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Abstract

The Ebola virus is a highly contagious disease that originates from wild
animals and transmits to humans through direct contact with tainted blood, bodily
fluids, or contaminated materials. In this article, we investigate the transmission
dynamics of the Ebola virus through the fractional-order SEIR model. We aim to find
the analytical solution of the fractional model along with its numerical solution. The
Laplace Adomian decomposition method (LADM) is implemented to find the
analytical solution of the model, and the accuracy of the results is verified
numerically via the fractional Runge-Kutta 4th order (RK4) scheme. The findings
reveal the potential role of a fractional-order parameter that influences the behavior
of the epidemic. The LADM and RK4 solutions indicate coherence when the
fractional parameter gets closer to 1. The results could help control the real-world
epidemic scenarios.

Keywords: Mathematical model; Laplace Adomian decomposition method (LADM);
Runge-Kutta 4th order (RK4) method.

I. Introduction

A terrible transmissible disease, Ebola virus disease (EVD), is caused by the
Ebola virus and is classified as part of the Filoviridae family [XII1]. In 1976, Sudan
and the Democratic Republic of the Congo (DRC) became the first place where the
disease had been identified, which is close to the Ebola River [XIV]. The initial
mortality rates were very high (88%), which showed an extreme fatality rate of the
virus [X]. Fruit bats, particularly those belonging to the Pteropodidae family, are
considered to be the natural reservoir to carry the zoonotic pathogen Ebola virus
[XXI1V]. People get the contract the Ebola virus by coming into direct contact with
infected animals such as bats, and it is also transmitted from individual to individual
by direct contact with body fluids, blood, or contaminated substances [XXI1X].
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Numerous challenges have inhibited the epidemic responses, including limited
healthcare resources, delayed diagnosis, and community mistrust, which increase
transmission [VI1]. The treatment for EVD is historically limited to supportive care,
but there have been significant advances in recent years. Experimental treatments
such as monoclonal antibodies (ZMapp) and antiviral drugs (remdesivir) have shown
outstanding performance in clinical trials [XXVII]. The rVSV-ZEBOV vaccine has
been demonstrating high efficacy in ring vaccination trials and has become the first
licensed Ebola vaccine [XV1]. Despite these advances, challenges continue in vaccine
deployment, public acceptance, and coverage in remote areas [XX]. To prevent future
outbreaks of EVD, proper monitoring and rapid response capacity are essential.

Mathematical models are widely used in physics [ XXX, XXVI], economics [XXXII,
XI1X], engineering [XI, XXV], and social sciences [XXXI] to model complex systems
and predict outcomes. Mathematical modelling is also an essential tool to understand
the transmission of infectious diseases, like Malaria [V], Nipah virus [XII], Dengue
[XV], Chickenpox [XVII], and many others. Therefore, mathematical modelling can
play an important role in this regard. Modelling can help predict the outbreak patterns
and take up control strategies after observing the transmission fatality rate and
complex interaction of the host and other factors [XXIII]. A recently developed
mathematical model has been used in EVD transmission with four infection factors
and incubation delay [XXVIII]. Data fitting identifies early vaccination and
minimizes the contact rates; these are the key to controlling the outbreak. A nonlinear
Ebola transmission model has considered environmental contamination, where
numerical simulations with cost-effectiveness analysis indicate the most efficient
control strategy [I1]. Although many existing studies use integer-order differential
equations to analyze the Ebola virus transmission, these models hardly capture the
memory and heredity effects inherent in real-world biological systems. But fractional-
order models include memory effect and hereditary properties that make them more
accurate for modeling real-world phenomena [VIII, XXII]. The FDE provides better
modeling, especially for biological systems that describe past states and influence the
current dynamics. This improves prediction and control strategies compared to
classical integer-order models. Some previous studies have used fractional-order
models and investigated them using numerical techniques, such as the Caputo-
Fabrizio method. In [I], the numerical simulation of a fractional-order Ebola model
with five compartments with low and high sensitivity is investigated. A Caputo
Fabrizio fractional order model has been formulated to analyze the Ebola virus
transmission between dogs and individual humans, where the role of scavenging
behavior in pet dogs is identified [I11]. The model has emphasized the need for dog
guarantine and improved hospitalization to control the outbreak. Fractional
differential equations can also be unravelled using other approaches, such as the
Laplace transform method [IX, IV], the homotopy perturbation method (HPM)
[XXI], the variational iteration method (VIM) [VI], etc. Analytical solutions for
nonlinear fractional SEIR models for the Ebola virus disease, environmental
pollution, etc., using the Laplace Adomian decomposition method remain limited.
Furthermore, solving such models analytically is challenging due to their nonlinear
and memory-dependent nature. Therefore, this study aims to analyze the general
fractional-order SEIR model for the Ebola virus transmission by employing the
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Caputo fractional derivative, which captures the memory-dependent dynamics of
disease progression. The system is then analytically investigated using the fractional
Laplace Adomian decomposition method (FLADM). The fractional Runge-Kutta 4th
order (RK4) method has been used to compare the results to verify the validity of the
analytical solutions. Besides that, we examine whether the fractional-order parameter
p affects the dynamics of the disease and emphasize the FLADM’s efficiency and
reliability (as an analytical tool in epidemiological analysis). The FLADM can
efficiently address both linear and nonlinear fractional differential equations smoothly
and accurately.

