

|∫  
∞

0

 
𝑓(𝑥)

𝑒𝑏𝑥 − 1
𝑑𝑥| <

1

𝑏 − 1
 

Proof. Let's use the classical triangle inequality from mathematical analysis, which also 

works well for integrals: 

|∫  
∞

0

 
𝑓(𝑥)

𝑒𝑏𝑥 − 1
𝑑𝑥| < ∫  

∞

0

 
|𝑓(𝑥)|

𝑒𝑏𝑥 − 1
𝑑𝑥 = ∫  

∞

0

  |𝑓(𝑥)|𝑒−𝑏(𝑛+1)𝑥𝑑𝑥

 = ∫  
∞

0

 ∑  

𝑛≥0

  |∑  

𝑘≥0

 
𝑓(𝑘)(0)

𝑘!
𝑥𝑘| 𝑒−𝑏(𝑛+1)𝑥𝑑𝑥 < ∑  

𝑛≥0

 ∑  

𝑘≥0

 
1

𝜁(𝑘 + 1)𝑘!
∫  

∞

0

 𝑥𝑘𝑒−𝑏(𝑛+1)𝑥𝑑𝑥

 = ∑  

𝑘≥0

 ∑  

𝑛≥0

 
1

𝜁(𝑘 + 1)𝑘!
∫  

∞

0

 𝑥𝑘𝑒−𝑏(𝑛+1)𝑥𝑑𝑥 = ∑  

𝑘≥0

 (
Γ(𝑘 + 1)

𝑏𝑘+1𝜁(𝑘 + 1)𝑘!
∑  

𝑛≥0

 
1

(𝑛 + 1)𝑘+1
)

 = ∑  

𝑘≥0

  (
Γ(𝑘 + 1)

𝑏𝑘+1𝜁(𝑘 + 1)𝑘!
𝜁(𝑘 + 1)) = ∑  

𝑘≥0

  (
Γ(𝑘 + 1)

𝑏𝑘+1𝑘!
) = ∑  

𝑘≥0

 
1

𝑏𝑘+1
=

1

𝑏 − 1

 

 



 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-15, No.-9, September (2020)  pp 85-95 

 

M. V. Gasanov 

 

 

91 
 

Theorem 5 (strengthening of Theorem 4). Suppose conditions 1-4 of Theorem 4 are 

satisfied, and lim
𝑥→0+

 
𝑓(𝑥)

𝑒𝑏𝑥−1
= 𝜆 < ∞ ∀𝑏 > 1, then the estimate from Theorem 4 holds. 

This fact is proven using Theorem 2 and the auxiliary Dini's Theorem. 

Theorem 6. Suppose the following conditions are satisfied: 

1. 𝑓(𝑘)(𝑥) ≥ 0∀𝑥 ∈ [0, +∞), ∀𝑘 ∈ ℕ0, 

2. 𝑓(0) = 0, 

3. 𝑓(𝑥) is a regular function on ℝ, 

4. lim𝑛→∞  
𝑓(𝑛+1)(0)𝜁(𝑛+1)

𝑓(𝑛)(0)𝜁(𝑛)
< 𝑏, 

5. lim𝑥→0+  
𝑓(𝑥)

𝑒𝑏𝑥−1
= 0 ∀𝑏 > 1, 

Then the integral ∫0

∞
 

𝑓(𝑥)

𝑒𝑏𝑥−1
𝑑𝑥 converges. 

Proof. Based on the methods described earlier and the presented theorems, we obtain: 

 ∫  
∞

0

 
𝑓(𝑥)

𝑒𝑏𝑥 − 1
𝑑𝑥 = ∫  

∞

0

 𝑓(𝑥)𝑒−𝑏(𝑛+1)𝑥𝑑𝑥 = ∫  
∞

0

 ∑  

𝑛≥0

 ∑  

𝑘≥0

 
𝑓(𝑘)(0)

𝑘!
𝑥𝑘𝑒−𝑏(𝑛+1)𝑥𝑑𝑥

 = ∑  

𝑛≥0

 ∑  

𝑘≥0

 
𝑓(𝑘)(0)

𝑘!
∫  

∞

0

 𝑥𝑘𝑒−𝑏(𝑛+1)𝑥𝑑𝑥 = ∑  

𝑘≥0

 ∑  

𝑛≥0

 
𝑓(𝑘)(0)

