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Abstract 

This study presents a novel framework for the early identification of invasive 

insect species using advanced bioacoustic analysis integrated with deep learning 

algorithms. In this paper, we develop a new method that uses spectral subtraction with 

wingbeat frequency modulation to identify invasive insects with high acoustic 

accuracy. We analyze acoustic signatures using a robust pipeline that involves 

adaptive noise cancellation, spectral subtraction with wingbeat frequency modulation-

based features, and a deep learning model. The system shows great potential in 

classification, with an average 96% to 98% accuracy in a data set of 17 species of 

insects, six of which are invasive. Significantly, our proposed solution does not disrupt 

the natural environment by using noninvasive surveillance, providing real-time 

identification. In addition, the work presents several methodological enhancements, 

for example, the hybrid noise reduction approach that leads to a signal-to-noise ratio 

gain of 9.64 dB and the custom deep learning model that was fine-tuned through 

systematic hyperparameter optimization. These advances greatly surpass current 

classification methodologies and have broad potential for applications in agriculture, 

defense, ecological studies, and invasive species control. Our results provide a solid 

basis for using acoustic ecology with machine learning for entomological studies and 

pest control.  
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I.    Introduction   

Invasive and dangerous insects threaten biodiversity, agriculture, and human 

health in new locations.  These organisms can damage ecosystems, cost businesses, and 

spread diseases.  This study applies robust categorization techniques and deep learning 

to accurately identify invasive and dangerous insects, addressing the need for improved 

detection and management [XXVIII]. 

Invasive insects like the Asian Hornet (Vespa velutina) have changed ecosystems and 

economies across continents.  According to several case studies, the Asian Hornet has 

rapidly spread across Europe, disrupting native bee populations and affecting 

pollination and agriculture.  French honeybee numbers have plummeted due to 

predation by the Asian Hornet, prompting local governments to implement insufficient 

control measures.  Recent developments in bioacoustics have enabled insect 

identification using species-specific sound characteristics [X].  Based on this basis, the 

researchers propose combining audio analysis with deep learning to improve insect 

categorization accuracy and efficiency [V]. 

This study seeks to identify six invasive, hazardous insects and 11 non-invasive ones 

using their sound characteristics in a non-intrusive, accurate, and scalable manner 

[XV].  This requires high-quality audio samples, noise reduction, and Mel Frequency 

Cepstral Coefficients (MFCC) and spectrum subtraction with wingbeat frequency 

modulation to extract significant characteristics [XIV].  These attributes are used to 

train a deep learning network for sound classification of invasive and noninvasive 

insect species [VII]. 

 This work proposes sophisticated novelties in traditional and modern audio pre-

processing by merging them with machine learning methods [XVII].  The work uses 

noise cancellation and filtering to clean insect sound signals for accurate feature 

extraction [XXXI].  The usage of MFCC, which is mainly employed in voice 

recognition, is unusual for insects [XXXIII].  The deep learning model’s 

hyperparameter tuning and validation process are better than regular classification 

[XXI]. 

Phung et al. employed auditory features to automatically identify insects, while others 

assessed insect health using sound signals [XII].  We use advanced deep learning and 

efficient feature extraction to improve these studies [IV]. 

Our main contributions are:  The current work has two effects on acoustic-based insect 

classification.  We first introduce a new classification framework designed to detect 

invasive insect species from bioacoustic characteristics. Second, Mel Frequency 

Cepstral Coefficient (MFCC) and spectrum subtraction with wingbeat frequency 

modulation feature extraction improve the system's accuracy and robustness in real-

world recording conditions [XXXII].  Thirdly, using a deep learning architecture and 

careful hyperparameter tweaking [IX], we achieved 98% classification accuracy on a 

heterogeneous insect sound dataset.  Finally, we provide an extensive and curated 

dataset of 17 insect species, comprising six invasive and 11 non-invasive species, along 

with their corresponding audio recordings [I].  We provide this data for bioacoustics, 

pest management, and ecological monitoring research. 
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The rest of the paper is organized as follows:  Section 2 reviews existing approach 

literature extensively, followed by the methodology.  Section 4 describes the data 

collection and processing approach, and then describes the deep learning architecture. 

Section 6 includes experimental data and analysis, whereas the last section concludes 

with future study directions. 

II.     Literature Review 

Cultural and intellectual references to invasive insects as a worldwide health issue are 

obvious. Their detection and management remain a significant threat to global 

agriculture and the ecosystem [XVIII]. The following review summarizes significant 

advancements in four critical areas. Consider acoustic detection, deep learning 

innovations, biological perspectives, and technology integration [XVI].  