1. Model

In this study, we consider the general Kermack-McKendrick-type SEIR
model. A modified version of this model was studied by Islam et al. (2024) [XVIII]
with the vaccination effect. According to the disease’s dynamics, the population is
divided into four compartments. Susceptible individuals S(t) may get the Ebola virus
and move into the exposed class E(t) at a rate 8. At this stage, they are infected but
not yet infectious. The individuals then progress to the infectious class I(t) at rate y
by showing symptoms. Recovery leads to the final compartment R(t), which
includes individuals who recover from the infection at rate p. Susceptible individuals
can acquire immunity by vaccination at a rate v and then move directly to the R class.
For simplicity, we assume that there is no demography, and so the total population
remains constant during the period under consideration.

Thus, N(t) = S(t) + E(t) + I(t) + R(t).
Therefore, the model becomes

(T8 = —Bs©I() —vS (D),
2 = BSOI®) - YE®),
di(o) (1)
TRk YE() — ul(t),
(2B = () +vS(0),
with initial conditions:
S(0) = Sy, E(0) = Ey, 1(0) = I, R(0) = R, @)

Now, considering Caputo's fractional derivative of order 0 < p < 1, the associated
fractional order model of system (1) can be considered as follows:

“DPS(t) = —=BSWI(t) — vS(1),
CDPE(t) = BS(DI(t) — YE(2),
“DPI() = yE(t) — ul (t),
CDPR(t) = wul(t) +vS(t),

with initial conditions: S(0) = z;, E(0) = z,, I(0) = z3, R(0) = z,. (@)

@)

Sharmin Sultana Shanta et al.

163



J. Mech. Cont.& Math. Sci., Vol.-20, No.- 9, September (2025) pp 161-174

The Global Stability of the Equilibrium Point

The equilibrium point of models (1) and (3) is the same, which is (§*,E*,I*,R*) =
(0,0,0,N) or (N,0,0,0). This is obvious because demography is absent in the
system. Now, to prove the global stability of this equilibrium point, we consider the
following Lyapunov function:

V(S,E,))=E +1 +%52.

Now
V=E+i+Lss

= (BSI — yE) + (YE — ul) + 55(—551 —vS).

