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Abstract 

In this study, researchers propose an innovative numerical approach to solve 

non-linear equations for real as well as complex roots. The approach, initiated with an 

initial guess in the complex plane, iteratively converges towards solutions. A notable 

feature is its ability to accurately identify complex roots even when initialized with a 

real number. The method demonstrates second-order convergence, with its efficacy 

evaluated through quantifying the number of iterations needed for convergence. Using 

Python 3.10.9, experiments were conducted to evaluate its effectiveness across various 

numerical problems. Results were presented in tabular format, supplemented by 

graphical representations. Furthermore, the study examines the method's 

computational efficiency by analyzing CPU time and introducing an efficiency index. 

Keywords: High-order transcendental equations, Nonlinear, Complex root-finding 

algorithms, Convergence, Innovation. 

 

I.     Introduction 

In both science and engineering, addressing complex challenges often 

involves solving nonlinear equations related to scalar functions [I - XXVIII]. Iterative 

techniques, such as those introduced by Newton-Raphson, Halley, and Cauchy, have 

become the preferred methods due to their reliability and efficiency. Over time, the 

development of numerical algorithms based on these iterative methods has gained 

significant traction in modern research. However, many of these algorithms demand 

considerable computational resources. To address this, numerous researchers have 

proposed enhancements aimed at improving computational efficiency. 

Ostrowski [XVII] proposed two important methods of solving nonlinear equations 

based on the computation of two functions and one derivative at each iteration that 

converge to third- and fourth-order. Traub [XXVIII] further advanced the field by 

introducing an approach that requires evaluating the function alongside two first-order 

derivatives at each iteration, resulting in third-order convergence. Building on these 

advancements, Sharma and Guha [XXII] have postulated a six-order convergence 
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three-step method for solving nonlinear equations, represented as g(x) = 0, using a 

single parameter denoted as ‘a’. 

  𝑝𝑛+1  =  𝑝𝑛 −
ℎ(𝑝𝑛)

ℎ′(𝑝𝑛)
               (1) 

  𝑡𝑛+1 =  𝑤𝑛 −
𝑔(𝑤𝑛)

𝑔′(𝑡𝑛)

𝑔(𝑡𝑛)

𝑔(𝑡𝑛)−2𝑔(𝑤𝑛)
             (2) 

  𝑡𝑛+1 = ̃ 𝑡𝑛+1 −
𝑔(𝑡𝑛+1)

𝑔′(𝑡𝑛)

𝑔(𝑡𝑛)+𝑎𝑔(𝑤𝑛) 

𝑔(𝑡𝑛)+(𝑎−2)𝑔(𝑤𝑛)
             (3) 

Moreover, Melman [XIV] utilized the Newton method involving two steps to find the 

greatest or smallest root of a polynomial possessing entirely absolute roots. 

Maheshwari [XI] also utilized a 4thorder technique to determine solutions for linear and 

non-linear equations. This approach requires fewer iterations and functional 

evaluations, leading to lower absolute error values. 

  𝑤𝑛 =  𝑡𝑛 −
ℎ(𝑡𝑛)

ℎ′(𝑡𝑛)
                (4) 

  𝑡𝑛+1 =  𝑡𝑛 +
1

ℎ′(𝑡𝑛)
[

{ℎ(𝑡𝑛)}2

ℎ(𝑤𝑛)−ℎ(𝑡𝑛)
−

{ℎ(𝑤𝑛)}2

ℎ(𝑡𝑛)
]              (5) 

Popovski [IX] explored a three-step method that calculates three function values along 

with one derivative value per iteration, achieving a 7th-order convergence. Moreover, 

Singh and Gupta [XXVII] proposed a 4th-order technique designed to obtain a single 

root of nonlinear equations. Sharma and Bahl [XXV] proposed a 6th-order iterative 

technique aimed at identifying real roots of non-linear equations, starting with an initial 

approximation. The effectiveness of their technique was measured by the number of 

iterations and the evaluated functions. 

