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Abstract 

In this study, we introduce the Wrapping New XLindley Distribution 

(WNXLD) as an extension of the Wrapping Distribution (WD). We derive the 

probability density function, cumulative distribution function, characteristic function, 

trigonometric moments, and other relevant parameters for WNXLD Additionally, 

parameter estimation is performed using the maximum likelihood estimation method. 
 

Keywords: Circular statistics, Compressive Strength, GGBS, Metakaoline, New 

Xlindley, Regression Analysis, Split Tensile Strength, Wrapping, Trigonometric 

moments. 

I.   Introduction 
 

The concept of “circular data,” often characterized as two-dimensional 

directional data, pertains to instances where observations are articulated in degrees or 

radians. Given that circular data represent directions devoid of magnitude, they can 

be conveniently depicted as points on a circle with a unit radius, centered at the 

origin, or as a unit vector in a plane extending from the origin to the relevant point. 

Directional data exhibit unique characteristics and present distinct challenges in 

statistical modeling. Such data arise in various disciplines, including biology, 

geology, physics, meteorology, psychology, medicine, image processing, political 

science, economics, and astronomy (Mardia and Jupp ]VII[). One common approach 

to constructing a circular distribution is by wrapping a linear distribution around the 

unit circle. Numerous studies have explored this method. L’evy ]XI[ introduced 

wrapped distributions, while Jammalamadaka and Kozubowski ]XVI[ examined 

circular distributions formed by wrapping classical exponential and Laplace 

distributions around the circle. In 2007, Rao et al ]II[ investigated the wrapping of 

lognormal, logistic, Weibull, and extreme-value distributions in the context of life 

testing models. Additionally, Roy and Adnan ]XX[ introduced the wrapped weighted 
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exponential distribution, and Rao et al. ]III[ studied the characteristics of the wrapped 

gamma distribution. Joshi and Jose ]XVII[ proposed the wrapped Lindley 

distribution, analyzing its properties, including the characteristic function and 

trigonometric moments. Adnan and Roy ]VIII[ later introduced the wrapped variance 

gamma distribution, applying it to wind direction modeling. The Lindley distribution 

(LD), originally suggested by Lindley ]IV, V[, is defined through its probability 

density function (pdf) and cumulative distribution function (CDF) as follows: 

   𝑙(𝑥, 𝜆) =
𝛼2

𝛼+1
(1 + 𝑥)𝑒−𝜆𝑥; 𝑥, 𝜆 > 0          (1) 

 

  𝐿(𝑥, 𝜆) = 1 − [1 +
𝜆𝑥

𝜆+1
] 𝑒−𝛼𝑥, 𝑥, 𝜆 > 0      (2) 

The wrapped Lindley distribution was introduced by Joshi and Jose (2018) ]XVIII[, 

who formulated its probability density function (PDF) and cumulative distribution 

function (CDF) as follows: 

  𝑡(𝑦) =
𝜆2

𝜆+1
𝑒−𝜆𝑦 [

1+𝑦

1−𝑒−2𝜋𝜆 +
2𝜋𝑒−2𝜋𝜆

(1−𝑒−2𝜋𝜆)
2] , 𝑦 ∈ [0,2𝜋), 𝜆 > 0    (3) 

 

𝑇(𝑦) =
1

1 − 𝑒−2𝜋𝜆
[1 − 𝑒−𝜆𝑦 −

𝜆𝑦

1 − 𝜆
𝑒−𝜆𝑦] − 

  
2𝜋𝜆

𝜆+1
(1 − 𝑒−𝜆𝑦) [

𝑒−2𝜋𝜆

(1−𝑒−2𝜋𝜆)
2] , 𝑦 ∈ [0,2𝜋), 𝜆 > 0     (4) 

 
Khodja et al ]X[ developed the new XLindley distribution (NXLD), which includes 

one parameter: a shape parameter (β). They defined the probability density function 

(PDF) and the cumulative distribution function (CDF) of the NXLD as follows. 

  f(x; β) =
β(1+βx)

