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Abstract 

When it comes to dealing with nonlinear equations, numerical methods play 

a crucial role. Still, many of these methods come with limitations such as 

guaranteeing actual convergence, high computational costs, or strong dependence on 

derivatives. Traditional techniques, in particular, tend to struggle when the first 

derivative is close to zero or when they require second or third derivatives, which 

adds layers of complexity. 

The study presents a new iterative approach to overcome these challenges. It 

achieves a reliable second-order convergence and can handle both real and complex 

rootseven in situations where the first derivative approaches zero. The method starts 

with an initial guess, w0 ∈ C, and improves it step-by-step, gradually zeroing in on a 

solution. Its flexibility allows it to be applied to a broad range of equations. 

One of the key advantages is that it doesn’t depend on higher-order derivatives, 

which helps in maintaining a balance between computational efficiency and 

accuracy.. Interestingly, the method also manages to find complex roots even when 

the initial guess is entirely real, something many other methods struggle with. 

To evaluate how well the method works, experiments were conducted using Python 

version 3.10.12. The results shown in tables and graphs illustrate how the method 

converges over a set number of steps. Overall, this technique offers a reliable and 

practical alternative to conventional numerical methods, particularly for tackling 

nonlinear problems involving complex solutions. 

Keywords: Nonlinear, Complex root, Iterative numerical methods, Second-order 

convergence, innovation. 

 

I.    Introduction 

Many sciences and engineering applications, such as stability analyses in 

control systems and modelling [XV, XVI] in computational physics, rely heavily on 
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nonlinear equations, but these equations are often very difficult to deal with. When 

these equations are more complex or have more dimensions, solutions to equations 

become more difficult to solve analytically (in a closed form), so researchers are 

more reliant on numerical methods. The current paper aims to overcome this ongoing 

hurdle by proposing an iterative solution that is specifically tailored to obtaining the 

real and compound roots of nonlinear equations. Specifically, our areas of interest are 

dominant convergence despite being in situations where the second derivative 

happens to be zero, which usually proves problematic for methods based on 

derivatives. Despite much literature devoted to numerical methods, the main 

disadvantages cannot be ignored, like excessive computation cost, sensitivity to initial 

guesses, and the cumbersome requirement of higher-derivative information. All the 

above challenges will indicate the necessity of continuous innovation. This piece of 

work is pursuing a new direction with the contingent on a quadratic formulation that 

prevents the complexity of higher-order derivatives. The aim is to combine low 

computational expense and method robustness with rapid convergence. We directly 

solve a critical issue of nonlinear equation solving in which the first derivative 

approaches the zero value or is unreliable, and solve them with stability, even with a 

change in starting points. Traub [XXVI] was the pioneer most responsible for 

iterative methods in numerical analysis, making the form of these methods and their 

convergence behaviour the subject of his book. His observations have simplified the 

workings of iterative algorithms and also emphasized the need to come up with 

methods that can perform a variety of non-linear equation solutions. After Traub,  

Ostrowski [XX] had already contributed significantly by looking at the way precision 

and computational work collaborate in root-finding problems. His findings were used 

in modern versions of iterative procedures that seek to provide both practical and 

correct analysis. 

Since their establishment, scientists have come up with mechanisms that are specific 

to specific challenges. One more such method was proposed by King [XIII], who 

proposed the use of two evaluations at the starting point and at what was erroneously 

termed as a Newton point of fourth order. His approach showed that by only a small 

exertion of computation, more could be obtained in the way of much accelerated 

convergence. The situation is almost the same with Hansen and Patrick [VI], who 

explored a one-parameter family of flexible iterative techniques with familiar names 

as Laguerre and Halley, and determined that a large number converged with order 

three near simple roots. Their findings highlighted the fact that some of their 

approaches perform better with large initial approximations and some others with 

small ones. Later, Neta [XVIII] introduced a family of algorithms that resorted to an 

intelligent compromise between speed and efficiency of the sixth-order methods. His 

algorithms would need only three function calls and a single derivative per step, and 

they are very accurate with only a small extra cost. His studies showed that with the 

modulation of the proportion of the number of calls that ought to be made, together 

with the utilization of derivatives, there could be both precision and effectiveness. 

