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Abstract 

This paper combines traditional optimization theory with modern Natural 

Language Processing (NLP) by formalizing Textual Gradient Descent (TextGrad) 

within a measure-theoretic framework. We introduce the concept of Expected Textual 

Loss, a Monte Carlo-inspired approach that enables gradient-based methods in 

discrete text spaces. Our extension, Monte Carlo TextGrad, improves convergence by 

systematically sampling from synthetic input distributions and integrating them into 

the optimization loop. Experimental validation spans both controlled object counting 

tasks and the LeetCode Hard benchmark, where our approach achieves statistically 

significant improvements in completion rates over baseline models and standard 

TextGrad. In addition, we analyze the potential distributional bias introduced by 

synthetic sampling through Kullback–Leibler divergence, establishing a principled 

framework for diagnosing and mitigating misalignment between training and 

deployment distributions. These results demonstrate that Monte Carlo TextGrad 

provides both faster convergence and greater robustness under distribution shift. 
 

Keywords: Textual Gradient Descent, Monte Carlo Methods, LLM Optimization, 

Measure Theory, Expected Textual Loss, Distributional Bias 
 

I.   Introduction 
 

Large language models (LLMs) have revolutionized natural language 

processing, yet their optimization remains constrained by the fundamental tension 

between continuous parameter spaces and discrete textual outputs. Traditional 

gradient-based methods face existential challenges when applied directly to text 

generation tasks due to the non-differentiable nature of linguistic operations. This paper 

closes this gap through Textual Gradient Descent, a novel optimization paradigm that 

leverages Monte Carlo methods as differentiable operators in text space. 

Modern LLM optimization techniques typically emphasize either computational 

efficiency [VI] or prompt engineering heuristics [XIII, I, VIII]. While valuable, these 

approaches do not address the latent optimization landscape of textual outputs 
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themselves. Our work builds upon the conceptualization of textual “differentiation” 

[XVI] but introduces three critical innovations: 

I. A measure-theoretic foundation for text optimization spaces 

II. Monte Carlo-inspired sampling mechanisms for gradient estimation 

III. Convergence guarantees are adapted from stochastic approximation theory 

The inherent challenge lies in reconciling the discrete nature of language with the 

continuous optimization frameworks that drive modern machine learning. Current 

methods approximate this through heuristic search, lacking formal mathematical 

grounding. Our solution draws inspiration from robust Monte Carlo transport 

simulations [IX, XI] and measure-space gradient methods [VII], translating these 

numerical techniques into textual operations through two key mechanisms: 

I. Treating prompts and outputs as elements of probability measure space (Ξ, D), 

where Ξ represents all valid text configurations and D their likelihood 

distribution 

II. Implementing Monte Carlo integration over Ξ through batch sampling of 

simulated inputs 

To evaluate our approach, we present two complementary experimental settings. First, 

a controlled object counting task illustrates the theoretical correctness of Monte Carlo 

TextGrad under constrained conditions. Second, experiments on the LeetCode Hard 

benchmark demonstrate its scalability to multi-step reasoning and code optimization, 

showing faster convergence and higher completion rates than existing baselines. 

Finally, to address potential misalignment between synthetic training distributions and 

real-world deployments, we introduce a distributional robustness analysis via 

Kullback–Leibler divergence. 

The structure of this paper is as follows: Section II establishes theoretical foundations 

by introducing TextGrad and Monte Carlo methods. Section III formalizes our 

approach through Expected Textual Loss and its mathematical derivation. Section IV 

provides convergence guarantees and analogies to classical Monte Carlo methods. 

Section V presents practical implementation details and empirical validation across 

tasks. Section VI introduces distributional bias analysis and future research directions. 

II.   Theoretical Background 

TextGrad Framework 

TextGrad, as formalized by Yuksekgonul et al. [XVI], is a mathematical 

framework that applies gradient descent principles to optimize text. For the purposes 

of establishing necessary context, the following mathematical formulations are adapted 

from Yuksekgonul et al.'s foundational work. Their framework, which we present here 

for illustrative purposes, consists of core components that parallel traditional 

mathematical constructs: text variables analogous to tensors in computation graphs, 

language models functioning as transformation operators, textual loss mechanisms 

providing quality assessment, and optimization algorithms for text updates. 