𝑘!
∫  

∞

0

 𝑥𝑘𝑒−𝑏(𝑛+1)𝑥𝑑𝑥

 = ∑  

𝑘≥0

 (
𝑓(𝑘)(0)Γ(𝑘 + 1)

𝑏𝑘+1𝑘!
∑  

𝑛≥0

 
1

(𝑛 + 1)𝑘+1
) = ∑  

𝑘≥0

 (
𝑓(𝑘)(0)Γ(𝑘 + 1)

𝑏𝑘+1𝑘!
𝜁(𝑘 + 1))

 = ∑  

𝑘≥0

 
𝑓(𝑘)(0)𝜁(𝑘 + 1)

𝑏𝑘+1

 

Let's use the classical criteria for the convergence of constant sign series, from which 

we obtain: 

lim
𝑘→∞

 

𝑓(𝑘+1)(0)𝜁(𝑘 + 2)
𝑏𝑘+1

𝑓(𝑘)(0)𝜁(𝑘 + 1)
𝑏𝑘

=
1

𝑏
lim

𝑘→∞
 
𝑓(𝑘+1)(0)𝜁(𝑘 + 2)

𝑓(𝑘)(0)𝜁(𝑘 + 1)
< 1, 

from which we derive the required by the theorem. 

Theorem 7. For the generating function of Bernoulli numbers 𝑓(𝑥, 𝑎, 𝑠), the following 

inequalities hold: 

1. ∫  
∞

0
𝑓𝑛(𝑥, 𝑎, 𝑠)𝑑𝑥 < 𝜒 (

𝜒𝑠

𝑒𝑎𝜒−1
)

𝑛

+
Γ(𝑠+1)𝜁(𝑠+1)

𝑎𝑠+1 , if 𝑠 > 1, 𝜒 ≤ 1, 

2. ∫  
∞

0
𝑓𝑛(𝑥, 𝑎, 𝑠)𝑑𝑥 < 2𝜒 (

𝜒𝑠

𝑒𝑎𝜒−1
)

𝑛

+
Γ(𝑠+1)𝜁(𝑠+1)

𝑎𝑠+1 , if 𝑠 > 1, 𝜒 > 1, 
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3. ∫  
∞

0
𝑓𝑛(𝑥, 𝑎, 𝑠)𝑑𝑥 <

Γ(𝑠+1)𝜁(𝑠+1)

𝑎𝑠+1 , if 𝑠 = 1, 

where 𝜒: 𝑓(𝜒, 𝑎, 𝑠) = 𝑓max . 

Proof. Let's prove the first statement of the theorem by examining the generating 

function of Bernoulli numbers for monotonicity: 

∫  
∞

0

𝑓𝑛(𝑥, 𝑎, 𝑠)𝑑𝑥 = ∫  
∞

0

(
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥 = ∫  
∞

0

𝑥𝑠𝑛

(𝑒𝑎𝑥 − 1)𝑛
𝑑𝑥 

Note that 𝑓(𝑥, 1,1) monotonically decreases over the entire interval. 

Indeed, 

𝑓′(𝑥, 𝑎, 𝑠) =
𝑠𝑥𝑠−1(𝑒𝑎𝑥 − 1) − 𝑎𝑥𝑠𝑒𝑎𝑥

(𝑒𝑎𝑥 − 1)2
= 0,

𝑠𝑥𝑠−1(𝑒𝑎𝑥 − 1) − 𝑎𝑥𝑠𝑒𝑎𝑥 = 0,
𝑒𝑎𝑥−𝑠(𝑎𝑥 − 𝑠) = −𝑠𝑒−𝑠,

𝑊(𝑒𝑎𝑥−𝑠(𝑎𝑥 − 𝑠)) = 𝑊(−𝑠𝑒−𝑠),

𝑥 =
𝑊𝑛(−𝑠𝑒−𝑠) + 𝑠

𝑎
= 𝜒,

 

Where 𝑊(𝑥) is the Lambert function. 