Roman [XX] developed a new series of methods inspired by Newton-Chebyshev [to 

solve non-linear equations. Their research focused on quadratic polynomials to 

investigate fixed and critical points. The above study included an analysis of stable 

versus unstable behaviors and considerations of the parameterized space. Additionally, 

the Hansen-Patrick [VII] explored a method distinguished by three orders of 

convergence, as described by... 

  𝑡𝑛+1 =  𝑡𝑛 − [
𝛼+ 1

𝛼±(1−(𝛼+1)𝐻
1
2

]
ℎ(𝑢𝑛)

ℎ′(𝑢𝑛)
             (6) 

 

where H= 
ℎ′′(𝑥𝑛)ℎ(𝑥𝑛)

[ℎ′(𝑥𝑛)]2 , 𝛼∈ R is a famous technique. The family includes different 

techniques like Euler's method, Laguerre's method, Newton-Raphson method, and 

Halley's method. In the above methods, except Newton's method, show three orders of 

convergence, and Newton's method has 3rd order of convergence. But even though it 

has better convergence, the application of Newton's method is less because of the heavy 

cost of computation, requiring estimation based on 2nd-order derivatives. Based on the 

Hansen-Patrick method, Sharma et al. [XXIII] developed an improved double-

parameter scheme which shows a convergence order of three, except with one 

technique which has a 4th-order convergence. Additionally, Abbasbandy [I] employed 

a decomposed Adomian modified method to develop an algorithm to find a solution to 
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a system of two non-linear variable equations motivated by Newton's method. Later, 

Parhi and Gupta [XVIII] created a technique that eliminates the use of 2nd-order 

derivatives and is used to determine real roots for a non-linear equation. The technique 

involves computation based on two functions and two 1st-order derivatives per 

iteration, with six orders of convergence and an efficiency index of 1.565. Importantly, 

it requires fewer iteration steps than Newton's method. Moreover, Noor and Waseem 

[XVI] used quadrature formulas to study two new 2-step iterative techniques to solve 

a sequence of non-linear equations, both of which demonstrate cubic order of 

convergence. The efficiency index of the technique is 31/(n+4n2) for n ≥ 2. Besides the 

above methods, Sharma and Sharma [XXIV] derived a method to determine the roots 

of non-linear equations with various collections. The technique requires analysis of 

three functions and has a 4th-order convergence order. 

  𝑤𝑛  =  𝑡𝑛 −
2𝑚

𝑚+2

𝑓(𝑡𝑛)

𝑓′(𝑡𝑛)
               (7) 

  𝑡𝑛+1 =  𝑤𝑛 −
1

2
𝑚(𝑚−2)(

𝑚

𝑚+2
)−𝑚𝑓′(𝑤𝑛)−

𝑚2

2
𝑓′(𝑤𝑛)

𝑓′(𝑡𝑛) −(
𝑚

𝑚+2
)−𝑚𝑓′(𝑤𝑛)

𝑓(𝑡𝑛)

𝑓′(𝑡𝑛)
           (8) 

where m - diversity of roots. 

Mitlif [XV] suggested a method of 3 steps to determine the roots of a non-linear 

equation. The order of convergence of the method is 5. 

  𝑤𝑛  =  𝑡𝑛 −
ℎ(𝑡𝑛)

ℎ′(𝑡𝑛)
               (9) 

  𝑢𝑛  =  𝑤𝑛 −
2ℎ(𝑤𝑛)ℎ′(𝑤𝑛)

2ℎ′2(𝑤𝑛) −ℎ(𝑤𝑛)ℎ′′(𝑤𝑛)
           (10) 

 

  𝑡𝑛+1  =  𝑤𝑛 −
2[ℎ(𝑤𝑛) +ℎ(𝑢𝑛)] ℎ′(𝑤𝑛)

2ℎ′2(𝑤𝑛) − [ℎ(𝑤𝑛) +ℎ(𝑢𝑛)] ℎ′′(𝑤𝑛)
                                             (11) 