The field has seen various extensions of gradient-based text optimization, including 

approaches focused on automated prompt generation [II, XV], self-evaluation 
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mechanisms [XIV], and semantic prompt evolution [VIII]. These methods demonstrate 

the growing interest in principled optimization techniques for textual outputs. 

In a TextGrad computation graph, the gradients are defined as: 

  (Prompt, Response, )LLM

Evaluation Evaluation Response Evaluation

Prompt Response Prompt Response

   
=  =

   
  (1) 

where ∇LLM  is the gradient operator of the LLM. 

Generalizing to n dimensions, the computation graph is defined as: 

( ( )),f PredecessorOf


  =  V  

Where V is the set of variables, ν is a variable (text in our case), PredecessorOf(ν) 

represents predecessor variables, and fν is the transformation function (typically an 

LLM call). 

The gradient can be generalized to n dimensions as: 

SuccessorOf ($ $)

( , , )
f

w

w
w


 

 
= 

 

L L
 

Where L  is the loss function, and SuccessorOf(ν) represents successor variables. 

Textual Optimization Spaces 
 

Monte Carlo methods constitute a class of computational algorithms that rely on 

repeated random sampling to obtain numerical results [XI]. These methods are 

particularly useful for optimization problems. 

The core principle of Monte Carlo methods is the use of randomness to solve problems 

that might be deterministic in principle. By generating a large number of random 

samples and observing the proportion that possess a certain property, we can 

approximate complex, multi-dimensional integrals that would otherwise be difficult to 

compute. 

The mathematical foundation of Monte Carlo methods rests on the Law of Large 

Numbers - as the number of identically distributed, randomly generated variables 

increases, the sample mean approaches their theoretical mean [V]. Formally, for 

independent random variables X1,X2,...,Xn with expected value µ, we have: 

  1

1
lim almost surely

n

i
n

i

X
n


→

=

=
 

This convergence property enables Monte Carlo methods to estimate expected values 

by averaging random samples. For a function f and a random variable X with probability 

density function p(x), the expected value is: 

  1

1
[ ( )] ( ) ( ) ( )

n

i

i

E f X f x p x dx f x
n =

=  
 

Where x1,x2,...,xn are samples drawn from the distribution of X. 
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Monte Carlo methods have been successfully applied in artificial intelligence [VII, X]. 

Their particular strength lies in handling problems with high dimensionality where 

deterministic numerical methods become computationally intractable. 
 

Analogies Between LLM Training and Prompt Engineering 
 

LLM training and prompt engineering share fundamental objectives despite operating 

at different levels of abstraction. Pre-training establishes language capabilities 

analogous to how system prompts define baseline behaviors, while supervised fine-

tuning mirrors TextGrad optimization through directed feedback [XIII]. Our Monte 

Carlo approach extends this parallel by functioning as the conceptual equivalent to 

reinforcement learning in model training [XV] - enabling systematic exploration of text 

space through principled sampling rather than parameter updates, and creating a 

feedback loop without modifying the underlying model architecture. 
 

III.   Mathematical Formulation of Expected Textual Loss 
 

Problem Statement 
     

We address a fundamental challenge in prompt optimization: ensuring robust 

performance across diverse inputs beyond the initial training distribution. Our approach 

leverages a generative language model to produce varied synthetic datasets that 

deliberately differ from those on which the prompt was initially optimized. 

By formalizing this process within an expected textual loss framework, we establish a 

theoretical foundation for optimizing prompts against robustly sampled distributions 

rather than fixed datasets. 

Expected Textual Loss 

Let D be the distribution of possible simulations and Ξ the set of all possible inputs. 

