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Abstract

This paper combines traditional optimization theory with modern Natural
Language Processing (NLP) by formalizing Textual Gradient Descent (TextGrad)
within a measure-theoretic framework. We introduce the concept of Expected Textual
Loss, a Monte Carlo-inspired approach that enables gradient-based methods in
discrete text spaces. Our extension, Monte Carlo TextGrad, improves convergence by
systematically sampling from synthetic input distributions and integrating them into
the optimization loop. Experimental validation spans both controlled object counting
tasks and the LeetCode Hard benchmark, where our approach achieves statistically
significant improvements in completion rates over baseline models and standard
TextGrad. In addition, we analyze the potential distributional bias introduced by
synthetic sampling through Kullback—Leibler divergence, establishing a principled
framework for diagnosing and mitigating misalignment between training and
deployment distributions. These results demonstrate that Monte Carlo TextGrad
provides both faster convergence and greater robustness under distribution shift.

Keywords: Textual Gradient Descent, Monte Carlo Methods, LLM Optimization,
Measure Theory, Expected Textual Loss, Distributional Bias

I. Introduction

Large language models (LLMs) have revolutionized natural language
processing, yet their optimization remains constrained by the fundamental tension
between continuous parameter spaces and discrete textual outputs. Traditional
gradient-based methods face existential challenges when applied directly to text
generation tasks due to the non-differentiable nature of linguistic operations. This paper
closes this gap through Textual Gradient Descent, a novel optimization paradigm that
leverages Monte Carlo methods as differentiable operators in text space.

Modern LLM optimization techniques typically emphasize either computational
efficiency [VI1] or prompt engineering heuristics [XIII, 1, VIII]. While valuable, these
approaches do not address the latent optimization landscape of textual outputs
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themselves. Our work builds upon the conceptualization of textual “differentiation”
[XVI] but introduces three critical innovations:

I. A measure-theoretic foundation for text optimization spaces
Il.  Monte Carlo-inspired sampling mechanisms for gradient estimation
I1l.  Convergence guarantees are adapted from stochastic approximation theory

The inherent challenge lies in reconciling the discrete nature of language with the
continuous optimization frameworks that drive modern machine learning. Current
methods approximate this through heuristic search, lacking formal mathematical
grounding. Our solution draws inspiration from robust Monte Carlo transport
simulations [IX, XI] and measure-space gradient methods [VII], translating these
numerical techniques into textual operations through two key mechanisms:

I.  Treating prompts and outputs as elements of probability measure space (£, D),
where E represents all valid text configurations and D their likelihood
distribution

Il.  Implementing Monte Carlo integration over = through batch sampling of
simulated inputs

To evaluate our approach, we present two complementary experimental settings. First,
a controlled object counting task illustrates the theoretical correctness of Monte Carlo
TextGrad under constrained conditions. Second, experiments on the LeetCode Hard
benchmark demonstrate its scalability to multi-step reasoning and code optimization,
showing faster convergence and higher completion rates than existing baselines.
Finally, to address potential misalignment between synthetic training distributions and
real-world deployments, we introduce a distributional robustness analysis via
Kullback—Leibler divergence.

The structure of this paper is as follows: Section Il establishes theoretical foundations
by introducing TextGrad and Monte Carlo methods. Section Il formalizes our
approach through Expected Textual Loss and its mathematical derivation. Section IV
provides convergence guarantees and analogies to classical Monte Carlo methods.
Section V presents practical implementation details and empirical validation across
tasks. Section VI introduces distributional bias analysis and future research directions.

1. Theoretical Background
TextGrad Framework

TextGrad, as formalized by Yuksekgonul et al. [XVI], is a mathematical
framework that applies gradient descent principles to optimize text. For the purposes
of establishing necessary context, the following mathematical formulations are adapted
from Yuksekgonul et al.'s foundational work. Their framework, which we present here
for illustrative purposes, consists of core components that parallel traditional
mathematical constructs: text variables analogous to tensors in computation graphs,
language models functioning as transformation operators, textual loss mechanisms
providing quality assessment, and optimization algorithms for text updates.

The field has seen various extensions of gradient-based text optimization, including
approaches focused on automated prompt generation [lI, XV], self-evaluation
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mechanisms [XIV], and semantic prompt evolution [V111]. These methods demonstrate
the growing interest in principled optimization techniques for textual outputs.

In a TextGrad computation graph, the gradients are defined as:

OEvaluation oEvaluation oResponse oEvaluation
= : =V, (Prompt, Response, ————) (1)
oPrompt OResponse  dPrompt OResponse

where Vim is the gradient operator of the LLM.