Evolution of Acoustic Detection Methods        

Ganchev and Potamitis pioneered insect auditory identification using speech 

recognition[XII]. Crickets, cicadas, and katydids were accurately identified using their 

method[XVIII].  Boulila et al. proposed an innovative process that converts audio 

inputs into visual representations that deep learning can examine[IV].  In particular, 

their study advanced acoustic-based pest detection of Red Palm Weevil infestations 

[XXVII]. 

Deep Learning Inventions in Pest Detection       

Deep learning advances have greatly improved detection accuracy. Dong et al. created 

the YOLO-GBS system, which outperformed these systems by 5.4% in pest detection 

with 79.8% precision[X]. This technical development was enhanced by Cooperband et 

al.’s ecological studies on pest behavior and environmental conditions [XXVII]. Ullah 

et al.’s DeepPestNet, which claims 100% crop pest recognition accuracy, 

revolutionized deep learning [XXXIII]. 

Biological and Ecological Perspectives 

Genomic and physiological pest biology research has dramatically advanced our 

understanding[XXXIV]. Dasgupta et al.’s observations of plant leaves and their effects 

on insect mechanisms helped identify leaves [VII]. A molecular investigation of 

Anopheles funestus helps us comprehend vector population dynamics [XIX]. Based on 

spinetoram and Beauveria bassiana, Kawabata et al. developed successful pest 

management tactics[XVII]. 

Integration of Multiple Technologies 

Recent technological advances are underway.  Li et al. used mitochondrial genome 

analysis and studied pollinator adhesion and insect-plant connections [XXIV].  IoT and 

deep learning technologies provide a new generation of automated pest management 

systems[XIII], as proposed integration of agricultural productivity and biosecurity 

technology may boost the latter [XXX]. 

Advanced Detection Systems 

Barbados’ comprehensive assessment of proximal digital imaging techniques for pest 

monitoring used other traditional methods, while Maiti et al. added ensemble learning 
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to identify cry patterns and automated detection systems [XXV].  Khalighifar has 

proven that traditional monitoring methods and deep learning applications of 

automated species identification have drawbacks [XXII]. 

Methodological Advances in Classification 

Many recent methodological advances have considerably increased classification 

accuracy and efficiency. Ganchev and Potamitis pioneered signal processing methods 

for acoustic channel characterization with high precision in insect species [III].  

Following this, [XXIX]. Priyadarsiniet al. used different PH detection techniques to 

convert pest data to imperceptible representations for deep analysis [XI]. 

Comparative Analysis and Metric 

Pinpointing is promising for overcoming these hurdles; thus, we compare it to other 

approaches [XXVI].  Compared studies indicate significant detection accuracy 

increases.  However, Dong et al.’s YOLO-GBS method improved 5.4% on YOLOv5s 

models to 79.8% precision.  Ullah et al.’s cloud-based DeepPestNet architecture 

separated ten agricultural pests with 100% accuracy.  Basak et al. estimated an 85.4% 

accurate challenging environmental sound integrated system [II]. 

III.   Methodology 

 

Fig. 1. Architectural Flowchart of Insect Sound Classification Neural Network. 

Sound categorization combined with new technologies improves the detection and 

monitoring of invasive and hazardous insects using their auditory emissions.  Figure 1 

shows a flowchart for sound-based insect classification using audio recording, feature 

extraction, machine learning, and data integration.  A full description of each flow chart 

step follows.  

IV.   Data Collection and Preprocessing 

The data collection process involved recording acoustic signals from 17 

different insect species (6 invasive and 11 noninvasive) using specialized microphones. 

Table 1 provides details of the recorded species.  
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Table 1: Details of the recorded species 

Class Insect Name Location Recorder Equipment Used 

Recording  

Length 

1 Aedes 

albopictus 

Southeast Asia Everett 

Foreman 

Bruel and Kjaer 

Microphone 

10s 

2 Anoplophora 

glabripennis 

Korean 

Peninsula 

Michael 

Smith 

Microphone 9s 

3 Bactrocera 

tryoni 

Coastal 

Queensland 

Macquarie 

University 

Microphone 19s 

4 Coptotermes 

formosanus 

(Formosan 

termites) 

Southern China 

[Various] 

Recorded 

in soil 

under an 

oak tree 

Accelerometer 10s 

5 Sitophilus 

oryzae (Rice 

Weevil) 

Tropical Asia 

[Caribbean, 

North America] 

Recorded 

in wheat 

kernels 

PVDF Film 

Sensor 

10s 

6 Solenopsis 

invicta (Fire 

ants) 

South America 

[Various] 

James 

Anderson 

Bruel and Kjaer 

Microphone 

10s 

7 Cephus cinctus 

(Wheat stem 

sawfly) larva 

Western North 

America 

Matt 

Grieshop 

Accelerometer 10s 

8 Geotrupes 

egeriei (Dung 

Beetle) 