Non-iterative methods have also come into the limelight as well in addition to 

iterative methods. As an example, Paniconi and colleagues [XXI] have reviewed first 

and second-order methods of linearizing the nonlinear Richards’ equation governing 

unsaturated flow. These were occasionally more effective than classical iterative 



 

 

 

 

 

J. Mech. Cont. & Math. Sci., Special Issue, No.- 12, August (2025) pp 135-149 

Anujeet Siwach et al 

 
A Special Issue on ‘Recent Evolutions in Applied Sciences and Engineering-2025’ 

137 

 

schemes like Newton, but could be less well behaved in other circumstances. 

However, their work broadened the repertoire of nonlinear solutions to problems, 

proving that non-iterative approaches can enable iterative approaches if they are used 

intelligently. However, still another extension of the mathematical landscape was 

introduced by other analytical techniques, which was greatly noted by Ji-Huan [IX], 

who has reviewed emerging techniques like the homotopy perturbation method, the 

variational iteration method, and the modified Lindstedt-Poincar method. The 

procedures show the flexibility and strength of analytical approximations, especially 

in systems where the perturbation assumptions are not so harsh. 

Weerakoon and Fernando [XXVIII] in this continuum went a step further and applied 

a trapezoidal approximation to the indefinite integral of the derivative and thus 

achieving convergence of order three and being superb on many test functions 

compared to conventional Newton iterations. Systems of nonlinear equations have 

also been the target of researchers to represent real-world situations where several 

variables are interacting. Abbasbandy [I] presented an iterative method, which is an 

extension of the Newton approach, enhanced with the help of Adomian 

decomposition, to deal with two-variable nonlinear problems with better convergence 

behavior. Similarly Ramos [XXIII] studied iterative schemes in initial- and boundary-

value problems in ordinary and partial differential equations, showing profound 

relationships between long-established higher-order iteration methods, such as the 

Picard scheme, Banach scheme of fixed points, and even the variational iteration 

method; he recognized that a substantial number of these schemes are special cases of 

a general scheme of quasilinearizations that gave coherence to a previously diffuse 

subject. Successive developments have resulted in the ever-increasing palette of 

higher-order methods. As an example, Newton-Raphson schemes have been refined 

by Chun [XI], who incorporates an equivalent of the additions proposed by 

Abbasbandy, resulting in faster convergence in numerical experiments. At the same 

time, iterations described by Noor et al. [XIX] were proposed to always converge 

quadratically and require a rather small number of evaluations of the given function, 

enhancing the interest in finding efficient algorithms related to the root-finding 

process. An important aspect of designing an iteration method is how this method 

behaves at the edges. The (technically) ongoing methodological analysis by Melman 

[XVII] of the so-called double-step Newton method to attack the largest or smallest 

real zeros in an arbitrary strictly real-rooted polynomial revealed not only that the 

method does produce unexpected overshoot phenomena, but also simple strategies to 

achieve overshoot amelioration. In like manner, Sharma and Guha [XXIV] shifted 

Ostrowski's fourth-order ideas into an extended one-parameter family of 6th order 

methods, leading to a further increase in speed of convergence with only modest extra 

per-step cost. 

  𝑝𝑛+1  =  𝑝𝑛 −
ℎ(𝑝𝑛)

ℎ′(𝑝𝑛)
       (1) 

  𝑡𝑛+1 =  𝑤𝑛 −
𝑔(𝑤𝑛)

𝑔′(𝑡𝑛)

𝑔(𝑡𝑛)

𝑔(𝑡𝑛)−2𝑔(𝑤𝑛)
          (2) 

   𝑡𝑛+1 = ̃ 𝑡𝑛+1 −
𝑔(𝑡𝑛+1)

𝑔′(𝑡𝑛)

𝑔(𝑡𝑛)+𝑎𝑔(𝑤𝑛) 

𝑔(𝑡𝑛)+(𝑎−2)𝑔(𝑤𝑛)
     (3) 
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Moreover, Parhi and Gupta [XXII] based their idea on the third-order Weerakoon-

