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Abstract 

 The Ebola virus is a highly contagious disease that originates from wild 

animals and transmits to humans through direct contact with tainted blood, bodily 

fluids, or contaminated materials. In this article, we investigate the transmission 

dynamics of the Ebola virus through the fractional-order SEIR model. We aim to find 

the analytical solution of the fractional model along with its numerical solution. The 

Laplace Adomian decomposition method (LADM) is implemented to find the 

analytical solution of the model, and the accuracy of the results is verified 

numerically via the fractional Runge-Kutta 4th order (RK4) scheme. The findings 

reveal the potential role of a fractional-order parameter that influences the behavior 

of the epidemic. The LADM and RK4 solutions indicate coherence when the 

fractional parameter gets closer to 1. The results could help control the real-world 

epidemic scenarios. 

Keywords: Mathematical model; Laplace Adomian decomposition method (LADM); 

Runge-Kutta 4th order (RK4) method. 

I.    Introduction 

A terrible transmissible disease, Ebola virus disease (EVD), is caused by the 

Ebola virus and is classified as part of the Filoviridae family [XIII]. In 1976, Sudan 

and the Democratic Republic of the Congo (DRC) became the first place where the 

disease had been identified, which is close to the Ebola River [XIV]. The initial 

mortality rates were very high (88%), which showed an extreme fatality rate of the 

virus [X]. Fruit bats, particularly those belonging to the Pteropodidae family, are 

considered to be the natural reservoir to carry the zoonotic pathogen Ebola virus 

[XXIV]. People get the contract the Ebola virus by coming into direct contact with 

infected animals such as bats, and it is also transmitted from individual to individual 

by direct contact with body fluids, blood, or contaminated substances [XXIX]. 
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Numerous challenges have inhibited the epidemic responses, including limited 

healthcare resources, delayed diagnosis, and community mistrust, which increase 

transmission [VII]. The treatment for EVD is historically limited to supportive care, 

but there have been significant advances in recent years. Experimental treatments 

such as monoclonal antibodies (ZMapp) and antiviral drugs (remdesivir) have shown 

outstanding performance in clinical trials [XXVII]. The rVSV-ZEBOV vaccine has 

been demonstrating high efficacy in ring vaccination trials and has become the first 

licensed Ebola vaccine [XVI]. Despite these advances, challenges continue in vaccine 

deployment, public acceptance, and coverage in remote areas [XX]. To prevent future 

outbreaks of EVD, proper monitoring and rapid response capacity are essential. 

Mathematical models are widely used in physics [XXX, XXVI], economics [XXXII, 

XIX], engineering [XI, XXV], and social sciences [XXXI] to model complex systems 

and predict outcomes. Mathematical modelling is also an essential tool to understand 

the transmission of infectious diseases, like Malaria [V], Nipah virus [XII], Dengue 

[XV], Chickenpox [XVII], and many others. Therefore, mathematical modelling can 

play an important role in this regard. Modelling can help predict the outbreak patterns 

and take up control strategies after observing the transmission fatality rate and 

complex interaction of the host and other factors [XXIII]. A recently developed 

mathematical model has been used in EVD transmission with four infection factors 

and incubation delay [XXVIII]. Data fitting identifies early vaccination and 

minimizes the contact rates; these are the key to controlling the outbreak. A nonlinear 

Ebola transmission model has considered environmental contamination, where 

numerical simulations with cost-effectiveness analysis indicate the most efficient 

control strategy [II]. Although many existing studies use integer-order differential 

equations to analyze the Ebola virus transmission, these models hardly capture the 

memory and heredity effects inherent in real-world biological systems. But fractional-

order models include memory effect and hereditary properties that make them more 

accurate for modeling real-world phenomena [VIII, XXII]. The FDE provides better 

modeling, especially for biological systems that describe past states and influence the 

current dynamics. This improves prediction and control strategies compared to 

classical integer-order models. Some previous studies have used fractional-order 

models and investigated them using numerical techniques, such as the Caputo-

Fabrizio method. In [I], the numerical simulation of a fractional-order Ebola model 

with five compartments with low and high sensitivity is investigated. A Caputo 

Fabrizio fractional order model has been formulated to analyze the Ebola virus 

transmission between dogs and individual humans, where the role of scavenging 

behavior in pet dogs is identified [III]. The model has emphasized the need for dog 

quarantine and improved hospitalization to control the outbreak. Fractional 

differential equations can also be unravelled using other approaches, such as the 