 

Fang et al. [V] formulated an algorithm using a modified quasi-Newton method to solve 

nonlinear equations. Sharma and Kumar [XVIII] introduced a technique achieving 8th-

order convergence with 4 evaluations per iteration. Malhotra et al. [XIX] examined the 

fatigue failure. Gong et al. [XX] showed a survey utilizing Intelligent Optimization 

Algorithms to identify multiple roots of a nonlinear equation. Al-Obaidi and Darvishi 

[I] designed a new multi-step frozen Jacobian repetitive method, 

with a 3rd-order convergence and high efficiency. Bayrak et al. [IV] 

used the fractional derivative and the fractional expansion of the Taylor series to design 

a modified Newton-Raphson method, obtaining the 1st and 2nd-order fractional 

Newton-Raphson methods. 

In addition, Ahmad and Singh [II] developed a 4-step repetitive technique 

amalgamating Newton, Householder, Halley, and Steffensen techniques, achieving a 

convergence order of 36. Jin et al. [XXIV] used the uncertain barrier swaption model 

by incorporating a fractional differential operator. Cao et al. [XXV] outlined an 

algorithm to forecast water quality using the dendritic neuron model. Malhotra et al. 

[XII, XIII] delved into a reliability-based model using Markovian processes. 

Additionally, Kumar et al. [XXVII] employed techniques based on machine learning 
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for learner-centric training, with methods exhibiting 5thand 7th-order convergence. In 

addition, Singh & Sharma [XXVIII] described two multi-step iterative methods 

requiring two Jacobian matrices only and a single matrix inversion per iteration. 

Sharma et al. [XXI] presented a 4th-order iterative method for the solution of nonlinear 

equations in science and engineering. It provides better convergence, even when 

derivatives tend to root, widening its scope to treat the critical points. Gorashiya and 

Shah [XXX] gave a new iteration-based algorithm to find algebraic as well as 

transcendental equations, based on a fixed point and initial guess values on the x-axis, 

by employing the slope of a line and employing the Taylor series to compute the 

derivation. With 2nd-order convergence and computations of two functions per step, it 

sets the computational efficiency index equal to 1.414 and informational efficiency 

equal to 1, proven by example solutions and comparisons with Newton's method. 

Siwach and Malhotra [XXVI] emphasized the widespread use of iterative methods like 

Newton-Raphson, Halley’s, and Cauchy’s for solving nonlinear scalar equations in 

scientific and engineering domains. They highlighted the challenges posed by the high 

computational costs of these traditional approaches. Their study underscores the 

ongoing pursuit of more efficient and accurate numerical methods to improve 

convergence and reduce computational burden in nonlinear problem-solving. 

Finding solutions to nonlinear equations is far-reaching in science and engineering. 

Newton-Raphson and Halley are iterative methods that may be quite costly to carry out 

because of the evaluation of the derivatives. In a bid to enhance efficiency [VIII, IX, 

X], there are a variety of methods developed of higher order. The strengths of existing 

methods usually fail at complex roots, and some get weak with close branch points or 

non-analytic singularities. This technique overcomes these difficulties by giving a 

derivative-free update to the higher-order derivatives and keeping the form of the first 

derivative used as in the Newton method. The paper introduces a better version of an 

iterative technique in solving nonlinear equations with an eye on both computational 

efficiency and the capability of finding complex roots, and the starting point is real or 

complex.  

The authors present an iterative technique for solving nonlinear equations 
without the need for second or higher-order derivatives, minimizing computational costs. 
The technique seeks complete solutions, allowing one to spot complex 

roots. Advantages include efficient problem-solving, fewer iterations needed, cost-

effectiveness by avoiding higher-order derivatives, and the capability to use complex 

or real initial guesses for identifying all roots. Validation across numerical problems 

demonstrates its effectiveness.  