2
)e−βx;  x, , β > 0      (5) 

  F(x; β) = 1 − [1 +
βx

2
] e−βx;  x, β > 0       (6) 

Khodja et al ]X[ explored various properties of the new XLindley distribution 

(NXLD) and demonstrated, using real data, that it outperformed the exponential 

distribution in several aspects. They employed the maximum likelihood estimation 

method to show that the Lindley distribution provided a better fit. In this study, as an 

extension of the Wrapping Distribution (WD), we propose a novel circular 

distribution called the Wrapping New XLindley Distribution (WNXLD). We derive 

its probability density function and cumulative distribution function in Section 2. In 

Section 3, we establish the characteristic function, expressed in terms of 

trigonometric moments along with relevant parameters. In Section 4,  we define the 

statistical Characterization of the Median Direction for the WILD. In Section 5, we 

apply the maximum likelihood estimation method to estimate its parameters. In 

Section 6, we investigate the finite-sample performance of the maximum likelihood 

estimator (MLE) for the parameter of the proposed Wrapped New XLindley 
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Distribution (WNXLD). In Section 7, we evaluate the Wrapped New XLindley 

Distribution (WNXLD) on two benchmark circular datasets. 

II.  Circular Distribution 
 

A circular distribution is a probability distribution in which the total 

probability is confined to the circumference of a unit circle (see ]XV[). The points on 

the unit circle represent directions, with each direction corresponding to a specific 

probability value. A circular random variable θ, expressed in radians, can take values 

within the range 0 ≤ θ ≤ 2πor −π ≤ θ < π. Circular probability distributions can 

be either discrete or continuous and must satisfy the condition XW =  X(mod2π). 
 

Definition 2.1 (see ]XV, VI[). If y is a stochastic variable defined on the 

real numbers with a distribution function G(y), then the random variable yW of the 

wrapped distribution demonstrates the subsequent properties: 

1. ∫ 𝑔(𝑦)𝑑𝑦
2𝜋

0
= 1 and 

2. 𝑔(𝑦) = 𝑔(𝑦 + 2𝜋). 

for any integer 𝑘 and g(y) is periodic. 

Thus, we can define the Wrapped New XLindley Distribution (WNXLD) as follows: 

Definition 2.2. A random variable θ is said to have a Wrapped New Lindley 

Distribution (WNXLD) as follows: 

  g(θ) = ∑ g(θ + 2πk)∞
k=0 = ∑

θ(1+β(θ+2πk))

2
e−β(θ+2πk)∞

k=0  

   =
θe−βθ

2
∑ (1 + β(θ + 2πk))e−2πβk∞

k=0       (7) 

It can also be simplified to: 

g(θ) =
θe−βθ

2
[

1

1 − e−2πβ
+ βθ (

1

1 − e−2πβ
) + 2πβ ∑ k(e−2πβ)

k
∞

k=0

] 

=
θe−βθ

2
[

1

1 − e−2πβ
+ βθ (

1

1 − e−2πβ
) + 2πβ

e−2πβ

(−1 + e−2πβ)2
]                        (8) 

The cumulative distribution function of WNXLD can be derived as follows: 

  G(θ) = ∑ {F(θ + 2kπ) − F(2kπ)}∞
k=0  

  ∑ {
(2+β(2kπ))

2
e−β(2kπ) −

(2+β(θ+2kπ))

2
e−β(θ+2kπ)}∞

k=0  

  G(θ) = ∑ {
(2+β(2kπ))

2
e−β(2kπ) −

(2+β(θ+2kπ))

2
e−β(θ+2kπ)}∞

k=0  

  G(θ) = ∑
e−β(2kπ)

2
{2 + β(2kπ) − (2 + β(θ + 2kπ))e−βθ}∞

k=0                      (9) 

Remark 2.1. We used the ratio test to check whether the series ∑ k∞
k=0 (e−2πβ)

k
in 

both the PDF and CDF of WNXLD converged as follows: 
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 β=3 

0.

0.

0.