Laplace transform method [IX, IV], the homotopy perturbation method (HPM) 

[XXI], the variational iteration method (VIM) [VI], etc. Analytical solutions for 

nonlinear fractional SEIR models for the Ebola virus disease, environmental 

pollution, etc., using the Laplace Adomian decomposition method remain limited. 

Furthermore, solving such models analytically is challenging due to their nonlinear 

and memory-dependent nature. Therefore, this study aims to analyze the general 

fractional-order SEIR model for the Ebola virus transmission by employing the 
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Caputo fractional derivative, which captures the memory-dependent dynamics of 

disease progression. The system is then analytically investigated using the fractional 

Laplace Adomian decomposition method (FLADM). The fractional Runge-Kutta 4th 

order (RK4) method has been used to compare the results to verify the validity of the 

analytical solutions. Besides that, we examine whether the fractional-order parameter 

𝑝 affects the dynamics of the disease and emphasize the FLADM’s efficiency and 

reliability (as an analytical tool in epidemiological analysis). The FLADM can 

efficiently address both linear and nonlinear fractional differential equations smoothly 

and accurately. 

II.    Model 

In this study, we consider the general Kermack-McKendrick-type SEIR 

model. A modified version of this model was studied by Islam et al. (2024) [XVIII] 

with the vaccination effect. According to the disease’s dynamics, the population is 

divided into four compartments. Susceptible individuals 𝑆(𝑡) may get the Ebola virus 

and move into the exposed class 𝐸(𝑡) at a rate 𝛽. At this stage, they are infected but 

not yet infectious. The individuals then progress to the infectious class 𝐼(𝑡) at rate 𝛾 

by showing symptoms. Recovery leads to the final compartment 𝑅(𝑡), which 

includes individuals who recover from the infection at rate µ. Susceptible individuals 

can acquire immunity by vaccination at a rate 𝜈 and then move directly to the 𝑅 class. 

For simplicity, we assume that there is no demography, and so the total population 

remains constant during the period under consideration. 

Thus, 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). 

Therefore, the model becomes 

{
  
 

  
 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽𝑆(𝑡)𝐼(𝑡) − 𝜈𝑆(𝑡),

𝑑𝐸(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐸(𝑡),

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛾𝐸(𝑡) − 𝜇𝐼(𝑡),

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜇𝐼(𝑡) + 𝜈𝑆(𝑡),

                   (1) 

with initial conditions: 

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼(0) = 𝐼0, 𝑅(0) = 𝑅0.   (2) 

Now, considering Caputo's fractional derivative of order 0 < 𝑝 ≤ 1, the associated 

fractional order model of system (1) can be considered as follows: 

{
 
 

 
 
 𝐶𝐷𝑡

𝑝
𝑆(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡) − 𝜈𝑆(𝑡),

 𝐶𝐷𝑡
𝑝
𝐸(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐸(𝑡),

 𝐶𝐷𝑡
𝑝
𝐼(𝑡) = 𝛾𝐸(𝑡) − 𝜇𝐼(𝑡),

 𝐶𝐷𝑡
𝑝
𝑅(𝑡) = 𝜇𝐼(𝑡) + 𝜈𝑆(𝑡),

    (3) 

with initial conditions: 𝑆(0) = 𝑧1, 𝐸(0) = 𝑧2, 𝐼(0) = 𝑧3, 𝑅(0) = 𝑧4.  (4) 
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The Global Stability of the Equilibrium Point 

The equilibrium point of models (1) and (3) is the same, which is (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) =

(0, 0, 0, 𝑁) or (𝑁, 0, 0, 0). This is obvious because demography is absent in the 

system. Now, to prove the global stability of this equilibrium point, we consider the 

following Lyapunov function: 

𝑉(𝑆, 𝐸, 𝐼) = 𝐸 + 𝐼 +
𝛽

2𝜇
𝑆2. 