Eastern United 

States [Europe] 

Kevin 

Vulinec 

Microphone 10s 

9 Heliconius 

cydno alithea 

Mexico to 

Northern South 

America 

[Central 

America] 

Mirian 

HayRoe 

Panasonic 

microcassette 

recorder 

3s 

10 Lumbricidae 

spp 

(Earthworms) 

Canada and the 

United States, 

and throughout 

Eurasia to 

Japan 

[Worldwide] 

Recorded 

in soil 

from a 

forage 

grass field 

Accelerometer 10s 

11 Phyllophaga 

(White Grub) 

United States 

and Canada 

[North 

America] 

Jamee 

Brandhors

t-Hubbard 

Soil Microphone 9s 

12 Polyphylla spp 

(June Beetle) 

North and 

Central 

America, 

southern and 

central Europe, 

northern 

Africa, and 

southern Asia 

[Worldwide] 

John 

Rodgers 

Insect Detection 

System 

15s 

13 Pseudacteon 

tricuspis 

(Phorid Fly) 

Argentina, 

Brazil, and 

other parts of 

South America, 

Recorded 

while 

hovering 

over 

Microphone 10s 
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Class Insect Name Location Recorder Equipment Used 

Recording  

Length 

Europe, and 

Asia 

[Argentina, 

Brazil] 

stridulatin

g fire ants 

14 Reticulitermes 

flavipes 

(Eastern 

subterranean 

termite) 

North America John 

Green 

Accelerometer 10s 

15 Reticulitermes 

spp. 

Headbanging 

Asia and the 

Middle East, 

Western 

Europe, and all 

of North 

America 

[Worldwide] 

John 

Rodgers 

Insect Detection 

System 

10s 

16 Reticulitermes 

virginicus 

Southern 

United States 

[North 

America] 

Donovan 

Filkins 

Microphone 10s 

17 Ceratitis 

capitata 

(Mediterranean 

fruit fly) 

Africa, South 

and Central 

America, the 

Middle East, 

and Southern 

Europe 

[Worldwide] 

James 

Anderson 

Bruel and Kjaer 

Microphone 

10s 

Audio Signal Processing 

The audio processing pipeline comprises numerous crucial steps, including audio 

processing and noise cancellation, which are essential for insect sound classification. 

The manuscript describes essential basic strategies for insect sound categorization 

systems. Noise cancellation and signal amplification are necessary preprocessing 

stages for accurate insect acoustics categorization in noisy outdoor conditions.  For 

insect sound recordings, adaptive noise cancellation (ANC) methods like NLMS and 

RLS can be helpful. They reduce environmental noise while conserving insect species' 

auditory characteristics. Field recordings of insect sound with significant amplitude 

differences benefit from the NLMS algorithm’s input signal scaling resilience. Spectral 

Subtraction with Wingbeat Frequency Modulation and Wiener filtering are primarily 

used in insect acoustics.  These methods can separate insect calls from noise.  These 

methods can estimate and reduce noise while preserving species-specific acoustic 

information needed for classification, as many insects exhibit regular call frequency 

patterns. Due to time-frequency localization, wavelet-based insect sound 

categorization methods are advantageous. This is important because insect calls contain 

temporal patterns and frequency components needed for species identification. 

Wavelets’ multi-resolution analysis can capture insect vocalizations’ broad temporal 

patterns and minute spectral characteristics. 
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Spectral Subtraction with Wingbeat Frequency Modulation Signal 

Representation 

Consider the recorded audio signal x(t), which consists of the mosquito’s  wingbeat 

signal s(t) and additive noise  n(t): 𝑦(𝑡) = 𝑥(𝑡) + 𝑛(𝑡) 

  Fourier Transform 

Applying the Fourier transform to convert the time-domain signals into the frequency 

domain gives: 

𝑌(𝑓) = 𝑋(𝑓) + 𝑁(𝑓) 

Where 𝑌(𝑓), 𝑋(𝑓), and 𝑁(𝑓) represent the Fourier transforms of 𝑦(𝑡), 𝑥(𝑡), and 𝑛(𝑡), 
respectively. 

  Noise Spectrum Estimation 

Estimate the noise spectrum 𝑁̂(𝑓) by analyzing recording segments where the 

mosquito’s wingbeat is absent or minimal. This estimation is typically achieved by 

averaging the spectral content of the noise-only segments. 