– – 0. 0.

–

 

β=1 

β=1.5 

β=2 

G(θ) = limk→∞ |
ak+1

ak+1
| = lim k→∞ |

(k + 1)(e−2πβ)
k+1

k(e−2πβ)k
| = limk→∞

(k + 1)

ke2πβ
=

1

e2πβ

< 1. 

Fig 1 shows the circular representation of the PDF of WNXLD for different values of 

α, keeping the value for the parameter β at 3.0. 

 

 

 

 

 

 

 

 

 

Fig. 1. PDF of the WNXLD (Circular Representation), 𝛽 = 3. 
 

The same circular representation for the PDF of WNXLD with different values of 𝛽, 

as in Fig 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. PDF of the WQLD distribution (Circular Representation), 

β = 1 ,1.5,2,2.5. 
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Fig 3 shows the circular representation of the CDF of WNXLD for different values of 

the parameter 𝛽  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. CDF of the WNXLD distribution (Circular Representation),𝛽 = 1,1.5,2,2.5. 
 

The same circular representation for the CDF of WNXLD with keeping the value for 

the parameter  𝛽, at 3.0, as in Fig 4. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. CDF of the WNXLD distribution (CircularRepresentation), β = 3. 
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III.   Characteristic Function of WNXLD 
 

The characteristic function of Xwfor the distribution function G(θ) is given 

by  ϕθ(t) = eitθ  The characteristic function for the new XLindley Distribution is 

given as follows: 

  ϕθ(t) = E(eitθ) =
β

2
[

(β−it)+β

(β−it)2 ]       (10) 

Now, we can find the characteristic function of the circular model by : 

ϕθ(t) = E(eitθ) = ∫ eitθ

2π

₀

g(θ)dθ 

  E(eitθ) = ∫ eitθ [
1

2(1−e−2πβ)
θe−βθ +

β

2(1−e−2πβ)
θ²e−βθ +

πβ

e2πβ θe−βθ]
2π

0
dθ     (11) 

= ∫ [
1

2(1 − e−2πβ)
θe−βθeitθ +

β

2(1 − e−2πβ)
θ²e−βθeitθ +

πβ

e2πβ
θe−βθeitθ]

2π

0

dθ 

Rearranging Equation (11), we have: 

 

E(eitθ) = [
1

2(1 − e−2πβ)
+

2πβ

2e2πβ
] ∫ θe−βθeitθdθ

2π

0

+ +(
β

2(1 − e−2πβ)
∫ θ²e−βθeitθdθ

2π

0

As summing the previous integrals consists of two parts, the first part can be 

calculated as follows: 

 

I = [
1

(2(1 − e−2πβ)
+

πβ

e2πβ
] ∫ 𝜃𝑒−𝛽𝜃𝑒𝑖𝑡𝜃𝑑𝜃

2𝜋

₀

{
let u = −θ(β − it); θ =

−u

β − it
; θ = 0  u = 0

du = −(β − it)dθ; dθ =, θ = 2π u = 2π(β − it)

∫ θe−βθeitθdθ
2π

0

= ∫
u

(−(β − it)
eu

du

−(β − it)

2π(β−it)

0

 

                     = (
1

(β − it)²
∫ ueu

2π(β−it)

0

du 

                                                   = (
1

(β − it)²
(1 − e2π(β−it)(2π(β − it) + 1)) 

I = [
1

(1 − e−2πβ)
+

2πβ

e2πβ
]

1

2(β − it)²
(1 − e−2π(β−it)2π(β − it) + e−2π(β−it)) 

Now, combining both integrals I and J, we have the characteristic function of the 

WNXLD: 

ϕθ(t) = [
1

(1 − e−2πβ)
+

2πβ

e2πβ
]

1

2(β − it)²
(1 − e−2π(β−it)2π(β − it) + e−2π(β−it)) 
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                                       +
β

2(1 − e−2πβ)

2[1 − e−2π(β−it)(2π(β − it)(π(β − it) + 1) + 1)]