II.    Development of Method 

Let a nonlinear equation h(y) = 0.  

where h(y)is a differential function in an interval D, which is a subset of R ⊂ C. 

Consider a parabolic equation with a shifted origin. 

  h(y) = c0 + c1 y2                (12) 

Let yn represent the nth approximation obtained from Equation (12). By substituting yn 

into Equation (12), we establish a relationship for our approximation. Upon 
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differentiation with respect to y, which we further evaluated at y = yn. Considering yn+1 

as an exact root of Equation (12). This delineates the iterative process and the 

relationship between successive approximations and exact roots. At last, all the 

equations were solved to find the values of c0 and c1. 

 c0 = 
2 ℎ(𝑦𝑛)−𝑦𝑛ℎ′(𝑦𝑛)

2
             (13) 

   c1 = 
ℎ′(𝑦𝑛)

2 𝑦𝑛
                (14) 

Substituting these values 

  yn+1 = √𝑦𝑛 (𝑦𝑛 −
2 ℎ(𝑦𝑛)

ℎ′(𝑦𝑛)
)                                                                             (15) 

Equation (15) represents our proposed method. 

In addition, the authors applied the method for analytic functions also, if h(y) is an 

analytic function in C., the formula reduces to  

                  yn+1 = 𝑦𝑛 −
ℎ(𝑦𝑛)

2(𝑦𝑛)
                                                                               (16)         

This function requires only 1 iteration and 1 derivative computation per iteration. 

The Newton-Raphson algorithm updates with a step size whose choice depends directly 

on the derivative of the function at the current point. The suggested procedure involves 

the denominator, and this has a damping term that is proportional to the current iterate 

instead of the derivative.  

Damping and Stability: The above approach has an implicit damping of the iterative 

step, as it is possible that it could increase at a higher rate than compared to regions of 

steep gradient, giving smaller update steps. This dampening is useful when Newton-

Raphson risked overshoots, particularly with initial estimates very far away from the 

root. Truncation Error: The Newton-Raphson approach estimates the function as linear 

in all steps, and this, therefore, can create more truncation errors with functions that are 

more nonlinear. In some cases, the proposed approach may address curvature issues 

better via a parabolic approximation, leading to a smaller local truncation error.  

III.     Convergence Analysis 

The order of convergence of an iterative method is a measure of how fast 

an iterative method converges to the root. The order of convergence of an iterative 

method is defined by the largest positive real number p for which certain conditions 

hold. These conditions typically relate to the rate at which the error diminishes as the 

iteration advances. 

  |𝑒𝑛+1|  ≤ 𝐾 |𝑒𝑛|𝑝                                                                                                      (17) 

for some constant K ≠ 0, where 𝑒𝑛 =  𝑤𝑛 −  𝛼 and 𝑒𝑛+1 =  𝑤𝑛+1 −  𝛼 are the errors 

in the nth and (n+1) th approximation, respectively. K is referred to as the asymptotic 

error constant. 
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Theorem Let d belong to D, be a simple root of a function f: D → R which is 

sufficiently differentiable in an open interval D. The 2nd-order method is defined by 

equation (18).  

Proof: Assume d is simple root of h(y)=0 and after replacing yn = bn+d in equation 

(18), we obtain 

  𝑏𝑛+1 + 𝑑 = √(𝑏𝑛 + 𝑑) {(𝑏𝑛 + 𝑑) −
2 ℎ(𝑏𝑛+𝑑)

ℎ′(𝑏𝑛+ 𝑑)
}                       (19) 

Note: h(d) = 0 as d is a simple root, and expand h (bn + d) and h′ (bn + d) about the 

point ‘d’ using Taylor’s series and replacing the values of h (bn + d) and h′ (bn + d), 

we get 

   bn+1 = 
1

2𝑑
(𝑑

ℎ′′(𝑑)

ℎ′(𝑑)
−  1) 𝑏𝑛

2 + O (𝑏𝑛
3)            (20) 

Omitting the terms of bn having power greater than or equal to 3, we get 

bn+1 = C bn
2, where C = 

1

2𝑎
(𝑎

ℎ′′(𝛼)

ℎ′(𝛼)
− 1)       

Hence, the order of convergence is 2. The 2nd-order convergence of the technique 

implies that it converges faster than linear convergence methods, such as the secant 

method and, bisection method. This characteristic enhances the efficiency and speed of 

the algorithm, making it a valuable tool for solving nonlinear equations with greater 

accuracy. 