  Spectral Subtraction 

Perform spectral subtraction by subtracting the estimated noise spectrum from the 

recorded signal’s spectrum to obtain an estimate of the wingbeat signal’s spectrum: 

𝑋̂(𝑓) = 𝑌(𝑓) − 𝑁̂(𝑓) 

To prevent negative magnitudes resulting from over-subtraction, apply a flooring 

function: 

𝑋̂(𝑓) = 𝑚𝑎𝑥{|𝑌(𝑓)| − |𝑁̂(𝑓)|, 𝛽} ⋅ 𝑒𝑗∠𝑌(𝑓) 

Where 𝛽 is a small positive constant (spectral floor) to maintain numerical stability, 

and ∠𝑌(𝑓) denotes the phase of 𝑌(𝑓). 

Inverse Fourier Transform 

Apply the inverse Fourier transform 𝑋̂(𝑓) to reconstruct the time-domain 

wingbeat signal 𝑥(𝑡): 

𝑥(𝑡) = 𝐹−1{𝑋̂(𝑓)} 

Wingbeat Frequency Modulation Analysis 

Analyze 𝑥(𝑡)to extract the wingbeat frequency modulation characteristics. This 

analysis may involve: 

Time-Domain Analysis: Detecting periodic components corresponding to wingbeats. 

Frequency-Domain Analysis: Identifying the fundamental frequency and its 

harmonics. 

Time-Frequency Analysis: Utilizing spectrograms to observe frequency variations over 

time. 
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The manuscript’s comparison of techniques suggests that a hybrid approach might be 

optimal for insect sound classification systems. For instance, combining wavelet-based 

preprocessing for noise reduction with deep learning-based classification could 

leverage the strengths of both methods. The wavelets could help clean and enhance 

insect signals, while neural networks could perform species classification tasks.

 

Fig. 2. Original sound 10 sec. Recording of Aedes albopictus. 

 

Fig. 3. Spectral Subtraction with Wingbeat Frequency Modulation Denoised 

Recording of Aedes albopictus (10 sec). 

Table 2: Comparison of Noise Cancellation Techniques Performance Metrics 

Method SNR (dB) STOI 

LMS -0.00         0.18 

NLMS -0.04         0.27 

RLS -0.34          0.32 

Wavelet             1.95          0.56 

Wienerw             6.17          0.65 

Spectral Subtraction with Wingbeat Frequency Modulation             9.64          0.67 

The best noise cancellation method is Spectral Subtraction with Wingbeat Frequency 

Modulation, with an SNR of 9.64 dB and a STOI of 0.67, as shown in Figures 2 and 3.  

To select the optimal preprocessing method, we evaluated several noise cancellation 

techniques, and their comparative performance metrics are presented in Table 2. This 

method is superior to others since it operates in the frequency domain and estimates 
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and subtracts the noise spectrum during non-speech times to isolate the target signal.  

While Wiener filtering performs second-best (SNR=6.17 dB, STOI=0.65), Spectral 

Subtraction performs best in both metrics, making it ideal for insect sound 

classification because it preserves insect calls' unique acoustic features while removing 

environmental noise. 

Noise Reduction: Implementation of adaptive noise cancellation using digital filtering 

techniques. 

Signal Enhancement: Application of band-pass filters to isolate frequency ranges 

specific to insect sounds. 

Feature Extraction: Computation of Mel Frequency Cepstral Coefficients (MFCC) 

following: 

𝑀𝐹𝐶𝐶(𝑘) = ∑

𝑁

𝑛=1

(∑

𝑀

𝑚=1

𝑆(𝑚)𝑐𝑜𝑠 [
𝜋𝑘(𝑚 − 0.5)

𝑀
]) 

  Where 𝑆(𝑚) represents the mel-scale filterbank energies. 

  t-SNE validation of Test Set 

Using learnt acoustic characteristics, we used t-distributed stochastic neighbor 

embedding (t-SNE) on the test set after feature extraction to assess insect species 

separability qualitatively.  The non-linear t-SNE algorithm decreases high-dimensional 

data to a low-dimensional (2D) space while keeping local neighborhood structure.  This 

allows complex feature spaces to be visualized and class clusters to be comprehended. 

 

Fig. 4. Two-dimensional t-SNE embedding of the test set based on proposed-derived 

acoustic features. 

Each point is a species-class-colored insect audio clip.  The t-SNE plot of the two-

dimensional embedding of test samples from each of the 17 insect classes is shown in 

Figure 4.  Each point represents a sample and is colored by bug class.  The image shows 

numerous distinct and well-separated clusters because the model has learned 

discriminative features that describe the class structure. Classes in the bottom right and 

top central sections form small, tight clusters, indicating high intra-class similarity and 
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little inter-class confusion. The confusion matrix and performance measures 

demonstrate great classification accuracy, as seen. 

Some regions of the plot overlap classes.  These overlaps may be due to signal clarity 

errors or similar-sounding species.  We predict overlaps to contribute to the few model 

evaluation misclassifications. 

Generally, t-SNE embedding can confirm our insect call feature engineering workflow.  