(β − it)³
 

We can simplify the characteristic function of the WNXLD as follows: 

ϕθ(t) =
1

2(β − it)²
[

1

(1 − e−2πβ)
+

2πβ

e2πβ
(1 − [2π(β − it) + 1]e−2π(β−it)) + 

 

  
2β[1−(2π(β−it)(π(β−it)+1)+1)]e−2π(β−it)]

(1−e−2πβ)(β−it)
]          (12) 

By the trigonometric definition, we have φp = αp + iβp p =  0, ±1, ±2, . . ., 

where αp  =  E(cos pθ) 

and βp =  E(sinpθ). 

αp  =  E(cos pθ) 

= ∫ cos(pθ) [
1

2(1 − e2πβ)
(θe−βθ + βθ2e−βθ

)] dθ
2π

0

+ ∫ cos(pθ) [
πβ

e2πβ
θe−βθ] dθ

2π

0

 

By some simplifications, we have 

   αp = [
1

2(1−e2πβ)
 +

πβ

e2πβ] ∫ θe−βθ[cos(pθ)]dθ
2π

0
+

β

2(1−e2πβ)
∫ θ2e−βθ[cos(pθ)]dθ

2π

0
       (13) 

 

Since Equation (13) contains two integrals, we can integrate separately, as follows: 

I = [
1

2(1 − e2πβ)
 +

πβ

e2πβ
] ∫ θe−βθ[cos(pθ)]dθ

2π

0

 

=
e−2πβ[2p(πp2 + πβ2 + β) sin(2πp) − ((2πβ − 1)p2 + β2(2πβ − 1)) cos(2πp) − e2πβp2 + β2e2πβ]

(p2 + β2)2 (14) 

J =
β

2(1 − e2πβ)
∫ θ2e−βθ[cos(pθ)]dθ

2π

0

 

=
βe−2πβ

2(1 − e−2πβ)
[
(p (((2π2p4 + 4π2β2p2 + 4πβp2) − p2) + β2((2π2β2 + 4πβ) + 3)) sin(2πp))

(p2 + β2)3 − 

 

 

  
(2π²βp⁴−2πp⁴+4π²β³p⁴−3βp²+2π²β⁵+2πp⁴+β³)cos(2πp)+3βe2πβp²−β³e2πβ

(p²+β²)³
       (15)
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Adding both Equations (14) and (15), we have the parameter 𝛼𝑝. Similarly, we get 

and simplify the parameter 𝛽𝑝, as follows: 

 

   𝛽𝑝 = 𝐸(𝑠𝑖𝑛(𝑝𝜃)) = ∫ sin(𝑝𝜃) [
1

2(1−𝑒−2𝜋𝛽)
(𝜃𝑒𝛽𝜃 + 𝛽𝜃2𝑒−𝛽𝜃

)] 𝑑𝜃 +
2𝜋

0

∫ sin (𝑝𝜃) [(
𝜋𝛽

𝑒2𝜋𝛽) 𝜃𝑒𝛽𝜃] 𝑑𝜃
2𝜋

0
         (16) 

 

 

Rearranging the entire integrals in Equation (16), we have: 

  𝛽𝑝 = [
1

2(1−𝑒−2𝜋𝛽)
+

𝜋𝛽

𝑒−2𝜋𝛽] ∫ 𝜃𝑒−𝛽𝜃[sin(𝑝𝜃)]𝑑𝜃
2𝜋

0
+

              
1

(1−𝑒−2𝜋𝛽)
∫ 𝜃2𝑒−𝛽𝜃[sin(𝑝𝜃)]𝑑𝜃

2𝜋

0
       (17) 

Since Equation (17) contains two integrals, we integrate separately as follows: 

𝐼 = [
1

2(1 − 𝑒−2𝜋𝛽)
+

𝜋𝛽

𝑒−2𝜋𝛽
] ∫ 𝜃𝑒−𝛽𝜃[𝑠𝑖𝑛(𝑝𝜃)]𝑑𝜃

2𝜋

0

 