Now 

        𝑉̇ = 𝐸̇ + 𝐼̇ +
𝛽

𝜇
𝑆𝑆̇. 

= (𝛽𝑆𝐼 − 𝛾𝐸) + (𝛾𝐸 − 𝜇𝐼) +
𝛽

𝜇
𝑆(−𝛽𝑆𝐼 − 𝜈𝑆). 

= 𝛽𝑆𝐼 − 𝜇𝐼 −
𝛽2

𝜇
𝑆2𝐼 −

𝛽𝜈

𝜇
𝑆. 

= 𝐼 (𝛽𝑆 − 𝜇 −
𝛽2

𝜇
𝑆2) −

𝛽𝜈

𝜇
𝑆 ≤ 0, as long as 𝛽 > 0, 𝜇 > 0, 𝜈 > 0, 𝑆 > 0, 

and 𝐼 > 0. 

Since 𝑉̇ ≤ 0, therefore (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) is globally stable.  

Basic Reproduction Number (𝕽𝟎) 

The infectious vector of model (1) is (𝐸, 𝐼). Therefore, the new infections and 

transition vectors are 

𝐹 = (
0 𝛽𝑆
0 0

) and 𝑉 = (
𝛾 0
−𝛾 𝜇

). 

At the equilibrium point (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗),  

𝐹 − 𝑉 = (
0 𝛽𝑁
0 0

) − (
𝛾 0
−𝛾 𝜇

). 

The next-generation matrix is 𝐾 = 𝐹𝑉−1, where 𝑉−1 =
1

𝛾𝜇
(
𝜇 0
𝛾 𝛾

). 

The eigenvalues of 𝐾 are the roots of its characteristic polynomial, and the spectral 

radius (the largest eigenvalue) is the basic reproduction number: 

ℜ0 =
𝛽𝑁

𝜇
. 

Sensitivity of 𝕽𝟎 to parameters 

The basic reproduction number ℜ0 of model (1) has only two parameters 𝛽 and 𝜇. 

The sensitivity of ℜ0 to these parameters can be calculated as follows: 

Γ𝛽
ℜ0 =

𝜕ℜ0
𝜕𝛽

.
𝛽

ℜ0
 

=
𝑁

𝜇
.
𝛽

𝛽𝑁
𝜇

 

So, Γ𝛽
ℜ0 = 1, 
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and  

Γ𝜇
ℜ0 =

𝜕ℜ0
𝜕𝜇

.
𝜇

ℜ0
 

= −
𝛽𝑁

𝜇2
.
𝜇

𝛽𝑁
𝜇

 

Therefore, Γ𝜇
ℜ0 = −1.  

See Section IV for the interpretation of this analysis.  

III.     Methodology 

We implement the fractional Laplace transform with the Adomian 

decomposition method (FLADM) to equation (3), an effective approach for assessing 

nonlinear fractional models. The method simplifies the process of managing 

nonlinear terms, which makes it further convenient. The FLADM gives solutions in a 

series. 

Laplace Adomian Decomposition Method 

The Laplace transform of model (3) is: 

𝐿{ 𝑐𝐷𝑝𝑆(𝑡)}= 𝐿{−𝛽𝑆(𝑡)𝐼(𝑡) − 𝜈𝑆(𝑡)},

𝐿{ 𝑐𝐷𝑝𝐸(𝑡)} = 𝐿{𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐸(𝑡)},

𝐿{ 𝑐𝐷𝑝𝐼(𝑡)} = 𝐿{𝛾𝐸(𝑡) − 𝜇𝐼(𝑡)},

𝐿{ 𝑐𝐷𝑝𝑅(𝑡)} = 𝐿{𝜇𝐼(𝑡) + 𝜈𝑆(𝑡)}.