The first solution is obvious, 𝑥 = 0. The sign of the second root depends on the 

parameter 𝑠 as follows: 

sgn(𝑥) = {
1, if 𝑠 > 1
0, if 𝑠 = 1
−1, if 𝑠 ∈ (0,1)

 

From this, two cases arise: 𝑠 > 1 and 𝑠 = 1. 

In the first case, we obtain that on the interval (𝜒, +∞) the function 𝑓(𝑥, 𝑎, 𝑠) 

monotonically decreases. Next, we consider two subcases: 

1. 𝜒 ≤ 1. Under this condition, the following estimate holds: 

∫  
∞

0

 𝑓𝑛(𝑥, 𝑎, 𝑠)𝑑𝑥 = ∫  
∞

0

 (
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥

= ∫  
𝜒

0

 (
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥 + ∫  
+∞

𝜒

 (
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥

 < ∫  
𝜒

0

 (
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥 + ∫  
+∞

𝜒

 
𝑥𝑠

𝑒𝑎𝑥 − 1
𝑑𝑥

 ≤ 𝜒 (
𝜒𝑠

𝑒𝑎𝜒 − 1
)

𝑛

+ ∫  
+∞

0

 
𝑥𝑠

𝑒𝑎𝑥 − 1
𝑑𝑥

 = 𝜒 (
𝜒𝑠

𝑒𝑎𝜒 − 1
)

𝑛

+
Γ(𝑠 + 1)𝜁(𝑠 + 1)

𝑎𝑠+1
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2. 𝜒 > 1. Due to the fact that the function 𝑓(𝑥, 𝑎, 𝑠) monotonically decreases on 

the interval (𝜒, +∞) and lim𝑥→+∞  𝑓(𝑥, 𝑎, 𝑠) = 0, then ∃𝜒̃(𝜒̃ >
𝜒): 𝑓(𝑥, 𝑎, 𝑠) ≤ 1∀𝑥 ∈ [𝜒̃, +∞). Taking this into account, the integral estimate 

has the following form: 

∫  
∞

0

 𝑓𝑛(𝑥, 𝑎, 𝑠)𝑑𝑥 = ∫  
∞

0

 (
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥

= ∫  
𝜒

0

 (
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥 + ∫  
𝜒̃

𝜒

 (
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥 + ∫  
+∞

𝜒̃

 (
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥

< 2 ∫  
𝜒

0

 (
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥 + ∫  
+∞

𝜒̃

 
𝑥𝑠

𝑒𝑎𝑥 − 1
𝑑𝑥 ≤ 2𝜒 (

𝜒𝑠

𝑒𝑎𝜒 − 1
)

𝑛

+ ∫  
+∞

0

 
𝑥𝑠

𝑒𝑎𝑥 − 1
𝑑𝑥

 = 2𝜒 (
𝜒𝑠

𝑒𝑎𝜒 − 1
)

𝑛

+
Γ(𝑠 + 1)𝜁(𝑠 + 1)

𝑎𝑠+1

 

In the second case 𝑠 = 1. Under this condition, the function 𝑓(𝑥, 𝑎, 𝑠) monoton ically 

decreases on the interval (0, +∞), and lim𝑥→0+  𝑓(𝑥, 𝑎, 𝑠) =
1

𝑎
≤ 1, therefore, the 

integral estimate will be as follows: 

∫  
∞

0

𝑓𝑛(𝑥, 𝑎, 𝑠)𝑑𝑥 = ∫  
∞

0

(
𝑥𝑠

𝑒𝑎𝑥 − 1
)

𝑛

𝑑𝑥 < ∫  
+∞

0

𝑥𝑠

𝑒𝑎𝑥 − 1
𝑑𝑥 =

Γ(𝑠 + 1)𝜁(𝑠 + 1)

𝑎𝑠+1
 

These integrals play an important role in practical applications, including the 

computation of surface areas generated by rotating a curve, the determination of 

volumes of solids of revolution, and the calculation of the length of a curve segment. 