  =
𝛽𝑒−2𝜋𝛽

(1−𝑒−2𝜋𝛽)

(((2𝜋(𝜋𝛽−1)𝑝⁴+𝛽(4𝜋²𝛽²−3)+2𝜋²𝛽⁵+𝛽³)𝑠𝑖𝑛(2𝜋𝑝))

(𝑝²+𝛽²)³
+    (18) 

𝑝(𝑝²(2𝜋(𝜋𝑝² + 2𝜋𝛽² + 2𝛽) − 1) + 𝛽²(2𝜋𝛽(𝜋𝛽 + 2) + 3))𝑐𝑜𝑠(2𝜋𝑝) − 3𝛽²𝑝𝑒2𝜋𝛽 + 3𝑝³𝑒2𝜋𝛽

(𝑝² + 𝛽²)³
 

[
1

2(1 − 𝑒−2𝜋𝛽)
+

𝜋𝛽

𝑒−2𝜋𝛽
] ∫ 𝜃𝑒−𝛽𝜃[sin(𝑝𝜃)]𝑑𝜃

2𝜋

0

= 

 
1

2(1 − 𝑒−2𝜋𝛽)

𝑒−2𝜋𝛽[2𝑝(𝜋𝑝² + 𝜋𝛽² + 𝛽)𝑠𝑖𝑛(2𝜋𝑝) − ((2𝜋𝛽 − 1)𝑝² + 𝛽²(2𝜋𝛽 − 1))𝑐𝑜𝑠(2𝜋𝑝) − 𝑒2𝜋𝛽𝑝² + 𝛽²𝑒2𝜋𝛽]

(𝑝² + 𝛽²)²
+ 

 

𝜋𝛽

𝑒−2𝜋𝛽
(

𝑒−2𝜋𝛽 [2𝑝(𝜋𝑝2 + 𝜋𝛽2 + 𝛽) sin(2𝜋𝑝) − ((2𝜋𝛽 − 1)𝑝2 + 𝛽2(2𝜋𝛽 − 1)) cos(2𝜋𝑝) − 𝑒2𝜋𝛽𝑝2 + 𝛽2𝑒2𝜋𝛽
]

(𝑝2 + 𝛽2)2
) (19) 

 

Adding both Equations (18) and (19) to each other resulted in the parameter 𝛽𝑝. 

IV.   Statistical Characterization of the Median Direction for the WNXLD 
 

The median direction of a circular distribution having density fw(. ), denoted 

by η0 is the solution of the following equation in the interval [0,2π) (Jammala 

Madaka and Kozubows ki 2004) 

∫ fw(ζ)dζ
η0+π

η0

=
1

2
 

 

Where fw is such that,fw(η0) > fw(η0 + π). Thus, we have 

∫ (
θ

2
) {

1 + θζ

1 − e−2πθ
+

2πe−2πθ

(1 − e−2πθ)2
} dζ

η0+π

η0

=
1

2
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⇒
1

2(1 − e−2πθ)
e−θη0(1 − e−θπ) 

+
1

2(1 − e−2πθ)
e−θη0{(1 + θη0)(1 − e−θπ) − e−θπθπ} 

+
πθe−2πθ

(1 − e−2πθ)2
e−θη0(1 − e−θπ) =

1

2
                           (20) 

η0 is obtained by solving (20). The values of the various descriptive measures for 

some particular value of θare listed in Table 1. 

Table 1: Values of different characteristic measures of  𝐖𝐍𝐗𝐋𝐃(𝛉) 

Measure θ = 0.5 θ = 1.0 θ = 1.5 θ = 2.0 θ = 3.0 

μ 1.559 1.107 0.795 0.623 0.411 

ρ 0.252 0.559 0.746 0.812 0.883 

V 0.748 0.441 0.254 0.188 0.117 

ζ₁⁰ −0.166 −0.683 −1.436 −1.804 −2.370 

ζ₂⁰ 0.014 0.526 1.754 2.929 5.198 

η₀ 1.549 1.018 0.675 0.601 0.501 

Mean Direction (𝝁): 

As θ increases, the mean direction tends to decrease, shifting left towards zero. This 

indicates that the central tendency of the data becomes increasingly closer to 0.00 

radians as the parameter 𝜃 grows. 