Fernando technique to establish a sixth-order point-wise convergent procedure with 

only two and two first derivatives and without using any second derivatives, once 

again indicating how researchers are customer to be careful about the high-order 

convergence and the minimum usage of the function’s derivative. In addition to 

solutions of single equations, in more general terms, the field addresses more general 

and more involved questions, such as nonlinear ordinary and partial differential 

equations, optimization problems on large scales, and matrix equations. Maheshwari 

[XIV] had illustrated a special formulation technique both on transcendental and 

higher-order-convergence transformation of partial-differential forms, none of which 

require second derivatives. 

  𝑤𝑛 =  𝑡𝑛 −
ℎ(𝑡𝑛)

ℎ′(𝑡𝑛)
                                      (4) 

  𝑡𝑛+1 =  𝑡𝑛 +
1

ℎ′(𝑡𝑛)
[

{ℎ(𝑡𝑛)}2

ℎ(𝑤𝑛)−ℎ(𝑡𝑛)
−

{ℎ(𝑤𝑛)}2

ℎ(𝑡𝑛)
]           (5) 

Besides the above, Cordero et al. [IV] studied real dynamical behaviours of iterative 

methods, and showed that some of them can take irregular or chaotic dynamical 

patterns, and Noor et al. [XIX] generalized some iterative methods to solve a range of 

real-world problems, including population dynamics and particle motion on inclined 

planes. In seeking greater efficiency, Wang et al. [XXVII] proposed a general n-point 

method of Newton type with so-called self-accelerating parameters that was 

consistent with the Kung and Traub conjecture of optimality at 2n convergence order. 

The scientists are also still testing the frontiers of specialized areas. Al-Jawary et al. 

[III] have used iterative schemes, especially Tamimi-Ansari, Daftardar-Jafari, and 

Banach contraction, to second-order nonlinear ordinary differential equations in 

physics, and they have compared the same to established solvers such as Runge-Kutta 

and have found them more accurate. At the same time, Dehghan and Shirilord [V] 

presented and proved theorems on families of algorithms of orders of complexity that 

solve systems of nonlinear equations at trivial additional computational expense, and 

Kansal et al. [XXI] presented similar results. Based on these developments, Ivanov 

and Yang [VIII] developed iterative methods of nonlinear matrix equations, an area 

of substantial importance to control theory and other high-end engineering 

disciplines. 
 

Abdullah et al. [II] have designed methods whose convergence order is between four 

and eight, taking a weight-function approach under the guidance of the Kung and 

Traub conjecture. Finally, Inderjeet and Bhardwaj [XXV] conducted head-on tests of 

a new Newton Raphson procedure with a number of typical iterative procedures; test 

cases pegged on fluid dynamics, heat-movement and construction mechanics were 

habitually seen to take lesser attempts with higher significant benefit under their 

variant, indicating the way that even so judgmentary stratagem may be refreshed to 

face current scientific and industry requirements. According to Siwach and Malhotra 

[XXV], the importance of iterative methods [VII] like Newton-Raphson, Halley, and 

Cauchy methods of solving nonlinear equations was discussed in the light of 

applications in various fields of science and engineering. They indicated that though 
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these approaches have gained a lot of acceptance, they are quite demanding in terms 

of computations. Their paper brings the constant attempt to improve and streamline 

numerical algorithms in terms of efficiency and convergence rate. Based on this very 

large literature, what is clear is how higher-order methods can significantly decrease 

the number of iterations that lead to high precision. Nonetheless, common methods 

tend to have such drawbacks as the requirement to compute second or higher partial 

derivatives, vulnerability to inappropriate initial guesses, or unstable behavior under 

certain pathological conditions (such as when multiple roots exist or when the first 

derivative is zero). Moreover, the efficiency of many algorithms is impressive on real 

roots, but they may not have been fully optimised [X, XI, XII], and not fully 

evaluated, on complex roots essential in signal processing, in quantum mechanics, 

and control theory. To fill out such gaps, the present paper will present an iterative 

procedure specifically designed to find real and complex values of solutions to a 

nonlinear equation, explicitly taking into consideration those cases where the second 

derivative fails or is not dependable. By basing the process on quadratic principles, 

the error avoids the computational weight usually put on higher-order differentiations. 