MFCCs and spectral subtraction with wingbeat frequency modulation are effective 

because we can see insect call clustering in the modified feature space.  This proves 

that the model's auditory characteristics for distinguishing invasive from noninvasive 

insects are essential, supporting bioacoustic pest surveillance. 

V.    Deep Learning Architecture 

           Layers tuned for audio classification make up the proposed deep learning model 

architecture: 

The model uses the architecture: (i) Multiple ReLU-activated convolutional layers, (ii) 

Dropout layers (0.5 rate) for regularization, (iii) Final classification using dense layers 

and softmax activation. 

Hyperparameter Optimization 

The hyperparameter tuning process utilized Random Search optimization: Define a set 

of candidate hyperparameters with maximum iterations. The optimal hyperparameter 

configuration is obtained by randomly selecting hyperparameters from the candidate 

set, training the model, and evaluating it on the validation set to measure performance. 

Append each result to the trial history, and finally select the configuration with the 

highest validation performance [XXIX]. 

Hyperparameter Tuning Process 

In machine learning model training, hyperparameter tuning entails carefully searching 

a predetermined range of hyperparameters for the best configuration. These 

hyperparameters should be adjusted iteratively to optimize model performance. 

Model Definition Phase 

The process starts with model definition.  Write a function to build and compile your 

model.  This function defines hyperparameters as variables that regulate the training 

process and affect model performance. To simplify tweaking, hyperparameters have a 

range of values. The model's behavior and performance depend on hyperparameters 

like learning rate, neural network layers, and decision tree depth.  Explore different 

hyperparameter values within the provided range to find the best combination. 

Tuner Selection and Configuration 

Next, choose a tuner like RandomSearch, Hyperband, or Bayesian Optimization.  The 

algorithmic tuner finds the ideal hyperparameter configuration by exploring the space.  

This stage establishes the model construction function, optimization objective (e.g., 

validation accuracy), and (3) total trial count. 
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Model-building function defines model structure and behavior, while optimization 

objective establishes a target, such as maximizing validation accuracy. Total trials 

indicate how many iterations are needed to find the ideal hyperparameter configuration. 

  Search Process 

Hyperparameter search begins using the tuner's search mechanism. This iterative 

approach explores different hyperparameters each time. Every iteration, the model's 

performance versus the goal is assessed. Sequential experimentation determines the 

ideal hyperparameter setup. 

  Final Model Selection and Retraining 

After the search, the best model and hyperparameters are found.  Best models optimize 

the goal. The best hyperparameters can be used to retrain the model on the complete 

dataset. Retraining the entire dataset generally improves model generalization and uses 

all available data. 

VI.   Results and Discussion 

             Best hyperparameter settings: (1) First densely connected layer: 352 units, (2) 

Preferred optimizer: Adam. 

Through hyperparameter configuration testing, the best model combination was found. 

Hyperparameter tuning optimizes models and improves performance through repetitive 

and resource-intensive processes. 

Model Training and Validation 

The dataset was split into training (70%), validation (15%), and test (15%) sets. The 

training was conducted using: 

Batch size: 32 

Learning rate: 0.001 with Adam optimizer 

Early stopping with patience = 10 

Cross-entropy loss function  

𝐿 = −
1

𝑁
∑

𝑁

𝑖=1

∑

𝐶

𝑗=1

𝑦𝑖𝑗𝑙𝑜𝑔(𝑝𝑖𝑗) 

Where 𝑁 n is the number of samples, 𝐶 k is the number of classes, 𝑦𝑖𝑗 y is the actual 

label, and 𝑝𝑖𝑗 is the predicted probability. 

Table 3: Summary of 30 Optuna Trials for Hyperparameter Optimization 

Trial Lyrs U_0 U_1 U_2 Act Drop LR Batch Loss 

0 3 90 68 86 relu 0.427 2.04e-4 32 0.0490 

1 4 196 212 241 relu 0.462 1.21e-4 32 0.0549 

2 4 214 164 99 elu 0.246 1.03e-4 64 0.0420 

3 4 162 215 88 relu 0.276 3.68e-4 32 0.0330 
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Trial Lyrs U_0 U_1 U_2 Act Drop LR Batch Loss 