The authors expanded the convergence analysis to a function of a complex domain.  

For ℎ: 𝐶 → 𝐶, assuming the analyticity near the root, the proposed method retains 

quadratic convergence as long as ℎ is holomorphic and there are no singularities or 

branch points near the root. Proceeding as above, 

Behavior at Branch Points and Non-Analytic Singularities: Near branch points, or 

non-analytic singularities in the complex plane, the method may become unstable, 

owing to the failure of the assumption of Taylor expansion. On these points, the 

derivative may not lie in the range of real finite numbers or lie in the range of infinite 

numbers; and in that case, the denominator in the iteration expression will tend towards 

zero, and the iteration will be divergent or oscillatory. Practically, the method can still 

find roots in areas not close to singularities; however, it can not be guaranteed that it 

will converge near these critical points, and careful choice of initial guesses or 

modification of the method is usually mandatory. 

IV.     Graphical Illustration 

This section provides a visual representation of the convergence behaviour and 

root trajectories corresponding to the examples discussed above. Each graph plots the 

underlying function curve f(w), highlights the starting point w0with a distinct marker, 

and traces the successive iterates as they march toward the final root α. 
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Fig. 1. Graph of f(w) = w3 + w2 + 3w + 4 with Initial Guess and Complex Root 

Figure 1 represents the function f(w) = w3 + w2 + 3w + 4, where the variable w is along 

the x-axis and f(w) on the y-axis. The function has been plotted over a range of values 

for w. 

One of the roots of the function is located at approximately w=0.11 –1.81i, indicating 

that it is a complex root. The initial guess for finding this root is w=3, which is a real 

value. 
 

Table 1 shows the absolute errors and residuals at each iteration are given in the 

following table: 

Table 1: Absolute errors and Residuals at each iteration 

iteration Absolute error ∣yn−r∣ Residual 

0 3.000 64.0000 

1 2.4870 18.5121 

2 0.6305 2.5430 

3 0.1124 0.2112 

4 0.0142 0.0123 

 

 
Fig. 2. Graph of Log-Scale Error vs Iteration 

Figure 2 shows the graph between logarithmic plot of the absolute error and number of 

iterations is a straight line with a slope nearer to 2 (second order convergence)  
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Fig. 3. Graph of f(w) = w4 – w + 10 with Initial Guess and Complex Root 

 

Figure 3 depicts the function f(w) = w4 – w + 10, with w as the independent variable 

plotted along the x-axis, and the corresponding values of f(w)on the y-axis. The 

function is analyzed over a range of w values. 

A root of the function is situated approximately at w=1.26−1.18i, signifying a complex 

root. The initial estimate used to find this root is w = 1, a real value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Graph of f(w) = 2w – 10 log(w) – 3 with Initial Guess and Complex Root 

 

Figure 4 illustrates the function f(w) = 2w – 10 log(w) – 3, where w varies along the x-

axis and the values of f(w) are shown on the y-axis. It examines the behavior of the 

function across different w values. 

One of the zeros of the function is approximately at w = 4.99 + 8.26 e-23i, indicating a 

complex root. The initial estimation utilized to determine this root is w = 2. 
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Fig. 5. Graph of f(w) = w sin(w) + cos(w)with Initial Guess and Complex Root 

Figure 5 depicts the function, where w varies along the x-axis and the resulting values 

of f(w) are displayed on the y-axis. It examines how the function behaves for different 

w values. 