  (5) 

Since 

𝐿{ 𝐶𝐷𝑡
𝑝
𝑦(𝑡)} = 𝑠𝑝𝑌(𝑠) − 𝑠𝑝−1𝑦(0), 

Therefore, we obtain from (5): 

𝑠𝑝𝐿{𝑆(𝑡)} − 𝑠𝑆(0)= 𝐿{−𝛽𝑆(𝑡)𝐼(𝑡) − 𝜈𝑆(𝑡)},

𝑠𝑝𝐿{𝐸(𝑡)} − 𝑠𝐸(0) = 𝐿{𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐸(𝑡)},

𝑠𝑝𝐿{𝐼(𝑡)} − 𝑠𝐼(0) = 𝐿{𝛾𝐸(𝑡) − 𝜇𝐼(𝑡)},

𝑠𝑝𝐿{𝑅(𝑡)} − 𝑠𝑅(0) = 𝐿{𝜇𝐼(𝑡) + 𝜈𝑆(𝑡)},

  (6) 

Using the initial conditions from (4), (6) becomes 

𝐿{𝑆(𝑡)}= 𝑧1𝑠
−1 + 𝑠−𝑝[𝐿{−𝛽𝑆(𝑡)𝐼(𝑡) − 𝜈𝑆(𝑡)}],

𝐿{𝐸(𝑡)}= 𝑧2𝑠
−1 + 𝑠−𝑝[𝐿{𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐸(𝑡)}}],

𝐿{𝐼(𝑡)} = 𝑧3𝑠
−1 + 𝑠−𝑝[𝐿{𝛾𝐸(𝑡) − 𝜇𝐼(𝑡)}],

𝐿{𝑅(𝑡)} = 𝑧4𝑠
−1 + 𝑠−𝑝[𝐿{𝜇𝐼(𝑡) + 𝜈𝑆(𝑡)}].

  (7) 

The solution can be presented by an infinite series as follows: 

𝑆(𝑡) = ∑  ∞
𝑛=0 𝑆𝑛(𝑡), 𝐸(𝑡) = ∑  ∞

𝑛=0 𝐸𝑛(𝑡), 𝐼(𝑡) = ∑  ∞
𝑛=0 𝐼𝑛(𝑡), and 

           𝑅(𝑡) = ∑  ∞
𝑛=0 𝑅𝑛(𝑡). 
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We can decompose the nonlinear terms as: 

𝑆(𝑡)𝐼(𝑡) = ∑  ∞
𝑛=0 𝐴𝑛, where 𝐴𝑛

 ’s are Adomian polynomials. 

The general Adomian polynomial is: 

  𝐴𝑛 =
1

Γ(𝑛+1)

𝑑𝑛

𝑑𝜅𝑛
[∑  𝑛

𝑞=0  𝜅
𝑞𝐼𝑞(𝑡) ∑  𝑛

𝑞=0  𝜅
𝑞𝑆𝑞(𝑡)]. 

The first-order Adomian polynomial is: 𝐴0(𝑡) = 𝑆0(𝑡) 𝐼0(𝑡) 

The second-order Adomian polynomial is:  𝐴1(𝑡) = 𝑆0(𝑡)𝐼1(𝑡) + 𝑆1(𝑡)𝐼0(𝑡). 