4 2 222 165 – relu 0.420 4.05e-3 64 0.0403 

5 3 108 223 82 elu 0.415 5.21e-4 64 0.0170 

6 2 76 180 – relu 0.440 2.02e-3 128 0.0229 

7 2 145 133 – elu 0.411 3.12e-3 64 0.0316 

8 3 103 127 240 elu 0.495 4.97e-4 128 0.0288 

9 2 212 226 – elu 0.447 1.81e-3 128 0.0306 

10 3 125 255 156 elu 0.339 8.58e-4 64 0.0167 

11 3 126 256 161 elu 0.346 8.44e-4 64 0.0174 

12 3 117 253 159 elu 0.347 8.64e-4 64 0.0163 

13 3 172 243 154 elu 0.335 1.25e-3 64 0.0247 

14 3 134 203 163 elu 0.304 8.36e-3 64 0.0288 

15 3 122 255 200 elu 0.201 7.77e-4 64 0.0285 

16 4 253 193 129 elu 0.383 2.46e-4 64 0.0302 

17 3 68 93 190 elu 0.378 1.37e-3 64 0.0215 

18 2 179 237 – elu 0.311 3.20e-3 128 0.0136 

19 2 184 238 – elu 0.310 6.04e-3 128 0.0222 

20 2 152 131 – elu 0.266 3.13e-3 128 0.0306 

21 3 108 238 133 elu 0.375 7.68e-4 128 0.0247 

22 2 140 256 – elu 0.320 2.00e-3 128 0.0254 

23 4 169 234 201 elu 0.356 5.33e-4 32 0.0184 

24 2 122 191 – elu 0.286 1.40e-3 64 0.0292 

25 3 87 244 116 elu 0.239 4.27e-3 128 0.0302 

26 4 192 210 182 relu 0.333 3.37e-4 64 0.0243 

27 3 155 227 149 elu 0.360 1.04e-3 64 0.0212 

28 2 180 195 – elu 0.291 2.65e-3 32 0.0278 

29 3 95 100 217 relu 0.389 1.72e-4 128 0.0347 

Architectural Rationale & Ablations 

We utilized the Optuna framework to automate hyperparameter tuning, and a summary 

of the 30 optimization trials is shown in Table 3. The ablation study evaluates three 

architectural options for the MFCC-Conv1D classifier. The bars groupings are by 

Residual (x-axis), color (on/off), Mult-Scale, and hatching (on/off). Attention. The 

accuracy increases to 96.0% ± 0.7% with Multi-Scale activation, and to 96.5% ± 0.8% 

with Residual + Attention + Multi-Scale, as shown in Figure 5A, and also kernel size 

with depth in Figure 5B. Multi-Scale, picking up mixed-rate wingbeat modulations, is 

the most significant contributor, tightening a substantial amount of optimization; 

Residual further stabilizes optimization; Attention lays another, uniform gain on top. 

They are complementary and together provide the optimum performance and rationale 

underlying the design they propose to explainable, robust insect bioacoustics. 
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Fig. 5A. Accuracy by Residual and Multi-Scale 

(hatch = Attention on). 

 

Fig. 5B. Accuracy by Kernel Size and Depth. 

Comparative Evaluation of Feature Extraction Approaches 

The results of a comparative evaluation of multiple machine learning classifiers using 

conventional MFCCs and a proposed novel set of MFCC-based feature extractions that 

incorporate domain-specific enhancements like wingbeat harmonics and statistical 

descriptors are shown in Figures 5 and 6. 

 

Fig. 6: Performance of classifiers using baseline MFCC features. Moderate accuracy 

is achieved across models, with ensemble classifiers performing best among 

traditional methods. 

 

Fig. 7. Performance of classifiers using the proposed enhanced feature set. Notably 

higher scores are observed, especially for tree-based ensembles and neural networks. 
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Figure 6 indicates that the most extensively used speech feature extraction approach, 

MFCCs, produces models like Random Forest, Gradient Boosting, XGBoost, and 

LightGBM with modest accuracy and overall metric stability (Precision, Recall, F1, 

about 0.75).  MFCCs may not be able to capture finer acoustic fingerprints, hence KNN 

and SVM underperform. 

The suggested additional feature set improves performance in almost all models, as 

seen in Figure 7.  Last but not least, tree-based ensembles and neural networks achieve 

near-perfect classification across all metrics (0.99) or a significant feature separability 

improvement. Even simple models like Logistic Regression and AdaBoost show 

performance gains. 

These findings strengthen and generalize the hypothesis. Finally, class imbalance is 

managed better, and more invasive insect sounds are identified, making this a valuable 

approach in ecological monitoring systems. 

Hyperparameter Optimization Results 

The Adam optimizer and 352 units for the first densely linked layer were excellent 

hyperparameter values. Exploring multiple configurations and finding the best model 

combination led to these decisions. Figures 8 and 9 below demonstrate effective 

generalization and stable learning behavior with successful convergence. 

 

Fig. 8: Training and validation accuracy over 31 epochs for the deep neural network 

model. The consistent upward trend and convergence between training and validation 

curves indicate effective generalization and stable learning behavior. 
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Fig. 9: Training and validation accuracy and loss curves across 31 training epochs. 