Our key objectives include enhanced computational efficiency through fewer function 

evaluations, robust convergence for a wide range of initial guesses, broad 

applicability across diverse problem domains, and cost-effectiveness due to the 

elimination of second-derivative requirements. 

Almost all the above methods give desired results only after evaluating the second or 

higher-order derivative; hence, the computational cost is very high. In the present 

investigation, we propose a new iterative method that takes a comprehensive 

approach to identifying intricate and authentic roots of nonlinear equations across 

various orders. Its chief advantages over existing practices are: 

❖ The algorithms solve problems quickly and efficiently. 

❖ Fewer iterations are needed to reach convergence. 

❖ The method is cost-effective because it dispenses with higher-order 

derivatives. 

❖ Starting from either a real or complex initial guess, the researcher can locate 

all real or complex rootseven in situations where some traditional techniques 

(e.g., Newton’s method) may fail. 

We validated our approach on a variety of standard benchmark problems, compiling 

the numerical outcomes in tables and illustrating the results with Python 3.10.9 plots. 

This suite of tests confirms that the method remains dependable across diverse 

scientific and engineering scenarios. 

In support of these results, we start with a detailed convergence proof defining 

precisely when the method attains quadratic convergence. We then conduct numerical 

experiments on both traditional test functions and tougher nonlinear instances taken 

from applications in the real world. The authors compare to known and state-of-the-

art iterative algorithms in demonstrating unambiguous improvement in the number of 

iterations, total function evaluations, and resulting error sizes. These advances are 

particularly valuable for problems where excessive use of derivatives may impose 

instability or excessive computational expense. Significantly, our approach 
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accommodates complex roots with ease—a crucial characteristic in problems with 

complex eigenvalues or resonant frequencies. As a whole, with the provision of 

rigorous convergence using a few derivative calls, this work provides a useful and 

economical contribution to computational mathematics. The rest of the paper walks 

through the derivation of the algorithm, its theoretical foundation, detailed 

experiment results, discussion of the observed performance, and concluding remarks 

that reinforce the need for ongoing advances in higher-order iterative techniques. 

II.     Formulation of Method 

Let h(y) = 0 be a nonlinear equation.  

h(y) be a differential function in some interval I⊂ R ⊂C. 

Consider a cubic equation. 

  h(y) = m0y + m1 y3       (6) 

Let yn be the nth approximation from equation (6), we obtain 

  h(yn) = m0 yn+ m1 yn
2           (7) 

Differentiating equation (6) w.r.t ‘y’, we get 

  h′(y) = m0 + 3 m1y2       (8) 

Putting y = yn in equation (8), we get 

h′( yn) = m0 + 3 m1 yn
2        (9) 

Let yn+1 be an exact root of the equation (6), so 

h(yn+1) = m0 yn+1 + m1yn+1
3      (10) 

yn+1
2 = - 

𝑚0

3𝑚1
        (11) 

Equations (7) and (9) are solved to get the values of m0 and m1. 

m0 = 
3ℎ(𝑦𝑛)−𝑦𝑛ℎ′(𝑦𝑛)

2𝑦𝑛
        

  m1 = 
𝑦𝑛ℎ′(𝑦𝑛) −ℎ(𝑦𝑛)

2𝑦𝑛
3        (12) 

Substituting these values in equation (11) 

yn+1 = 𝑦𝑛√1 −
2 ℎ(𝑦𝑛)

𝑦𝑛ℎ′(𝑦𝑛)−ℎ(𝑦𝑛)
)                                                                                    (13) 

Equation (14) is the proposed method. 

Dealing with Multiple (or Near-Multiple) roots: The proposed method is mostly for 

simple roots. To deal with the multiple roots, the algorithm can be adjusted by the 

inclusion of the multiplicity correction factor. 

  yn+1 = 𝑦𝑛√1 −
2 𝑚ℎ(𝑦𝑛)

𝑦𝑛𝑐−ℎ(𝑦𝑛)
)                                                             (14) 
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Where m is the multiplicity of the root, the author found that the convergence rate 

remains preserved. 