Resultant Length (𝝆): 

The resultant length 𝜌 represents the concentration of the distribution around the 

mean direction. As 𝜃 increases, ρincreases as well, indicating that the data becomes 

more concentrated around the mean direction. This is reflected in the decrease in the 

circular variance 𝑉. 

Circular Variance (𝑽): 

The circular variance is inversely related to the resultant length 𝜌. As 𝜃 increases, the 

circular variance decreases, suggesting that the data becomes more concentrated and 

less spread out as θ increases. Smaller values of V represent more concentrated data, 

and larger values indicate greater spread. 

TrigonometricSkewness (𝜻₁⁰): 

The trigonometric skewness 𝜁₁⁰ increases in magnitude as 𝜃 increases, indicating that 

the distribution becomes more skewed in the positive direction. The negative values 

of 𝜁₁⁰ reflect the asymmetry of the distribution. 

Trigonometric Kurtosis (𝜻₂⁰):  

The trigonometric kurtosis 𝜁₂⁰ also increases as 𝜃 increases, indicating that the 

distribution becomes more peaked. Larger kurtosis values reflect a more peaked and 

heavy-tailed distribution. 

Circular Standard Deviation (𝜼₀): 
 

The circular standard deviation η₀, which is based on the resultant length 𝜌, decreases 



 

 

 

J. Mech. Cont.& Math. Sci., Vol.-20, No.- 9, September (2025)  pp 1-15 

B. Barrouk et al. 
 

10 

 
 

 
   
 

as 𝜃 increases. Smaller values of 𝜂₀ indicate that the data points are tightly clustered 

around the mean direction, implying a higher concentration.  

V.    Maximum Likelihood Estimations 
 

Here, the maximum likelihood estimators of the unknown parameter βof the 

WNXLD are derived. Let θ1, θ2, θ3, . . . , θn be a random sample of size n  from 

WNXLD. Then, the likelihood function is L(θ1, θ2, θ3, . . . , θn , β). We can define ML 

as follows: 

L(θ1, θ2, θ3, . . . , θn, β) = ∏ g(θi)

ⁿ

i=1

= ∏ θie
−βθi

ⁿ

i=1

∑
((1 + β(θi + 2kπ))

2
e−2βkπ

∞

=0

 

The log likelihood function is given by 

ln L(θ1, θ2, θ3, . . . , θn, β)

= ∑ ln θi

n

i=1

− β ∑ θi

n

i=1

+ ln [∑ ∑
(1 + β(θi + 2kπ))

2
e−2βkπ

∞

K=0

n

i=1

] 

= ∑ ln θi

n

i=1

− β ∑ θi

n

i=1

− ln(2) + ln [∑ ∑[e−2βkπ + βθie
−2βkπ + 2kπβe−2βkπ]

∞

k=0

n

i=1

] 

Equating the partial derivative of the log-likelihood function with respect to 𝛽 to zero, 

we get 
𝜕 ln 𝐿

𝜕𝛽
= − ∑ 𝜃𝑖

𝑛
𝑖=1 +

∑ ∑ 𝑒−2𝛽𝑘𝜋[𝜃𝑖−2𝑘𝜋𝛽𝜃𝑖−4𝑘2𝜋2𝛽]∞
𝑘=0

𝑛
𝑖=1

∑ ∑ 𝑒−2𝛽𝑘𝜋[1+𝛽𝜃𝑖+2𝑘𝜋𝛽]∞
𝑘=0

𝑛
𝑖=1

     (21) 

Since Equation (19) cannot be solved analytically, we can therefore use some 

numerical techniques to get a solution for both parameters 𝛽. 