The learning dynamics illustrate successful convergence and model generalization 

performance. 

Model Training Performance 

Three tightly linked layers were used to train the deep learning model over 16 epochs.  

The model's convergence and learning progress were monitored throughout the training 

phase, with the loss and accuracy metrics for both training and validation sets recorded 

in Table 4, which shows training metrics in detail: 

Table 4: Training and Validation Loss/Accuracy Over Epochs 

Epoch Loss Accuracy Val Loss Val Accuracy 

1 0.0788 0.9763 0.1207 0.9761 

2 0.0770 0.9764 0.0950 0.9775 

3 0.1363 0.9716 0.1537 0.9786 

4 0.1145 0.9730 0.1323 0.9778 

5 0.0809 0.9768 0.1615 0.9397 

6 0.0926 0.9733 0.0940 0.9778 

7 0.0785 0.9767 0.1028 0.9694 

8 0.0687 0.9792 0.1390 0.9780 

9 0.1128 0.9748 0.1202 0.9767 

10 0.0754 0.9785 0.1479 0.9797 

11 0.0872 0.9735 0.1763 0.9719 

12 0.0682 0.9790 0.1306 0.9703 

13 0.0823 0.9756 0.1204 0.9767 

14 0.0741 0.9776 0.1037 0.9789 

15 0.0805 0.9754 0.1279 0.9764 

16 0.0842 0.9753 0.1093 0.9755 
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Table 5: Performance Comparison of Classification Models 

Model Accuracy F1 Score Precision Recall 

Logistic Regression 0.9152 0.9169 0.9308 0.9152 

KNN 0.9839 0.9839 0.9841 0.9839 

SVM 0.7618 0.7359 0.8055 0.7618 

Decision Tree 0.9875 0.9875 0.9876 0.9875 

Random Forest 0.9969 0.9969 0.9970 0.9969 

Gradient Boosting 0.9969 0.9969 0.9969 0.9969 

AdaBoost 0.4533 0.3526 0.3258 0.4533 

Bagging 0.9964 0.9964 0.9964 0.9964 

Extra Trees 0.9969 0.9969 0.9969 0.9969 

XGBoost 0.9964 0.9964 0.9964 0.9964 

LightGBM 0.9981 0.9981 0.9981 0.9981 

Neural Network 0.9383 0.9390 0.9700 0.9383 

The model demonstrated consistently high performance across training and validation 

sets, with accuracy above 97%, as shown in Table 5. 

Classification Performance 

The model’s performance was evaluated on each insect class individually. Table 6 

presents the detailed metrics: 

Table 6: Classification Report: Precision, Recall, and F1-Score 

Species Precision Recall F1-Score Support 

Aedes albopictus 0.92 0.99 0.96 164 

Anoplophora glabripennis larva 1.00 0.98 0.99 97 

Bactrocera tyroni 1.00 0.98 0.99 339 

Cephus cinctus larva 0.99 1.00 0.99 98 

Ceratitis capitata 1.00 0.94 0.97 270 

Coptotermes formosanus 1.00 1.00 1.00 98 

Diaprepes abbreviatus 0.93 1.00 0.96 519 

Geotrupes egeriei 0.93 0.79 0.86 101 

Heliconius cydno alithea 0.97 0.95 0.96 96 

Lumbricidae spp 1.00 0.84 0.91 98 

Phyllophaga 1.00 0.99 1.00 397 

Polyphylla spp 0.98 0.98 0.98 95 

Pseudacteon tricuspis 0.69 0.99 0.82 195 

Reticulitermes flavipes 1.00 0.96 0.98 684 

Reticulitermes spp. headbanging 1.00 1.00 1.00 41 

Reticulitermes virginicus 1.00 1.00 1.00 98 

Solenopsis invicta (Fire ants) 0.97 0.73 0.83 208 
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Species Precision Recall F1-Score Support 

Accuracy 97.53 (Total Samples: 3598) 

Macro Avg 0.96 0.95 0.95 3598 

Weighted Avg 0.96 0.96 0.96 3598 

 

Fig. 10: Confusion matrix showing the classification performance of the optimized 

deep learning model on the test dataset for 17 insect species. 

VII     Comparative Analysis 

The detailed classification results are presented as a confusion matrix in Figure 

10, which plots the true species labels against the predictions made by the optimized 

deep learning model on the unseen test data. Table 7 presents new traits, models, and 

findings from major insect categorization investigations conducted between 2012 and 

2025.  Traditional neural networks were used by Qing et al. in 2012 to identify shapes 

with 79.5% accuracy.  Deng et al. (2018) employed CNNs to assess pest images, 

whereas Bhuiyan et al. (2023) used EfficientNet and ResNet. Prepare.org.in (2022) and 

Wang & Vhaduri (2024) use MFCCs, showing that researchers are now prioritizing 

non-invasive sound-only methods. 