III.   Convergence Analysis 

Theorem Let r ∈ D be a simple root of a sufficiently differentiable function h: 

D → R in an open interval D. The method defined by equation (14) is of second order. 

Proof: Let ‘r’ be a simple root of h(y) = 0 and substituting yn = cn+ r in equation (13), 

we get 

   𝑐𝑛+1 + 𝑟 = √1 −
2 ℎ(𝑐𝑛+𝑟)

(𝑐𝑛+𝑟)ℎ′(𝑐𝑛+𝑟)−ℎ(𝑐𝑛+𝑟)
        (15) 

Note that g(r) = 0 and with the help of Taylor’s series expand h(cn+ r) and h′(cn+ r) 

about the point ‘r’, we get 

h(cn+ r) = h′(r) cn +  
𝑐𝑛

2

2
h'′(r) + O(𝑐𝑛

3)      (16) 

  h′(cn+ r) = h′(r) + h′′(r) cn +  
𝑐𝑛

2

2
h′′(r) + O(𝑐𝑛

3)     (17) 

Substituting the values of h(cn+ r) and h′(cn+ r) in equation (15), we get 

  cn+1 = 
1

2
(

ℎ′′(𝑟)

ℎ′(𝑟)
−

3

𝑟
) 𝑐𝑛

2 + O(𝑐𝑛
3)       (18) 

On omitting cn
3 and the higher power of cn, we have 

  cn+1 = Lcn
2, where L = 

1

2
(

ℎ′′(𝑟)

ℎ′(𝑟)
−

3

𝑟
) 

Hence, the proposed method has a second-order of convergence. 

Although our method does not involve dealing with second derivatives, division by 

small ℎ′(𝑦𝑛) is still a burning issue. When a large variation or irregular steps are 

identified, the authors follow the damping strategy by multiplying the developed 

formula by 0≤ λ≤1. For threshold protection, if  |ℎ′(𝑦𝑛)| <∈,   where ∈ is a very 

small number near 10-8, the authors suggest either skipping the iteration or 

adjusting the denominator to ∈. 

Non-linear equations emerge across an array of applied-science disciplines, including 

astrophysical dynamics, traffic-flow modelling, and quantum-mechanical systems, 

and researchers have proposed many numerical schemes to tackle them. Yet rigorous 

treatments that reliably locate complex roots remain comparatively scarce. The 

present study addresses this gap by introducing a broadly applicable algorithm that 

delivers those complex solutions while retaining the dual advantages of rapid, 

quadratic convergence and low computational overhead. Because the procedure is 

derivative-light and scalable, practitioners can adapt it to equations of any degree, 

whether algebraic or transcendental. To substantiate its versatility, we apply the 

method to a spectrum of representative test problems, implement the computations in 

Python, and visualise the iterative behaviour through informative plots; a selection of 

these illustrative examples appears in the following section. 
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IV.    Numerical Examples 

In this section, a series of numerical examples is presented to demonstrate the 

performance and reliability of the proposed method when applied to various nonlinear 

equations. The selected functions include polynomials, trigonometric expressions, and 

logarithmic functions spanning both real-valued and complex-valued domains. 

Particular attention is given to cases where the initial guess is real but the resulting 

root is complex, as well as to scenarios where the first derivative at the initial point is 

zero. These examples serve to highlight the method’s stability, convergence 

behaviour, and its ability to handle challenging root-finding conditions. 
 