Now, substituting the series and Adomian polynomials in Eq. (7), we get 

 

𝐿{∑  ∞
𝑛=0  𝑆(𝑛+1)(𝑡)}= 𝑧1𝑠

−1 + 𝑠−𝑝𝐿{−𝛽∑  ∞
𝑛=0  𝐴𝑛 − 𝜈𝑆𝑛(𝑡)},

𝐿{∑  ∞
𝑛=0  𝐸(𝑛+1)(𝑡)} = 𝑧2𝑠

−1 + 𝑠−𝑝𝐿{𝛽 ∑  ∞
𝑛=0  𝐴𝑛 − 𝛾𝐸𝑛(𝑡)} ,

𝐿{∑  ∞
𝑛=0   𝐼(𝑛+1)(𝑡)} = 𝑧3𝑠

−1 + 𝑠−𝑝𝐿{𝛾𝐸𝑛(𝑡) − 𝜇𝐼𝑛(𝑡)},

𝐿{∑  ∞
𝑛=0  𝑅(𝑛+1)(𝑡)} = 𝑧4𝑠

−1 + 𝑠−𝑝𝐿{𝜇𝐼𝑛(𝑡) + 𝜈𝑆𝑛(𝑡)},

 

 

 

 

(8) 

Now, implementing the inverse Laplace transform, from (6)-(8), we get the 

following: 

 

∑  ∞
𝑛=0  𝑆(𝑛+1)(𝑡)= 𝑧1 + 𝐿

−1[𝑠−𝑝𝐿{−𝛽∑  ∞
𝑛=0  𝐴𝑛 − 𝜈𝑆𝑛(𝑡)}],

∑  ∞
𝑛=0  𝐸(𝑛+1)(𝑡) = 𝑧2 + 𝐿

−1[𝑠−𝑝𝐿{𝛽 ∑  ∞
𝑛=0  𝐴𝑛 − 𝛾𝐸𝑛(𝑡)}],

∑  ∞
𝑛=0   𝐼(𝑛+1)(𝑡) = 𝑧3 + 𝐿

−1[𝑠−𝑝𝐿{𝛾𝐸𝑛(𝑡) − 𝜇𝐼𝑛(𝑡)}],

∑  ∞
𝑛=0  𝑅(𝑛+1)(𝑡) = 𝑧4 + 𝐿

−1[𝑠−𝑝𝐿{𝜇𝐼𝑛(𝑡) + 𝜈𝑆𝑛(𝑡)}],

 

 

 

 (9) 

From Eq. (9), the initial approximations are: 

 𝑆0(𝑡) = 𝑧1, 𝐸0(𝑡) = 𝑧2, 𝐼0(𝑡) = 𝑧3, 𝑅0(𝑡) = 𝑧4.   (10) 

For 𝑛 = 0, the first-order approximations are: 

𝑆1(𝑡)= {−𝛽𝐴0(𝑡) − 𝜈𝑆0(𝑡)}
𝑡𝑝

Γ(1 + 𝑝)
,

𝐸1(𝑡) = {𝛽𝐴0(𝑡) − 𝛾𝐸0(𝑡)}
𝑡𝑝

Γ(1 + 𝑝)
,

𝐼1(𝑡) = {𝛾𝐸0(𝑡) − 𝜇𝐼0(𝑡)}
𝑡𝑝

Γ(1 + 𝑝)
,

𝑅1(𝑡) = {𝜇𝐼0(𝑡) + 𝜈𝑆0(𝑡)}
𝑡𝑝

Γ(1 + 𝑝)
.

 

 

 

 

                (11) 

For 𝑛 = 1, the second-order approximations are: 
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𝑆2(𝑡)= {−𝛽𝐴1(𝑡) − 𝜈𝑆1(𝑡)}
𝑡2𝑝

Γ(1 + 2𝑝)
,

𝐸2(𝑡) = {𝛽𝐴1(𝑡) − 𝛾𝐸1(𝑡)}
𝑡2𝑝

Γ(1 + 2𝑝)
,

𝐼2(𝑡) = {𝛾𝐸1(𝑡) − 𝜇𝐼1(𝑡)}
𝑡2𝑝

Γ(1 + 2𝑝)
,

𝑅2(𝑡) = {𝜇𝐼1(𝑡) + 𝜈𝑆1(𝑡)}
𝑡2𝑝

Γ(1 + 2𝑝)
.