In 2024, scientists developed hybrid and extension solutions within the DeWi 

architecture and VINMOBCONCAT, utilizing curated datasets with an accuracy rate 

of over 90%.  The 2025 project incorporates MFCC and wingbeat features into a 

streamlined deep neural network design, building on previous accomplishments.  

Optuna hyperparameter adjustments improve classification to 97.53%.  From classical 

to modern approaches and feature fusion in deep learning, insect categorization is 

becoming increasingly accurate, broad, and valuable. 
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Table 7: Time-ordered view of critical insect classification studies from 2012 to 

2025 

Study Features Model/Approach Accuracy (%) 

Qing et al. 

(2012)  

Shape Features 

(Moment 

Invariants) 

Quality Threshold ARTmap 79.5 

Frontiers in Plant 

Science (2022)  

Image (LLPD-

26, 26 classes) 

MSR-RCNN (Multi-Scale Super-

Resolution RCNN) 

67.4 (mAP) 

Basak, S., et 

al.(2022) 

Acoustic 19 

MFCC features 

 

k-Nearest Neighbor (k-NN), 

SVM, Random Forest 

85.4 (with k-NN) 

Ullah, N., et al. 

(2022) 

Hierarchical 

features via CNN 
Proposed a novel, lightweight 

DeepPestNet architecture 

100 

Bhuiyan, T. H. 

(2023)  

Image (RGB, 

Grayscale, 

Cropped Thorax) 

VGG16, ResNet-101, 

EfficientNetV2B0, Anatomically 

Inspired CNN 

89–95 

Wang, Y. & 

Vhaduri, S. 

(2024)  

MFCC (Sound) Decision Tree, Random Forest, 

SVM RBF, XGBoost, k-NN with 

Data Augmentation 

Not specified (High) 

Nguyen, T. et al. 

(2024)  

Image (IP102, 

D0 datasets) 

DeWi (Deep-Wide Learning with 

Triplet Margin Loss, Data 

Augmentation) 

76.44 (IP102), 99.79 

(D0) 

Proposed Work 

(2025) 

MFCC 

(Acoustic), 

Wingbeat 

Temporal 

Patterns 

Deep Neural Network + Optuna 

Tuning 

98 

VIII.     Limitations and Future Work 

This study highlights methodological and practical limitations that may be of 

interest. One constraint is environmental uncertainties, as loud environments, 

especially extreme weather, impair acoustic detection efficiency. This environmental 

sensitivity makes the system unsuitable for various ecological combinations.  The 

existing model architecture might be fine-tuned for species in different regions or with 

other species sets, limiting its application.  The hardware-dependent solution is another 

issue. The requirements for high-fidelity recording equipment and sensor sets may limit 

application in resource-constrained contexts. The current solution may be 

computationally expensive and challenging to use with real-time field data, especially 

when detecting numerous species.  Further Research:  This article suggests some ways 

to overcome these restrictions and advance the field.  First, fusing acoustics, eyesight, 

and environment may increase detection in varied conditions. This could be done by 

developing computationally efficient fusion methods for many data sources.  

Complexity is another key to noise-resilient feature extraction.  Developing adaptive 

filters that can adjust to changing environments while preserving target species sounds 

should be prioritized. Investigating transfer learning mechanisms may assist in 

customizing models for different species and habitats quickly with little training. An 

important technical innovation is adding real-time analysis using edge computing to 

the system. This would aid agricultural and conservation applications with rapid 
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detection and reaction.  Finally, investigating distributed sensor networks can boost 

spatial density and ecological systems surveillance. 

VIII.    Conclusion 

This work offers novel methodological contributions in the acoustic 

recognition of invasive insects and confirms the potential of applying Spectral 

Subtraction with Wingbeat Frequency Modulation to deep learning architectures. The 

primary contributions of the study cover three key areas: (1) Technical Innovation: We 

proposed a hybrid model of adaptive noise cancellation and MFCC feature extraction. 

The classification accuracy of 98% was obtained with relatively low computational 

complexity. Implementing spectral subtraction with wingbeat frequency modulation 

significantly improved signal quality (9.64 dB SNR improvement), establishing new 

benchmarks for acoustic insect detection. (2) Methodological Framework: Establishing 

a detailed, non-destructive assessment system will be valuable in identifying and 

controlling invasive species. The system architecture, which incorporates optimized 

hyperparameters and sophisticated noise reduction techniques, offers a scalable 

solution for field applications. (3) Ecological Impact: Our approach helps overcome 

the main limitations of monitoring invasive species and maintains ecosystem integrity 

in early detection cases, which are essential for agriculture and conservation. 
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