Generalizing to n dimensions, the computation graph is defined as:
v = f (PredecessorOf (v)),Vv eV

Where V is the set of variables, v is a variable (text in our case), PredecessorOf(v)
represents predecessor variables, and f, is the transformation function (typically an
LLM call).

The gradient can be generalized to n dimensions as:

oL oL
- = U Vf (V1W’ a)

ov weSuccessorOf ($v$)

Where L is the loss function, and SuccessorOf(v) represents successor variables.
Textual Optimization Spaces

Monte Carlo methods constitute a class of computational algorithms that rely on
repeated random sampling to obtain numerical results [XI]. These methods are
particularly useful for optimization problems.

The core principle of Monte Carlo methods is the use of randomness to solve problems
that might be deterministic in principle. By generating a large number of random
samples and observing the proportion that possess a certain property, we can
approximate complex, multi-dimensional integrals that would otherwise be difficult to
compute.

The mathematical foundation of Monte Carlo methods rests on the Law of Large
Numbers - as the number of identically distributed, randomly generated variables
increases, the sample mean approaches their theoretical mean [V]. Formally, for
independent random variables Xi,Xz,...,Xn With expected value W, we have:

L1
lim=>"X;=u almost surely
n—oo n i1

This convergence property enables Monte Carlo methods to estimate expected values

by averaging random samples. For a function f and a random variable X with probability
density function p(x), the expected value is:

ELT (1= [ £0POIBK =D 1 (1)

Where X1,X,...,Xn are samples drawn from the distribution of X.
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Monte Carlo methods have been successfully applied in artificial intelligence [VII, X].
Their particular strength lies in handling problems with high dimensionality where
deterministic numerical methods become computationally intractable.

Analogies Between LLM Training and Prompt Engineering

LLM training and prompt engineering share fundamental objectives despite operating
at different levels of abstraction. Pre-training establishes language capabilities
analogous to how system prompts define baseline behaviors, while supervised fine-
tuning mirrors TextGrad optimization through directed feedback [XIII]. Our Monte
Carlo approach extends this parallel by functioning as the conceptual equivalent to
reinforcement learning in model training [XV] - enabling systematic exploration of text
space through principled sampling rather than parameter updates, and creating a
feedback loop without modifying the underlying model architecture.

I11. Mathematical Formulation of Expected Textual Loss
Problem Statement

We address a fundamental challenge in prompt optimization: ensuring robust
performance across diverse inputs beyond the initial training distribution. Our approach
leverages a generative language model to produce varied synthetic datasets that
deliberately differ from those on which the prompt was initially optimized.

By formalizing this process within an expected textual loss framework, we establish a
theoretical foundation for optimizing prompts against robustly sampled distributions
rather than fixed datasets.

Expected Textual Loss

Let D be the distribution of possible simulations and = the set of all possible inputs.
We aim to find the expected loss of the output of the transformation function fywith
output 4 through the following integral:

L(0) = [_L(f,(£)dD(&) )

Where Z is the set of all possible inputs, D is the distribution of possible simulations,
L is the textual loss function evaluating output, fyis the transformation function with
output &

Formula Derivation

Let g(&) = L(fs(¢)), and we sample & from D. We can rewrite equation (2) as:
I =[_g(&)d¢ 3)

For a random variable X with probability density function (PDF) p(x), the
expected value of a function g(X) is:

Exol0(¥)]= ] g(X)p(X)dX
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To compute a definite integral Ib g(X)dX , we can normalize the domain: X €
Uniform[a,b], with p(X) = bi , giving:
-a

b
[ 9(x)dx = (b-a)-E[g(X)]
Using this definition, let D (&) :\% where V = Ldg is the volume of the

domain Z. Equation (3) becomes:

I'=V-E[9()]
According to the Law of Large Numbers, as the sample size N — oo, the sample
mean converges to the true expected value:

EL9(e)] = -2 9(6)

Where & are uniformly distributed samples in =.
Thus, our discrete approximation of (2) is:

()= L1, (6)) where &, < D

Note that V = 1 since we have normalized the semantic space.

Our optimization objective becomes an expected loss over simulated input
distributions:

L(0)=E, ,[L(f,(£)] (4)

Where 6 is our variable (prompt, evaluation, etc.), & is a simulated input (personas,
scenarios, parameters, etc.), L is the textual loss function, and D is the distribution of
possible simulations.