A root of the function is found approximately at w = 3.73 e-7 + 1.20 i To initiate the 

root-finding procedure, the initial value chosen is w = 1 + 2i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Graph of f(w) = - cos(w) + 2w ew with Initial Guess and Complex Root 

Figure 6 portrays the function f(w) = - cos(w) + 2w ew, where w is depicted along the 

x-axis and the values of f(w) are shown on the y-axis. It explores the behaviour of the 

function across different w values. 

One of the roots of the function is approximately located at w = 0.34 + 1.81 e-18i. To 

commence the root-finding process, the initial guess used is w = 1+ 2i. 

V.     Comparison of Computational Efficiency 

The efficiency index (EI) is generally used to measure the computational 

efficiency of an iterative method. The efficiency index (EI) is given by EI = 𝑝 
1

𝐶,  where 

p represents the order of convergence and c represents the number of function 

evaluations. 
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The convergence order is 2 for the proposed method, and only two functions are 

computed, resulting in an EI of about 2
1

2 ≈ 1.41421.  

For a complete comparison of the computational efficiency of different iterative 

techniques for the solution of non-linear equations, we performed experiments to 

compare the CPU time taken by four different methods: Newton-Raphson, Laguerre's 

method, Halley's method, and our proposed approach. 

We measured CPU times by applying each technique to a selection of non-linear 

equations with different levels of complexity. Our goal was to derive meaningful 

insights into how these methods perform in real-world scenarios. 

Table 2: Performance estimation of Root-Finding Techniques for Various Functions 

 
 

Function 

(f(w)) 

 

Root 

(𝜶) 

 

CPU Time (seconds) 

Newton’s 

Method 

Halley’s 

Method 

Laguerre’s 

Method 

Proposed 

Method 

w3 + w2 + 3w + 4 0.11 – i 1.81 0.0006 0.0050 0.0005 0.00008 

w sin(w) + cos(w) 3.73 e-7 + i 

1.20  

0.0005 0.0044 0.0030 0.0001 

2w – 10 log(w) – 

3  

4.99 + i 8.26 

e-23 

0.00025 0.0017 0.0005 0.00009 

w4 – w + 10 1.26 – i 1.18 0.0004 0.0042 0.0003 0.00007 

- cos(w) + 2w ew 0.34 + i 1.81 

e-18 

0.0005 0.0035 0.0006 0.0003 

 

Table 2 above provides a comparative analysis of the root-finding methods applied to 

a range of functions, including polynomials, trigonometric, and exponential 

expressions. Each function was tried with the four methods—Newton's, Halley's, 

Laguerre's, the Proposed Method, and their corresponding CPU times were measured. 

Lower CPU times indicate quicker convergence and, consequently, higher 

computational efficiency. The proposed method consistently exhibited superior 

performance across various test cases, often outpacing traditional approaches. 

However, while these results suggest the potential advantages of our method, further 

evaluation is necessary to fully assess its robustness and accuracy. Overall, the table 

serves as a useful resource for comparing root-finding algorithms and evaluating their 

effectiveness across diverse mathematical problems. 

VI.    Conclusion 

Our research paper presents a novel numerical technique that is designed to 

find both complex as well as real roots of nonlinear equations efficiently. The method, 

which demonstrates second-order convergence, is particularly notable for its ability to 

accurately determine complex roots, even when starting with a real initial guess. If the 

function is holomorphic and has no branch points or singularities around the root, 

quadratic convergence is maintained.   
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Extensive testing on a wide range of numerical problems highlights the method's 

superiority, requiring fewer iterations to solve problems, thereby improving 

computational efficiency. The authors implemented their method using Python 3.10.9 

and conducted CPU time analysis to emphasize its practical benefits in terms of 

computational cost-effectiveness. By eliminating the requirement to evaluate 

derivatives of higher order, this technique provides a flexible and efficient solution for 

solving nonlinear equations, ensuring both accuracy and efficiency across different 

applications. 
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