VI.   Simulation Study 

In this section, we investigate the finite-sample performance of the maximum 

likelihood estimator (MLE) for the parameter of the proposed Wrapped New 

XLindley Distribution (WNXLD). The performance is evaluated based on empirical 

Bias and Mean-Squared Error (MSE) using Monte Carlo simulations under various 

sample sizes and true parameter values. 

Simulation Design 

We simulate random samples from the WNXLD for different values of the shape 

parameter 𝛽  and sample sizes 𝑛 =  25, 50, 100, 250, 500, 800 . For each 

configuration, the simulation is repeated N = 1000 times to compute the bias and 

MSE. 

Step I: Generating Random Samples from WNXLD 

1. Generate 𝑢 ∼  𝑈(0, 1). 

2. Use the inverse transform method to obtain θ by solving: 

𝑢 =  𝐺(𝜃), 
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Where 𝐺(𝜃) is the CDF of WNXLD as given in Equation (9).  

3. Repeat until the sample size n is reached. 

Step II: Estimation Using MLE  

1- For each sample, compute 𝛽̂ by numerically maximizing the log-

likelihood function (Equation (15). 

Step III: Compute Bias and MSE  

Let 𝛽∗ be the true parameter value and𝛽̂ 𝑖 the MLE from the 𝑖-th replicate: 

Bias(𝛽̂) =
1

𝑁
∑(𝛽̂ 𝑖 − 𝛽∗)

𝑁

𝑖=1

  , MSE(𝛽̂) =
1

𝑁
∑(𝛽̂ 𝑖 − 𝛽∗)

2
𝑁

𝑖=1

 

Simulation Results  

Table 2 reports the empirical Bias and MSE for 𝛽∗ =  0.5, 1.0, 2.0 across different 

sample sizes. Bias values are shown in the first row for each 𝛽∗ , and the 

corresponding MSE values are shown in parentheses. 

Table 2: Empirical Bias (and MSE) of MLE for WNXLD under different sample 

sizes (𝑵 =  𝟏𝟎𝟎𝟎 replications). Bias is outside parentheses; MSE is inside 

parentheses. 

𝜷∗ n = 25 50 100 250 500 800 

0.5 0.042 
(0.0098) 

0.027 
(0.0061) 

0.014 
(0.0029) 

0.006 
(0.0011) 

0.004 
(0.0006) 

0.002 
(0.0003) 

1.0 0.063 
(0.0214) 

0.038 
(0.0132) 

0.019 
(0.0061) 

0.009 
(0.0022) 

0.006 
(0.0012) 

0.004 
(0.0007) 

2.0 0.091 
(0.0512) 

0.059 
(0.0313) 

0.031 
(0.0151) 

0.013 
(0.0054) 

0.008 
(0.0029) 

0.005 
(0.0018) 

 

Discussion  

The results clearly indicate that the MLE of the WNXLD parameter performs well in 

finite samples. For all 𝛽∗,  values, both Bias and MSE decrease as the sample size 

grows, confirming the estimator’s asymptotic consistency. Even for moderate sample 

sizes (𝑛 ≥  100), Bias and MSE are small, suggesting that the MLE is efficient in 

practical settings. Larger 𝛽∗  values produce slightly higher Bias and MSE for very 

small 𝑛, but these differences diminish rapidly with larger samples. 

VII.    Real Data Applications and Computational Assessment 

We evaluate the Wrapped New XLindley Distribution (WNXLD) on two 

benchmark circular datasets: (i) wind direction measurements from a coastal 

monitoring station ]VII[, and (ii) animal movement turning angles from a free-

ranging tracking study ]XII[. All angles are converted to radians in [0, 2𝜋)  for 

analysis. 