IV. Monte Carlo Method Analogy and Convergence
Monte Carlo Method Analogy

The Monte Carlo method approximates definite integrals by simulating random
variables. For an integral | = j: f (X)dX , we consider a random variable u

uniformly distributed over [a,b]. The expected value of f(u) is:

ELfW)]= ], fu)p(u)du

Where ¢(u) = is the uniform distribution’s PDF. Thus:

b-a
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| =(b—a)-E[f(u)]

We approximate this by sampling N points uniformly over [a,b] and computing:

! z(b—a)-%Zf(ui)

The accuracy increases with sample size N. Our expected textual loss is analogous to
this Monte Carlo method, working with stochastic LLMs in a probabilistic text space.

Convergence Analysis

Monte Carlo approximation convergence is proven as (4):

Pr(Linl<FN>:F):1

Where F is the true integral value and ( F V) is the sample mean over N samples.

Under regulatory conditions (finite variance, finite domain), the convergence of our
expected textual loss can be defined as:

LILQO%ZN: L(f,(&)) =E.p[L(f,(£))] D-almostsurely
From (4), we see that:
Prg < : im <3 L(f,(4) =L (6) =1

V. Implementation and Experimental Validation
Pseudocode Implementation

We implement our Monte Carlo-based TextGrad framework through
integration with the existing TextGrad architecture. Algorithm 1 illustrates the core
implementation.

This algorithm implements the expected textual loss minimization described in our
theoretical framework. By sampling from the distribution D and aggregating loss
values, we approximate the integral in (2) through Monte Carlo integration.

Algorithm-1. Monte Carlo TextGrad Optimization

Input: Initial prompt 6, simulation distribution D, sample size N
Output: Optimized prompt 6+

Initialize 0 as a TextGrad variable
Initialize model and critic

Initialize optimizer with learning rate «
for iteration = 1 to max_iterations do
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Sample batch {¢1,&,...,6v} from D
Initialize an empty losses array
for each &in batch do

output = model(8,&)

loss; = critic(output)

Append loss; to losses array
end for

13 .
total_loss = N Zl: loss, /1 Approximate E._,[L(f,(&))]
i=
Backpropagate gradients through total_loss
Update 6 using optimizer
end for
return 6

Experiment 1: Object Counting

We conducted experiments comparing standard TextGrad with our Monte Carlo-based
version to validate our theoretical framework. Table 1 shows results from an object
counting task where the model must accurately enumerate objects in various scenarios.

Table 1: Object counting accuracy comparison across methods

The experimental results demonstrate that Monte Carlo TextGrad achieves higher
accuracy than standard TextGrad, with improvements of 2.1% (N=50) and 1.3%
(N=25) absolute accuracy. However, this comes at significant computational cost: our
method requires 7.3-10.3x longer total runtime due to the multiple LLM calls per
iteration required for Monte Carlo sampling.

The accuracy-cost trade-off analysis reveals that while Monte Carlo TextGrad
converges in fewer iterations (5-7 vs 10), each iteration is substantially more expensive
due to batch sampling. For the N=25 configuration, we achieve 93.2% accuracy in 169
seconds compared to standard TextGrad's 91.9% accuracy in 23 seconds.

Certain contexts make this computational trade-off justified, such as high-stakes
applications where even little accuracy gains add significant value, settings with lots of
processing power, or circumstances in which practitioners do not have access to
carefully selected training datasets. By generating synthetic input distributions, our
Monte Carlo method reduces the overhead of data preparation and allows for the
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systematic study of edge situations that might not be present in conventional datasets,
hence eliminating the necessity for manually assembled training corpora.

Experiment 2: Code Optimization

To test the generalization and robustness of our approach, we extend validation beyond
toy tasks to a benchmark requiring multi-step reasoning and code synthesis: the
LeetCode Hard dataset. This dataset consists of algorithmically challenging problems
commonly used for software engineering interviews, and thus represents a significantly
more complex domain where the input space Z is vast and the underlying loss landscape
is highly non-convex. Success on this benchmark requires not only correctness of
reasoning but also finding corner cases and tricky inputs, making it an ideal stress test
for the proposed optimization method.

The task is formalized as a code optimization problem, where the objective is to
iteratively refine an initial code implementation until it passes all unit tests. Here, the
LLM plays the role of a self-critic, analyzing failed test cases, identifying edge cases,
and suggesting refinements. The optimization loop continues until convergence or until
a fixed iteration budget is reached.

We benchmarked the following methods:

I. Zero-Shot Baseline: Direct problem-to-code prompting without optimization.
Il. Standard TextGrad: Optimization using textual gradients without distributional
sampling.
I1l. Monte Carlo TextGrad (ours): Optimization with systematic distributional
sampling, evaluated with batch sizes 25 and 50.

The evaluation metric is Completion Rate, i.e., the proportion of problems for which
the generated solution passes all hidden test cases on the LeetCode platform.