We aim to find the expected loss of the output of the transformation function fθ with 

output θ through the following integral: 

( ) ( ( )) ( )L f d


  


= L D   (2) 

Where Ξ is the set of all possible inputs, D is the distribution of possible simulations, 

L is the textual loss function evaluating output, fθ is the transformation function with 

output θ 

Formula Derivation 
 

Let g(ξ) = L(fθ(ξ)), and we sample ξ from D. We can rewrite equation (2) as: 

  ( )I g d 


=         (3) 

For a random variable X with probability density function (PDF) p(x), the 

expected value of a function g(X) is: 

  ~ [ ( )] ( ) ( )X D g X g X p X dX
+

−
= E  
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To compute a definite integral ( )
b

a
g X dX , we can normalize the domain: X ∈ 

Uniform[a,b], with 
1

( )p X
b a

=
−

, giving: 

( ) ( ) [ ( )]
b

a
g X dX b a g X= −  E  

Using this definition, let 
1

( )
V

 =D  where V d


=   is the volume of the 

domain Ξ. Equation (3) becomes: 

   [ ( )]I V g = E   

According to the Law of Large Numbers, as the sample size N → ∞, the sample 

mean converges to the true expected value: 

   

1

1
[ ( )] ( )

N

i

i

g g
N

 
=

 E  

Where ξi are uniformly distributed samples in Ξ. 

Thus, our discrete approximation of (2) is: 

   
1

1
( ) ( ( )) where 

N

i i

i

L f
N


  

=

= L D  

Note that V = 1 since we have normalized the semantic space. 

Our optimization objective becomes an expected loss over simulated input 

distributions: 

 ~
( ) ( ( ))L f

 
 = E

D
L  (4) 

Where θ is our variable (prompt, evaluation, etc.), ξ is a simulated input (personas, 

scenarios, parameters, etc.), L is the textual loss function, and D is the distribution of 

possible simulations. 

IV.    Monte Carlo Method Analogy and Convergence 

Monte Carlo Method Analogy 

The Monte Carlo method approximates definite integrals by simulating random 

variables. For an integral ( )
b

a
I f X dX=  , we consider a random variable u 

uniformly distributed over [a,b]. The expected value of f(u) is: 

   [ ( )] ( ) ( )
b

a
f u f u u du= E  

Where 
1

( )u
b a

 =
−

is the uniform distribution’s PDF. Thus: 
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   ( ) [ ( )]I b a f u= − E  

We approximate this by sampling N points uniformly over [a,b] and computing: 

   

1

1
( ) ( )

N

i

i

I b a f u
N =

 −    

The accuracy increases with sample size N. Our expected textual loss is analogous to 

this Monte Carlo method, working with stochastic LLMs in a probabilistic text space. 

Convergence Analysis 

Monte Carlo approximation convergence is proven as (4): 

   Pr( lim ) 1N

N
F F

→
  = =  

Where F is the true integral value and ⟨ F N ⟩ is the sample mean over N samples. 

Under regulatory conditions (finite variance, finite domain), the convergence of our 

expected textual loss can be defined as: 

  ~

1

almost surely
1

lim ( ( )) ( ( )) -
N

i
N

i

L f L f
N

   
→

=

= E D D  

From (4), we see that: 

   

1

1
Pr( : lim ( ( )) ( )) 1

N

i
N

i

L f
N

  
→

=

 = = L  

V.    Implementation and Experimental Validation 

Pseudocode Implementation 

We implement our Monte Carlo-based TextGrad framework through 

integration with the existing TextGrad architecture. Algorithm 1 illustrates the core 

implementation. 

This algorithm implements the expected textual loss minimization described in our 

theoretical framework. By sampling from the distribution D  and aggregating loss 

values, we approximate the integral in (2) through Monte Carlo integration. 
 

Algorithm-1. Monte Carlo TextGrad Optimization 

 
Input: Initial prompt θ, simulation distribution D, sample size N  

Output: Optimized prompt θ∗ 

 
Initialize θ as a TextGrad variable 

Initialize model and critic 

Initialize optimizer with learning rate α  
for iteration = 1 to max_iterations do 
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Sample batch {ξ1,ξ2,...,ξN} from D  
      Initialize an empty losses array  
      for each ξi in batch do  

output = model(θ,ξi) 
lossi = critic(output) 
Append lossi to losses array  

      end for  

      total_loss = 
1

1
loss

N

i

iN =

  // Approximate 
~ [ ( ( ))]L f  E D

 

      Backpropagate gradients through total_loss 

  Update θ using optimizer 
end for  
return θ 

 

Experiment 1: Object Counting 

We conducted experiments comparing standard TextGrad with our Monte Carlo-based 
version to validate our theoretical framework. Table 1 shows results from an object 
counting task where the model must accurately enumerate objects in various scenarios. 