Table 1: Complex root obtained when the initial guess is a real number 
 

f(w) 𝒘𝟎  Number of 

Iterations 

𝑤3 + 𝑤2 + 3 0.5 0.4319+1.195i 8 

𝑤4 − 𝑤 + 1 

𝑤3 + 3𝑤2 + 24𝑤 + 19 

0.5 

2 

-0.7271+0.9341i 

-1.0714+4.5842i 

9 

6 

𝑤4 + 𝑤3 + 𝑤2 + 0.5𝑤 + 1 

sin 𝑤 − 2 

-2 

1 

0.3206-0.8324i 

1.5708+1.317i 

7 

10 

tan 𝑤 − 𝑖 1 1.3287+7.4174i 18 

𝑤3 + 1 

𝑤3 + sin 𝑤 + 1 

1 

1.5 

0.5+0.866i 

0.3595+1.262i 

6 

5 
 

Table 1 shows the outcome of using the proposed iterative method to solve a variety 

of nonlinear equations, highlighting cases where complex roots were achieved even 

when purely real initial guesses were used. 

For every function f(w), the tables show the initial guess ‘w0’, root ‘α’, and number of 

iterations to converge. The findings identify how real-valued inputs can give rise to 

complex-valued solutions and mirror the behaviour of complex roots in nonlinear 

systems. For example, with w0 = 1, the function tan 𝑤 − 𝑖 yielded a complex root, α 

=1.3287 + 7.4174i in 18 iterations, while the function 𝑤3 + 1 converged to a root 0.5 

+ 0.866i in just 6 iterations. 

In general, the table underscores the ability of iterative methods to traverse the 

intricate solution space even from actual-valued initial values. 
 

Table 2: Complex root obtained when the initial guess is a complex number 
 

f(w) 𝒘𝟎  Number of Iterations 

𝑤4 + 2𝑤2 + 5 1+2i 00.7862+1.272i 5 

𝑤5 + 𝑤2 + 1 0.1+1i -0.2179+1.167i 6 

𝑤6 − 𝑤2 + 3 0.5+0.5i 1.0429+0.5019i 5 

𝑤3 − 𝑤 + 1 0.5+0.5i 0.6624+0.5623i 4 

sin 𝑤 − (1 + 𝑖) 1+1i 0.6662+1.0613i 5 

cos 𝑤 − 𝑖 1i -1.5708+0.8814i 7 

ln 𝑤 − (0.2 + 𝑖) 

tan 𝑤 + tanh 𝑤 − (1 + 1𝑖) 

0.5+1i 

1+0.5i 

0.6599+1.0278i 

1.9564+1.9564i 

5 

9 

 



 

 

 

 

 

J. Mech. Cont. & Math. Sci., Special Issue, No.- 12, August (2025) pp 135-149 

Anujeet Siwach et al 

 
A Special Issue on ‘Recent Evolutions in Applied Sciences and Engineering-2025’ 

143 

 

Table 2 describes the behaviour of the algorithm when used in a variety of nonlinear 

equations, where the initial guesses ‘w0’ and the computed roots ‘α’are the complex 

plane. Functions used for testing cover a variety of algebraic and transcendental forms 

such as polynomials, trigonometric functions, logarithmic functions, and their 

combinations. Consistency in arriving at convergence from a fairly short sequence of 

iterations, namely from 4 to 9, testifies to the method's steadiness over complex-

valued realms. 

For example, starting with w0 = 0.5 + 0.5i, the function𝑤6 − 𝑤2 + 3 converged to 

α=1.0429+0.5019i in just 5 steps, while the more intricate expressiontan 𝑤 +
tanh 𝑤 − (1 + 1𝑖) required 9 iterations to find α=1.9564+1.9564i. These findings 

evidence the flexibility of the method with respect to the type of function, as well as 

pinpointing its validity for solving the complex equations in scientific and genetic 

engineering applications. 
 

Table 3:  First Derivative at the Initial Guess is zero, i.e. 𝒉′(𝒘𝟎) = 𝟎 
 

f(w) 𝒘𝟎  Number of 

Iterations 

2𝑤3 − 3𝑤2 − 1 1 1.6777 4 

𝑤4 − 4𝑤3 + 4𝑤2 1 1.9995 11 

sin 𝑤 −
𝑤

2
 

𝜋

3
 1.0472 4 

tan 𝑤 − 2𝑤 𝜋

4
 1.1656 7 

𝑤5 − 5𝑤4 + 5𝑤3 1 1.382 5 

cos 𝑤 − 2 𝜋 1.317i 10 

ln 𝑤 − 𝑤 + 2 1 3.1462 7 

sin 𝑤 + cos 𝑤 − 2 𝜋

4
 0.7854+0.8814i 9 

 

Table 3 presents the results obtained using the considered method in some selected 

nonlinear equations. One of the main features in all entries is that the first derivative 

of the function at the initial guess ‘w0’ is zero, a situation in which most traditional 

methods like Newton-Raphson will fail or become unstable. 