 

 

 

(12) 

Therefore, from equations (10)-(12), the approximate solution with three terms is 

given by: 

𝑆(𝑡) ≈ 𝑆0(𝑡) + 𝑆1(𝑡) + 𝑆2(𝑡).

𝐸(𝑡) ≈ 𝐸0(𝑡) + 𝐸1(𝑡) + 𝐸2(𝑡).

𝐼(𝑡) ≈ 𝐼0(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡).

𝑅(𝑡) ≈ 𝑅0(𝑡) + 𝑅1(𝑡) + 𝑅2(𝑡).

       (13) 

IV.     Results and Discussion 

In this section, we show the analytical solution (13) geometrically. For this, 

we consider the transmission rate 𝛽 =  5.48 × 10⁻⁴, the rate of development from 

exposed to infected 𝛾 =  4.93 × 10⁻⁴, the recovery rate µ =  0.27 × 10⁻³, and the 

vaccination rate 𝜈 =  1.37 × 10⁻⁴. The initial population distribution is: susceptible 

individuals 𝑆(0)  =  0.88, exposed individuals 𝐸(0)  =  0.07, infected individuals 

𝐼(0)  =  0.05, and recovered  individuals 𝑅(0)  =  0.00 [XVIII]. Using these values, 

series (13) becomes: 

𝑆(𝑡)= 0.88 + 1.3739 × 10−8
𝑡2𝑝

Γ(2𝑝 + 1)
− 0.00014

𝑡𝑝

Γ(𝑝 + 1)
,

𝐸(𝑡) = 0.07 + 1.1211 × 10−8
𝑡2𝑝

Γ(2𝑝 + 1)
− 0.00001

𝑡𝑝

Γ(𝑝 + 1)
,

𝐼(𝑡) = 0.05 − 1.0838 × 10−8
𝑡2𝑝

Γ(2𝑝 + 1)
+ 0.00002

𝑡𝑝

Γ(𝑝 + 1)
,

𝑅(𝑡) = 0.00 − 1.4111 × 10−8
𝑡2𝑝

Γ(2𝑝 + 1)
+ 0.00013

𝑡𝑝

Γ(𝑝 + 1)
.

 

 

 

 

 

(14) 

Figures 1-4 illustrate the comparative dynamics of the susceptible, exposed, infected, 

and recovered populations, respectively, over 60 days under three different fractional 

orders of the Caputo derivative for 𝑝 = 0.79, 𝑝 = 0.89, and 𝑝 = 0.99. These figures 

provide a visual comparison between the analytical solutions obtained via the 

FLADM and the numerical solutions computed using the fractional Runge-Kutta 4th 

order (FRK4) method (a suitable numerical scheme). 

The evolution of the susceptible population for S(t) for 𝑝 =  0.79, 𝑝 =  0.89, and 

𝑝 =  0.99 is depicted in Figure 1 (1a, 1b, and 1c), respectively. In all cases, the 
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susceptible population decreases over time as individuals transition to the exposed 

class. At fractional order 𝑝 =  0.99, the LADM nicely agrees with the fractional RK4 

technique. The FLADM is shown in red, and the numerical solution is shown in blue. 

Figure 2 (2a, 2b, and 2c) demonstrates that the exposed population drops over time 

(𝑝 =  0.79 and 𝑝 =  0.89, respectively). The slower decay for 𝑝 =  0.99 again 

highlights the influence of the fractional order on the disease progression. The 

analytical and numerical results closely align for fractional order 𝑝 =  0.99; this 

demonstrates the validity and accuracy of the FLADM. 

Figure 3 (3a, 3b, and 3c) displays the change in the infected population over time. 

The correspondence between the analytical and numerical solutions remains 

consistent 𝑝 =  0.99, which validates the robustness of the method. Figure 4 (4a, 4b, 

and 4c) displays the dynamics of the recovered population over time. At 𝑝 =  0.99, 

LADM approaches the numerical solutions obtained from the RK4 method. 