Table 1: Object counting accuracy comparison across methods 

 

Method Iterations Total time (s) Accuracy (%) 

Baseline Model - 0.8 77.8 

Standard TextGrad 10 23 91.9 

Monte Carlo TextGrad 

(batch_size = 25) 
7 169 93.2 

Monte Carlo TextGrad 

(batch_size = 50) 
5 236 94.0 

 

The experimental results demonstrate that Monte Carlo TextGrad achieves higher 

accuracy than standard TextGrad, with improvements of 2.1% (N=50) and 1.3% 

(N=25) absolute accuracy. However, this comes at significant computational cost: our 

method requires 7.3-10.3x longer total runtime due to the multiple LLM calls per 

iteration required for Monte Carlo sampling. 

The accuracy-cost trade-off analysis reveals that while Monte Carlo TextGrad 

converges in fewer iterations (5-7 vs 10), each iteration is substantially more expensive 

due to batch sampling. For the N=25 configuration, we achieve 93.2% accuracy in 169 

seconds compared to standard TextGrad's 91.9% accuracy in 23 seconds. 

Certain contexts make this computational trade-off justified, such as high-stakes 

applications where even little accuracy gains add significant value, settings with lots of 

processing power, or circumstances in which practitioners do not have access to 

carefully selected training datasets. By generating synthetic input distributions, our 

Monte Carlo method reduces the overhead of data preparation and allows for the 
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systematic study of edge situations that might not be present in conventional datasets, 

hence eliminating the necessity for manually assembled training corpora. 

Experiment 2: Code Optimization 

To test the generalization and robustness of our approach, we extend validation beyond 

toy tasks to a benchmark requiring multi-step reasoning and code synthesis: the 

LeetCode Hard dataset. This dataset consists of algorithmically challenging problems 

commonly used for software engineering interviews, and thus represents a significantly 

more complex domain where the input space Ξ is vast and the underlying loss landscape 

is highly non-convex. Success on this benchmark requires not only correctness of 

reasoning but also finding corner cases and tricky inputs, making it an ideal stress test 

for the proposed optimization method. 

The task is formalized as a code optimization problem, where the objective is to 

iteratively refine an initial code implementation until it passes all unit tests. Here, the 

LLM plays the role of a self-critic, analyzing failed test cases, identifying edge cases, 

and suggesting refinements. The optimization loop continues until convergence or until 

a fixed iteration budget is reached. 

We benchmarked the following methods: 

I. Zero-Shot Baseline: Direct problem-to-code prompting without optimization. 

II. Standard TextGrad: Optimization using textual gradients without distributional 

sampling. 

III. Monte Carlo TextGrad (ours): Optimization with systematic distributional 

sampling, evaluated with batch sizes 25 and 50. 

The evaluation metric is Completion Rate, i.e., the proportion of problems for which 

the generated solution passes all hidden test cases on the LeetCode platform. 

Table 2: LeetCode Hard problems performance comparisons 

 

Method Iterations Completion rate 

Baseline Model - 0.26 

Standard TextGrad 5 0.36 ± 0.018 

Monte Carlo TextGrad 

(batch_size = 25) 
5 0.39 ± 0.013 

Monte Carlo TextGrad 

(batch_size = 50) 
5 0.39 ± 0.018 
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Fig. 1. LeetCode Hard Iteration vs. Completion Rate Chart 

Table 2 reports the completion rates across baselines, Standard TextGrad, and our 

proposed Monte Carlo variants. The Baseline Model, corresponding to a direct zero-

shot attempt without optimization, achieves a Completion Rate of 0.26, which is 

consistent with prior reports on the LeetCode Hard benchmark. This underscores the 

difficulty of the dataset, as even advanced models typically fail to generalize to the 

hidden LeetCode test cases. 

Standard TextGrad improves performance significantly, reaching 0.36 ± 0.018 after 

five optimization iterations. This result not only surpasses the zero-shot baseline but 

also establishes the effectiveness of textual gradient-based optimization in code 

synthesis settings. 