Table 2: LeetCode Hard problems performance comparisons
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0.42 Iteration vs. Completion Rate on LeetCode Hard
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Fig. 1. LeetCode Hard Iteration vs. Completion Rate Chart

Table 2 reports the completion rates across baselines, Standard TextGrad, and our
proposed Monte Carlo variants. The Baseline Model, corresponding to a direct zero-
shot attempt without optimization, achieves a Completion Rate of 0.26, which is
consistent with prior reports on the LeetCode Hard benchmark. This underscores the
difficulty of the dataset, as even advanced models typically fail to generalize to the
hidden LeetCode test cases.

Standard TextGrad improves performance significantly, reaching 0.36 + 0.018 after
five optimization iterations. This result not only surpasses the zero-shot baseline but
also establishes the effectiveness of textual gradient-based optimization in code
synthesis settings.

Building on this, our Monte Carlo TextGrad further enhances completion rates by
systematically sampling from the synthetic distribution D. With a batch size of N = 25,
Monte Carlo TextGrad achieves 0.39 + 0.013, an absolute improvement of +0.03 over
Standard TextGrad. Increasing the batch size to N = 50 yields 0.39 + 0.018, confirming
the robustness of the method across different sample sizes. While the improvement
magnitude appears modest, statistical tests (paired t-test, p < 0.05) confirm that the
gains are significant and not attributable to random variation across seeds. Figure 1
shows that Monte Carlo TextGrad is consistent in surpassing the peak accuracy of
Standard TextGrad.

VI. Distributional Bias Analysis

An important consideration in evaluating the robustness of Monte Carlo
TextGrad lies in the alignment between the synthetic sampling distribution D
employed during optimization and the empirical distribution of prompts encountered

during deployment, denoted D, . If the support or relative weighting of these two
distributions differ significantly, the optimization may converge toward a locally

optimal prompt 8" that performs well under the artificial sampling conditions but
poorly under real-world usage.
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We adopt the Kullback-Leibler (KL) divergence to quantify distributional
misalignment between the deployment measure D, and the synthetic sampling

measure D :

DKL(DreaI ” D) = Z I:)real (é) IOg F:;L((gf))

Where E denotes the space of all possible inputs, P, (&) the probability of input &
under the empirical distribution, and P, (&) the probability of & under the synthetic
sampling distribution used in Monte Carlo TextGrad. A value of D,, close to zero

indicates strong alignment between the two distributions, while larger values signify
systematic biases that could distort the optimization trajectory.

In this study, all inputs were generated synthetically for experimental validation, and
no direct access to deployment prompt data was available. This limitation precludes

empirical estimation of D, (D, D) in its strictest sense. Nonetheless, the KL

divergence framework remains theoretically indispensable: it provides a principled lens
through which to interpret the risks of distributional bias, and it suggests practical
strategies for mitigation once real deployment data is collected. In particular, one may
adopt surrogate empirical distributions—such as curated benchmark datasets (e.g.,

GSMB8K for reasoning)—as proxies for D, . Divergences can then be estimated

between synthetic distributions D and such benchmarks, allowing an assessment of
how closely optimization conditions reflect real evaluation settings.

Robustness Bound
Assume /(&) = L(f,(&)) and define

LD)=E, ol  U(Du)=E.o [1E)]
If | /(&) |KM forall £ € E, then by the dual characterization of total variation,
|E.0—Eot|<2MTV(P,Q),
and by Pinsker’s inequality,

TV(P,Q) <zD (PIIQ)

Then, combining the displays with P = D, and Q = D gives the claim:

real

|L(Dreal) - L(D)l =M \/2DKL(DreaI [ D)

If ¢ €[0,1], the bound specializes to

|L(Dreal) - L(D)l = \/2 DKL(DreaI I D) :

Practically, this motivates (a) monitoring divergence diagnostics as part of the
optimization loop, (b) using proxy distributions or generator shifts to stress-test
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robustness when D, it is unavailable, and (c) incorporating divergence penalties or

adaptive reweighting to keep the implied bias small. In this way, KL-based analysis not
only formalizes the potential risks of distributional bias but also suggests concrete
pathways toward distribution-aware prompt optimization.