Theorem 8. Let the function be given by 𝑓(𝑥, 1,1) =
𝑥

𝑒𝑥−1
, which is the generating 

function of Bernoulli numbers. Then, the volume of the solid formed by rotating this 

curve around the 𝑥-axis, for 𝑥 ∈ (0, +∞), is equal to: 

𝑉𝑥 =
(𝜋3 − 6𝜋𝜁(3))

3
 

Proof. Let's use the classic method of integration by parts: 

𝑉𝑥 = 𝜋 ∫  
∞

0

 
𝑥2

(𝑒𝑥 − 1)2
𝑑𝑥 = 𝜋 ∫  

∞

0

 
𝑥2𝑒−2𝑥

(1 − 𝑒−𝑥)2
𝑑𝑥 = 𝜋 ∫  

∞

0

 𝑥2𝑒−𝑥𝑑 (
1

𝑒𝑥 − 1
)

= 𝜋 ([
𝑥2𝑒−𝑥

𝑒𝑥 − 1
]|

0

∞

+ ∫  
∞

0

 
(2𝑥 − 𝑥2)𝑒−𝑥

𝑒𝑥 − 1
𝑑𝑥)

 

When substituting the limits of integration and finding the limit, the expression 

[
𝑥2𝑒−𝑥

𝑒𝑥−1
]|

0

∞

 becomes zero.  
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Indeed, lim
𝑥→+∞

 
𝑥2𝑒−𝑥

𝑒𝑥−1
= lim

𝑥→+∞
 

𝑥2

𝑒2𝑥−𝑒𝑥 = [
∞

∞
] =

 L'Hôpital 
lim

𝑥→+∞
 

2𝑥

2𝑒2𝑥−𝑒𝑥 = lim
𝑥→+∞

 
2

4𝑒2𝑥−𝑒𝑥 = 0 

and lim
𝑥→0

 
𝑥2𝑒−𝑥

𝑒𝑥−1
= [

0

0
] = lim

𝑥→0
 𝑒−𝑥 ⋅

𝑥2

𝑒𝑥−1
. 

Since 𝑒−𝑥 → 1 as 𝑥 → 0, it remains to analyze lim
𝑥→0

 
𝑥2

𝑒𝑥−1
 we can write 

𝑒𝑥 − 1 = 𝑥 + 𝑜(𝑥) (𝑥 → 0) 

hence lim
𝑥→0

 
𝑥2

𝑒𝑥−1
= lim

𝑥→0
 

𝑥2

𝑥+𝑜(𝑥)
= lim

𝑥→0
 

𝑥

1+𝑜(1)
= 0, thus, lim

𝑥→0
 
𝑥2𝑒−𝑥

𝑒𝑥−1
= 0. 

With this in mind, we get 

𝑉𝑥 = 𝜋 ∫  
∞

0

 
(2𝑥 − 𝑥2)𝑒−𝑥

𝑒𝑥 − 1
𝑑𝑥 = 2𝜋 ∫  

∞

0

 
𝑥𝑒−𝑥

𝑒𝑥 − 1
𝑑𝑥 − 𝜋 ∫  

∞

0

 
𝑥2𝑒−𝑥

𝑒𝑥 − 1
𝑑𝑥

 = 2𝜋 ∫  
∞

0

 
𝑥𝑒−2𝑥

1 − 𝑒−𝑥
𝑑𝑥 − 𝜋 ∫  

∞

0

 
𝑥2𝑒−2𝑥

1 − 𝑒−𝑥
𝑑𝑥 = 2𝜋 (

𝜋2

6
− 1) − 2𝜋(𝜁(3) − 1)

 =
(𝜋3 − 6𝜋𝜁(3))

3
.

 

III.   Conclusion 

In this work, an investigation of generalized generating functions of Bernoulli 

numbers and some of their modifications was conducted. Integrals were calculated in 

specific cases, and more general cases were examined for convergence. The main 

method of investigation involved the use of the Taylor series. In addition to the Taylor 

series, special functions were utilized, such as the gamma function, the incomplete 

gamma function, the Riemann zeta function, and the Lambert function. The proofs of 

estimates were reduced to examining the uniform convergence of subintegral series to 

their sums, which was demonstrated using Weierstrass's theorem on the estimation of 

a functional series and Dini's theorem. The volumes of solids formed by rotating 

curves, represented as generating functions of Bernoulli numbers, were determined. In 

addition to the analytic derivations, we provided numerical evaluations confirming the 

correctness of the formulas. The tables demonstrate the agreement between truncated 

series and exact integrals, and error estimates show that the convergence is sufficiently 

fast for practical computations, even for moderate indices 𝑛. 
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