Figure 5 shows the sensitivity (elasticity) of ℜ0 for parameters 𝛽 and 𝜇, which 

indicates that a 10% increase in 𝛽 will increase ℜ0 by 10%, and a 10% decrease in 𝛽 

will decrease ℜ0 by 10%. 

 

  

(a) Comparison of analytical and numerical 

solutions over 60 days with 𝑝 =  0.79. 
(b) Comparison of analytical and numerical 

solutions over 60 days with 𝑝 =  0.89. 

 

(c) Comparison of analytical and  numerical solutions over 60 days with 𝑝 =  0.99 
Fig. 1. Graphical depiction of susceptible population S(t). 
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(a) Comparison of analytical and numerical 

solutions over 60 days with 𝑝 =  0.79. 
(b) Comparison of analytical and numerical 

solutions over 60 days with 𝑝 =  0.89. 

       

(c) Comparison of analytical and numerical solutions over 60 days with 𝑝 =  0.99. 

Fig. 2. Exposed population 𝐸(𝑡). 

 

 

  

(a) Comparison of analytical and numerical 

solutions over 60 days with 𝑝 =  0.79. 

(b) Comparison of analytical and numerical 

solutions over 60 days with 𝑝 =  0.89. 

               

(c) Comparison of analytical and numerical solutions over 60 days with 𝑝 =  0.99. 

Fig. 3: Infected population 𝐼(𝑡). 
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(a) Comparison of analytical and numerical 

solutions over 60 days with 𝑝 =  0.79. 

(b) Comparison of analytical and numerical 

solutions over 60 days with 𝑝 =  0.89. 

 
(c) Comparison of analytical and numerical solutions over 60 days with 𝑝 =  0.99. 

Fig. 4. Recovered Population 𝑅(𝑡). 

 

 

Fig. 5. Normalized sensitivity (elasticity) of ℜ0. 

Overall, these comparisons emphasize the effectiveness of the FLADM in showing 

the behavior of the fractional SEIR model. The influence of the fractional-order 

derivative 𝑝 is evident in each compartment, which underlines the importance of 

fractional modelling in capturing memory-dependent dynamics in epidemiological 

modelling. 
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V.     Conclusion 

In this study, we deal with a fractional-order SEIR model with vaccination in 

the Caputo derivative to investigate the transmission dynamics of the Ebola virus 

disease. The model successfully captures the memory-dependent and heritable 

features of disease progression. The fractional Laplace Adomian decomposition 

method is found to be an efficient, compatible, and flexible method for unraveling the 

analytical solutions of the model. The strong agreement between the analytical 

responses and the computational results (obtained using the fractional Runge-Kutta 

4th order (RK4) approach) verifies their validity and reliability. The graphical 

simulations over 60 days show that the fractional-order parameter 𝑝 significantly 

affects the behavior of each compartment, i.e., susceptible, exposed, infected, and 

recovered. The results demonstrate a strong agreement between the LADM and RK4 

solutions at 𝑝 =  0.99. Notably, as 𝑝 approaches 1, the behavior of the fractional 

model aligns more closely with the classical model, underscoring the role of 

fractional derivatives in refining disease modelling. This study clearly demonstrates 

that the FLADM is capable of producing accurate analytical approximations and is a 

powerful tool for understanding complex epidemiological systems governed by 

memory effects. This research emphasizes the significance of fractional-order 

modelling in public health, especially to improve prediction ability to assist in the 

development of effective strategies (to control infectious diseases such as Ebola). The 

results presented here can serve as a foundation for future work on fractional-order 

models applied to a wide range of epidemiological and biological problems. One 

limitation of the present model is that it does not incorporate birth and mortality rates. 

Introducing such rates might create challenges to solving the system analytically, 

which could also be one of the future works. 
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