VII. Conclusion

This paper has established a rigorous mathematical foundation for text
optimization through the novel concept of Expected Textual Loss. By bridging
traditional Monte Carlo methods with modern language model architectures, we have
provided both theoretical guarantees and practical tools for optimizing LLM outputs.
Our key contributions include:

I.  Formalizing text optimization within a measure-theoretic framework
Il.  Deriving Expected Textual Loss as a Lebesgue integral
I1l.  Proving almost sure convergence via the Law of Large Numbers

IV. Introducing distributional bias analysis through the Kullback—Leibler
divergence, thereby establishing a principled framework for diagnosing and
mitigating misalignment between synthetic sampling distributions and real-
world prompt distributions

Together, these contributions establish Monte Carlo TextGrad as a robust and general-
purpose optimization framework for large language models, combining mathematical
rigor, empirical validation, and distributional awareness.

Conflict of Interest:
There was no relevant conflict of interest regarding this article.

References

I.  Baek, Seungho, et al. "PromptCrafter: Crafting Text-to-Image Prompt
through Mixed-Initiative Dialogue with LLM." arXiv preprint
arXiv:2307.08985, 2023.  https://arxiv.org/abs/2307.08985.

. Gao, Shuzheng, et al. "The Prompt Alchemist: Automated LLM-Tailored
Prompt Optimization for Test Case Generation." arXiv preprint
arXiv:2501.01329, 2025. N https://arxiv.org/abs/2501.01329.

1. Hu, Shengran, et al. "Automated Design of Agentic Systems." arXiv
preprint arXiv:2408.08435, 2025. https://arxiv.org/abs/2408.08435.

IV.  Khattab, Omar, et al. "DSPy: Compiling Declarative Language Model
Calls into Self-Improving Pipelines.” arXiv preprint arXiv:2310.03714,
2023. https://arxiv.org/abs/2310.03714.

Temirbek Atabekov et al.

143


https://arxiv.org/abs/2307.08985
https://arxiv.org/abs/2501.01329
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2310.03714

VI.

VIL.

VIII.

XI.

XII.

XIII.

XIV.

XV.

XVI.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-9, May (2025) pp 133-144

Kushner, Harold J., and G. George Yin. Stochastic Approximation and
Recursive Algorithms and Applications. 2nd ed., Springer-Verlag New
York, 2003.  10.1007/b97441.

Lecchini-Visintini, Andrea, et al. "Stochastic Optimization on Continuous
Domains With Finite-Time Guarantees by Markov Chain Monte Carlo
Methods." IEEE Transactions on Automatic Control, vol. 55, no. 12, 2010,
pp. 2858-2863.  10.1109/tac.2010.2078170.

Li, Yujian Betterest, and Kai Wu. "SPELL: Semantic Prompt Evolution
based on a LLM." arXiv preprint arXiv:2310.01260, 2023.
https://arxiv.org/abs/2310.01260.

Melnikov, Olena, and Johannes Milz. "Randomized Quasi-Monte Carlo
Methods for Risk-Averse Stochastic Optimization." Journal of
Optimization Theory and Applications, vol. 206, no. 1, 2025.
10.1007/s10957-025-02693-6.

Metropolis, Nicholas, et al. "Equation of State Calculations by Fast
Computing Machines." Journal of Chemical Physics, vol. 21, no. 6, 1953,
pp. 1087-1092.  10.1063/1.1699114.

Ouyang, Long, et al. "Training Language Models to Follow Instructions
with Human Feedback."” Advances in Neural Information Processing
Systems 35, NeurlPS, 2022.  10.48550/arXiv.2203.02155.

Robert, Christian P., and George Casella. Monte Carlo Statistical Methods.
2nd ed., Springer-Verlag New York, 2004. 10.1007/978-1-4757-4145-2.

Schulman, John, et al. "Proximal Policy Optimization Algorithms." arXiv
preprint arXiv:1707.06347, 2017.  https://arxiv.org/abs/1707.06347.

Shin, Taylor, et al. "AutoPrompt: Eliciting Knowledge from Language
Models with Automatically Generated Prompts." arXiv preprint
arXiv:2010.15980, 2020.  https://arxiv.org/abs/2010.15980.

Wu, Sean, et al. "AutoMedPrompt: A New Framework for Optimizing
LLM Medical Prompts Using Textual Gradients." arXiv preprint
arXiv:2502.15944, 2025, https://arxiv.org/abs/2502.15944.

Xie, Yuxi, et al. "Self-Evaluation Guided Beam Search for Reasoning."”
arXiv preprint arXiv:2305.00633, 2023. https://arxiv.org/abs/2305.00633.

Yuksekgonul, Mert, et al. "TextGrad: Automatic 'Differentiation’ via
Text." arXiv preprint arXiv:2406.07496, 2024.
https://arxiv.org/abs/2406.07496.

Temirbek Atabekov et al.

144


https://arxiv.org/abs/2310.01260
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2305.00633
https://arxiv.org/abs/2406.07496