— el — ] — B c2y _BY

= BSI—pl =-S5 ===,

2

=I(ﬁ5—u—%52)—i—v550, aslong as >0, u>0 v>0,8>0,
and I > 0.
Since V < 0, therefore (S*, E*,I*, R*) is globally stable.
Basic Reproduction Number (R,)

The infectious vector of model (1) is (E,I). Therefore, the new infections and

transition vectors are
0 pBS ( % 0)
F = and V = .
(0 0 ) -V U

At the equilibrium point (S*,E*,I*,R"),

0 BN ( 14 0)
F—-V= - :
4 (0 0 ) —Y U
. - -1 4 _1(u O
The next-generation matrix is K = FV =, where V=" = —( )
Ye\y Y

The eigenvalues of K are the roots of its characteristic polynomial, and the spectral
radius (the largest eigenvalue) is the basic reproduction number:

BN
930 = 7

Sensitivity of R, to parameters

The basic reproduction number R, of model (1) has only two parameters £ and u.
The sensitivity of R, to these parameters can be calculated as follows:

%, _0Ro B

rjo=—>2
A B R
_N B
~u' BN
u
R _
So,l"ﬁ"— ,
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and
o _ 0o 1
K7 au "R,
__BN w
w? BN
u

Therefore, I‘;;R" =-1.

See Section IV for the interpretation of this analysis.
I11.  Methodology

We implement the fractional Laplace transform with the Adomian
decomposition method (FLADM) to equation (3), an effective approach for assessing
nonlinear fractional models. The method simplifies the process of managing
nonlinear terms, which makes it further convenient. The FLADM gives solutions in a
series.

Laplace Adomian Decomposition Method
The Laplace transform of model (3) is:

LEDPS(O)}= L{=BS()I(t) = vS(D)},
L{°DPE()} = L{BS(D)I (1) — vE (1)},

LLEDPI(®)} = LYE(®) — Wl (©), ©
L{¢DPR(t)} = L{ul(t) + vS(t)}.
Since
L{¢Dfy ()} = sPY(s) — sP1y(0),
Therefore, we obtain from (5):
sPL{S(0)} — sS(0)= L{—BS(OI(t) —vS(t)},
sPL{E(t)} — sE(0) = L{BS(D)I(t) — YE(D)}, (6)
sPL{I(t)} = sI(0) = L{yE(t) — ul(t)},
SPL{R(t)} — sR(0) = L{uI (t) + vS(D)},
Using the initial conditions from (4), (6) becomes
LS®)}= z157 1 + sTP[L{=BS®)I(t) —vS(t)}],
L{E(O)}= 257 + sTP[L{BS(DI(t) — YE(O)}}], ™

L{I()} = z3s™" + sTP[L{YE(t) — ul (t)}],
L{R(t)} = z4s™ 1 + s7P[L{ul (t) + vS(t)}].

The solution can be presented by an infinite series as follows:
S(t) = Xn=o Sn(8), E(t) = Xn=o En(t), I(t) = Xn=o In(t), and
R(t) = Xn=o Rn(t).
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We can decompose the nonlinear terms as:
S®I(t) = Yn=o An, Where A,’s are Adomian polynomials.
The general Adomian polynomial is:

1 dr
An = F(n+1)m[23=0 Kq(t) Xg=o k1S, ().

The first-order Adomian polynomial is: Ap(t) = So(t) Ih(t)
The second-order Adomian polynomial is: A, (t) = So(t)I1(t) + S ()1, (t).

Now, substituting the series and Adomian polynomials in Eq. (7), we get

L{Z;):O S(n+1) (t)]: 215_1 + STPL{—B Xn=0 An — VSp(t)},

L{Z;):O Emn+1) (t)] = 2,571 +sTPL{B Yn=o An — YEn(8)},

L{Zro0 Insny ()} = 23571 + sTPL{YEn(t) — pln (1)},

L{Zﬁ:o Rmn+1) (t)] = 2,571 4+ sTPL{ul, (t) + vS, (1)}, (8)

Now, implementing the inverse Laplace transform, from (6)-(8), we get the
following:

Yin=0 Smin(O)=21 + L' s™PL{-B X5=0 An — vSp(D)}],

Yn=o0 Emsny(®) = 22 + L sTPL{B X530 An — VER(D)}],

Y=o Iy (£) = 23 + L7 sTPL{YEn (8) — uln(6)}], ©)
Yr=0 Rins1)(t) = 24 + L7 sTPL{uL, (t) + vSa(8)}],

From Eq. (9), the initial approximations are:

So(t) = 21, Eg(t) = 23, [(t) = z3, Ro(t) = 24. (10)
For n = 0, the first-order approximations are:
P
S1()={=BA(t) — V50(t)}m,
P
Ey(6) = {B Ay (D) — y%(t)}ﬁ,
tP (11)
Li(t) ={yEo(t) — l«llo(t)}m,
P
R = o) +¥50(0) 77 335

For n = 1, the second-order approximations are:
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S2(0)= {=BAL () — VS, (t)}ﬁ,

E>(8) = {BA;(t) — VE1(t)}%, 12)
I(®) = {yE1 (8) - Mh(M%,

Ry (t) = {ul;(t) + V51(t)}r(%p2p)-

Therefore, from equations (10)-(12), the approximate solution with three terms is
given by:
S(@) = So(t) + S1(t) + S2(8).
E(t) = Eo(t) + E1(t) + E2 (D).
1) = I () + 1, () + I (D).
R(t) = Ro(t) + Ry (t) + Ry (2).
IV. Results and Discussion

(13)

In this section, we show the analytical solution (13) geometrically. For this,
we consider the transmission rate f = 5.48 x 107*, the rate of development from
exposed to infected y = 4.93 x 107*, the recovery rate u = 0.27 x 1073, and the
vaccination rate v = 1.37 x 107*. The initial population distribution is: susceptible
individuals S(0) = 0.88, exposed individuals E(0) = 0.07, infected individuals
1(0) = 0.05, and recovered individuals R(0) = 0.00 [XVIII]. Using these values,
series (13) becomes:

2p tp
S(t)=0.88+1.3739x 1078 ——— — 0.00014 —,
© r2p+1) F'p+1)
o t2p tp
E(t)=0.07+11211%x107°———0.00001 ——,
2p tp
I1(t)=0.05—1.0838x 1078 ———— + 0.00002 ——,
(©) r'Cp+1) F'p+1)
o t2p tP
R(t)=0.00—-14111 x107° ——+ 0.00013 —.
(©) r2p+1) F'p+1)

Figures 1-4 illustrate the comparative dynamics of the susceptible, exposed, infected,
and recovered populations, respectively, over 60 days under three different fractional
orders of the Caputo derivative for p = 0.79, p = 0.89, and p = 0.99. These figures
provide a visual comparison between the analytical solutions obtained via the
FLADM and the numerical solutions computed using the fractional Runge-Kutta 4th
order (FRK4) method (a suitable numerical scheme).

The evolution of the susceptible population for S(t) for p = 0.79, p = 0.89, and
p = 0.99 is depicted in Figure 1 (1a, 1b, and 1c), respectively. In all cases, the
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susceptible population decreases over time as individuals transition to the exposed
class. At fractional order p = 0.99, the LADM nicely agrees with the fractional RK4
technique. The FLADM is shown in red, and the numerical solution is shown in blue.

Figure 2 (2a, 2b, and 2c) demonstrates that the exposed population drops over time
(p = 0.79 and p = 0.89, respectively). The slower decay for p = 0.99 again
highlights the influence of the fractional order on the disease progression. The
analytical and numerical results closely align for fractional order p = 0.99; this
demonstrates the validity and accuracy of the FLADM.

Figure 3 (3a, 3b, and 3c) displays the change in the infected population over time.
The correspondence between the analytical and numerical solutions remains
consistent p = 0.99, which validates the robustness of the method. Figure 4 (4a, 4b,
and 4c) displays the dynamics of the recovered population over time. At p = 0.99,
LADM approaches the numerical solutions obtained from the RK4 method.

Figure 5 shows the sensitivity (elasticity) of R, for parameters § and u, which
indicates that a 10% increase in 8 will increase R, by 10%, and a 10% decrease in 8
will decrease R, by 10%.

Susccptible Population Susceptible Population

— RK for St
— LADM for $©)

(a) Comparison of analytical and numerical (b) Comparison of analytical and numerical
solutions over 60 days withp = 0.79. solutions over 60 days with p = 0.89.

Susceptible Population

(c) Comparison of analytical and numerical solutions over 60 days withp = 0.99
Fig. 1. Graphical depiction of susceptible population S(t).
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(a) Comparison of analytical and numerical
solutions over 60 days withp = 0.79.