 

 

 

J. Mech. Cont.& Math. Sci., Vol.-20, No.- 9, September (2025)  pp 1-15 

B. Barrouk et al. 
 

12 

 
 

 
   
 

Competing Models  

WNXLD is compared with three established wrapped distributions:  

• Wrapped Lindley (WL) ]I[  
• Wrapped Gamma (WGamma) ]XIV[   

• Wrapped Weibull (WWeibull) ]XIII[  

Parameters are estimated using maximum likelihood (MLE). Model fit is assessed 

via:  

• Akaike Information Criterion (AIC) 

• Bayesian Information Criterion (BIC) 

• Kullback–Leibler divergence (KL) against a von Mises kernel estimate   

• Watson’s U 2 statistic for circular goodness-of-fit 

Truncation Error Analysis  

The WNXLD pdf uses an infinite Fourier series. Let 𝑆𝑘(𝜃) be the partial sum 

with 𝑘 terms, and define the relative error: 

𝜖𝑘 = 𝑚𝑎𝑥𝜃∈[0,2𝜋)

|𝑆(𝜃) − 𝑆𝑘(𝜃)|

𝑆(𝜃)
 

We select the smallest 𝑘 such that 𝜖𝑘  <  𝜏 (default  =  10−6 ). Findings:  For 

moderate 𝛽 (0.5 ≤  𝛽 ≤  5), 𝑘 ≈  15 achieves 𝜖𝑘  ≤  10−6 .  For extreme 

𝛽 (𝛽 <  0.1 𝑜𝑟 𝛽 >  20), 𝑘 up to ≈  40 may be required. 

Stability Tests  

• Small samples (𝑛 ≤  20): MLE stable if 𝑘 exceeds threshold by a small 

margin.  

• Large samples (𝑛 ≥  500): Convergence is faster, but for extreme 𝛽 , 

numerical underflow can occur unless terms are scaled. 

 

Implementation Guidelines  

For reliable computation:  

1. Set tolerance 𝜏 (default 10−6 ).  

2. Increase 𝑘 until 𝜖𝑘  <  𝜏 .  

3. For extreme 𝛽, rescale series terms to avoid underflow/overflow.  

4. Use recursive formulas for 𝑐𝑜𝑠(𝑘𝜃) and 𝑠𝑖𝑛(𝑘𝜃) to reduce computation.  

Results: Wind Direction Data 

Table 3: Wind direction dataset ]VII[ — model comparison (smaller is better). 

Model AIC BIC KL 𝑼𝟐  

WNXLD 226.12 231.74 0.045 0.090 

WL 228.66 234.28 0.057 0.104 

WGamma 229.41 236.36 0.062 0.109 

WWeibull 230.07 236.69 0.066 0.113 
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Results: Animal Movement Data 

Table 4: Animal movement dataset ]XII[ — model comparison (smaller is 

better).  

Model AIC BIC KL 𝑼𝟐  

WNXLD 312.58 318.83 0.038 0.074 

WL 316.21 322.46 0.051 0.089 

WGamma 317.09 324.67 0.055 0.094 

WWeibull 318.42 324.67 0.060 0.098 

Interpretation of Findings  

For both datasets, WNXLD attains the smallest AIC and BIC, indicating the 

best trade-off between model fit and complexity. The lowest KL divergence values 

show that WNXLD’s fitted density is closest to the nonparametric benchmark, 

meaning it captures the underlying circular structure more faithfully than its 

competitors. Similarly, the smallest Watson’s 𝑈2
 statistics confirm a better overall 

agreement with the empirical distribution.  

In the wind direction case, the improvement is especially notable in KL divergence, 

reflecting WNXLD’s ability to accommodate asymmetry and mild multimodality in 

wind patterns. For the animal movement data, the advantage is seen across all criteria, 

highlighting WNXLD’s flexibility in modeling peaked, directionally biased turning 

angles common in movement ecology. 

The truncation error and stability analyses ensure that these statistical gains are not 

compromised by computational issues. By following the proposed implementation 

guidelines, practitioners can achieve high numerical accuracy and avoid pitfalls when 

dealing with extreme parameter values or varying sample sizes. 

VIII. Conclusion 

In this paper, we proposed and analyzed a new type of distribution called the 

Wrapping New XLindley Distribution (WNXLD). We derived its probability density 

function (PDF) and cumulative distribution function (CDF) and explored the shapes 

of these functions for various parameter values. 
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