Building on this, our Monte Carlo TextGrad further enhances completion rates by 

systematically sampling from the synthetic distribution 𝐷. With a batch size of 𝑁 = 25, 

Monte Carlo TextGrad achieves 0.39 ± 0.013, an absolute improvement of +0.03 over 

Standard TextGrad. Increasing the batch size to 𝑁 = 50 yields 0.39 ± 0.018, confirming 

the robustness of the method across different sample sizes. While the improvement 

magnitude appears modest, statistical tests (paired t-test, 𝑝 < 0.05) confirm that the 

gains are significant and not attributable to random variation across seeds. Figure 1 

shows that Monte Carlo TextGrad is consistent in surpassing the peak accuracy of 

Standard TextGrad. 

VI.  Distributional Bias Analysis 

 An important consideration in evaluating the robustness of Monte Carlo 

TextGrad lies in the alignment between the synthetic sampling distribution D  

employed during optimization and the empirical distribution of prompts encountered 

during deployment, denoted realD . If the support or relative weighting of these two 

distributions differ significantly, the optimization may converge toward a locally 

optimal prompt  
 that performs well under the artificial sampling conditions but 

poorly under real-world usage.  
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We adopt the Kullback–Leibler (KL) divergence to quantify distributional 

misalignment between the deployment measure realD  and the synthetic sampling 

measure D : 

    ( )
( || ) ( ) log

( )

real
KL real real

D

P
D D P

P






=D  

Where Ξ denotes the space of all possible inputs, ( )realP   the probability of input   

under the empirical distribution, and ( )DP   the probability of   under the synthetic 

sampling distribution used in Monte Carlo TextGrad. A value of KLD  close to zero 

indicates strong alignment between the two distributions, while larger values signify 

systematic biases that could distort the optimization trajectory. 

In this study, all inputs were generated synthetically for experimental validation, and 

no direct access to deployment prompt data was available. This limitation precludes 

empirical estimation of ( )KL realD DD  in its strictest sense. Nonetheless, the KL 

divergence framework remains theoretically indispensable: it provides a principled lens 

through which to interpret the risks of distributional bias, and it suggests practical 

strategies for mitigation once real deployment data is collected. In particular, one may 

adopt surrogate empirical distributions—such as curated benchmark datasets (e.g., 

GSM8K for reasoning)—as proxies for realD . Divergences can then be estimated 

between synthetic distributions D  and such benchmarks, allowing an assessment of 

how closely optimization conditions reflect real evaluation settings. 

Robustness Bound 

Assume ( ) ( ( ))L f =  and define 

real~ real ~( ) [ ( )], [ ( )].( )D DL D L D  = =E E  

If | ( ) | M   for all   , then by the dual characterization of total variation, 

    2 TV( , ),| |P Q M P Q− E E  

and by Pinsker’s inequality, 

     1
KL2

TV( , ) ( )P Q P Q D ‖  

Then, combining the displays with realP D=  and Q D= gives the claim: 

real KL real( ) 2 .| ( ) | ( )L D L D M D D−  D ‖  

If [0,1] , the bound specializes to 

real KL real( ) 2 .| ( ) | ( )L D L D D D D−  ‖  

Practically, this motivates (a) monitoring divergence diagnostics as part of the 

optimization loop, (b) using proxy distributions or generator shifts to stress-test 
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robustness when realD  it is unavailable, and (c) incorporating divergence penalties or 

adaptive reweighting to keep the implied bias small. In this way, KL-based analysis not 

only formalizes the potential risks of distributional bias but also suggests concrete 

pathways toward distribution-aware prompt optimization. 

VII.   Conclusion 
 

This paper has established a rigorous mathematical foundation for text 
optimization through the novel concept of Expected Textual Loss. By bridging 
traditional Monte Carlo methods with modern language model architectures, we have 
provided both theoretical guarantees and practical tools for optimizing LLM outputs. 
Our key contributions include: 

I. Formalizing text optimization within a measure-theoretic framework 

II. Deriving Expected Textual Loss as a Lebesgue integral 

III. Proving almost sure convergence via the Law of Large Numbers 

IV. Introducing distributional bias analysis through the Kullback–Leibler 

divergence, thereby establishing a principled framework for diagnosing and 

mitigating misalignment between synthetic sampling distributions and real-

world prompt distributions 

Together, these contributions establish Monte Carlo TextGrad as a robust and general-

purpose optimization framework for large language models, combining mathematical 

rigor, empirical validation, and distributional awareness. 
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