0.0700;
0.0699
0.0698
0.0697
0,069

00695

1 20

, Vol.-20, No.- 9, September (2025) pp 161-174

Exposed Population
Fopulation

207000

00699

— RK4 for E(®)

00698 — LADM for Etty

00697

0069,

1" 0

0

a0 a0

(b) Comparison of analytical and numerical
solutions over 60 days withp = 0.89.

— KK for ()

— LADM fur ECO

(c) Comparison of analytical and numerical solutions over 60 days withp = 0.99.
Fig. 2. Exposed population E (t).

Tnfected Population
Papulation
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0.0306

0.0305

R4 for 1)
0.0504

— LADM for (g
0.0503

00502

o501

T
60

w 20

30 1 S0

(a) Comparison of analytical and numerical
solutions over 60 days withp = 0.79.

Population

0.0512
0.0510
0.0508
0.0506
0.0504

0.0502

10

20

Infected Population
Population

00506 — RKd for 10

— LADM for 1)

00504

10 ] 3 1 0 w0

(b) Comparison of analytical and numerical
solutions over 60 days withp = 0.89.

Infected Population

— RK4 for Iy

— LADM for [()

t

30 40 s0 o

(c) Comparison of analytical and numerical solutions over 60 days withp = 0.99.
Fig. 3: Infected population I(t).
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Recovered Population

w03

— RKd for ()

o2 — LADM far Rty

i1

w 20 30 a 50 w

(a) Comparison of analytical and numerical
solutions over 60 days withp = 0.79.

Recovered Papulation
Population

[

.00s|

0.004]

— RK4 for RO

0003
— LADM for R(t»

0.002]

0.001

10 20 30 40 S0 w !

(b) Comparison of analytical and numerical
solutions over 60 days with p = 0.89.

Recovered Population

Population

0.008

0.006.

0004

0.002

(c) Comparison of analytical and numerical solutions over 60 days withp = 0.99.
Fig. 4. Recovered Population R(t).

1.5

o
0

Elasticity of RO
o

-1.5

B

— RK4 far R(1)

— LADM for R(y

t
30 £l 50 o

Iz

Fig. 5. Normalized sensitivity (elasticity) of R,.

Overall, these comparisons emphasize the effectiveness of the FLADM in showing
the behavior of the fractional SEIR model. The influence of the fractional-order
derivative p is evident in each compartment, which underlines the importance of
fractional modelling in capturing memory-dependent dynamics in epidemiological

modelling.
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V. Conclusion

In this study, we deal with a fractional-order SEIR model with vaccination in
the Caputo derivative to investigate the transmission dynamics of the Ebola virus
disease. The model successfully captures the memory-dependent and heritable
features of disease progression. The fractional Laplace Adomian decomposition
method is found to be an efficient, compatible, and flexible method for unraveling the
analytical solutions of the model. The strong agreement between the analytical
responses and the computational results (obtained using the fractional Runge-Kutta
4th order (RK4) approach) verifies their validity and reliability. The graphical
simulations over 60 days show that the fractional-order parameter p significantly
affects the behavior of each compartment, i.e., susceptible, exposed, infected, and
recovered. The results demonstrate a strong agreement between the LADM and RK4
solutions at p = 0.99. Notably, as p approaches 1, the behavior of the fractional
model aligns more closely with the classical model, underscoring the role of
fractional derivatives in refining disease modelling. This study clearly demonstrates
that the FLADM is capable of producing accurate analytical approximations and is a
powerful tool for understanding complex epidemiological systems governed by
memory effects. This research emphasizes the significance of fractional-order
modelling in public health, especially to improve prediction ability to assist in the
development of effective strategies (to control infectious diseases such as Ebola). The
results presented here can serve as a foundation for future work on fractional-order
models applied to a wide range of epidemiological and biological problems. One
limitation of the present model is that it does not incorporate birth and mortality rates.
Introducing such rates might create challenges to solving the system analytically,
which could also be one of the future works.
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