Nonetheless, the method converged to real or complex roots 

α successfully with an acceptable number of iterations. The functions were started 

from both real numerical values and symbolic expressions (e.g. 𝜋,
𝜋

3
), and still 

converged.  

For example, the function cos 𝑤 − 2 with w0 = 𝜋 led to a purely imaginary root 

α=1.317iin 10 iterations and sin 𝑤 + cos 𝑤 − 2 with w0 = 
𝜋

4
 produced the complex 

root 0.7854+0.8814i in 9 iterations. 

These outcomes demonstrate the robustness of the method in scenarios where 

standard derivative-based techniques are typically unreliable, highlighting its 

applicability in solving nonlinear equations with flat initial slopes. 
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The authors compared the proposed method with the existing methods like Newton-

Raphson Method and Helly’s Method (Here not shown to avoid the length of the 

paper). 

V.    Graphical Illustrations 

The visualizations of convergence behaviour and root trajectories for the 

above numerical examples are shown in this section. The plots demonstrate how the 

method develops from an initial guess to the final root, and how complex solutions 

emerge from real starting points. Additionally, the graphs depict the function’s 

landscape, fixed points, and behaviour near critical points where the first derivative 

vanishes. These visual insights further support the robustness and accuracy of the 

proposed method. 

 
Fig. 1. Graphical Analysis of 𝑓(𝑤) =  sin 𝑤 − 2 over the Complex Plane 

 

Figure 1 presents a complex domain visualization of the function 𝑓(𝑤) =  sin 𝑤 − 2, 

showing the magnitude |𝑓(𝑤)|over the complex plane. The horizontal axis represents 

the real part of w (Re(w)), while the vertical axis represents the imaginary part 

(Im(w)). A colour gradient, ranging from dark purple (low values of |𝑓(𝑤)|to bright 

yellow (high values), is used to represent the magnitude |𝑓(𝑤)| at each complex 

coordinate. 

A key feature of this graph is the red dot, which marks the approximate complex root 

w ≈ 1.5708 + 1.3170i. This root was identified using the proposed iterative method 

and lies in a region where the magnitude of f(w) approaches zero, corresponding to a 

deep trough (dark region) in the surface plot. 

The colormap clearly illustrates how the function behaves around this root. The 

surrounding area transitions smoothly from dark to lighter colours, indicating a 

localized minimum in magnitude. This is consistent with the nature of a root in the 

complex domain, where|𝑓(𝑤)| = 0. 

Furthermore, this plot visually confirms that although the root is complex, it is 

surrounded by a well-behaved landscape, allowing the iterative method to converge 

reliably. It also provides insight into the nonlinear structure of the sine function 

extended into the complex plane, showing symmetry and periodicity consistent with 

sin 𝑤 in both real and imaginary directions.  
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This graphical representation not only reinforces the numerical result but also offers 

an intuitive understanding of why and where the root occurs, validating the 

correctness of the computed solution. 

   
Fig. 2. Graphical Analysis of 𝑓(𝑤) =  ln 𝑤 − (1 + 𝑖) over the Complex Plane 

 

Figure 2 highlights the location of the complex root of the function𝑓(𝑤) =
 ln 𝑤 − (1 + 𝑖)  on the complex plane, where the iterative method successfully 

identified the solution w ≈1.4687 + 2.2874i. The root lies in a well-defined low-

magnitude region, as indicated by the dark shading near the red marker. 

Unlike the previous examples involving trigonometric functions, this plot reveals the 

more subtle and gradual variation in |𝑓(𝑤)|that is characteristic of the complex 

logarithm. The central bright spot near the origin reflects the singularity of the 

logarithmic function, but the root lies away from this region, allowing smooth 

convergence. 

This illustration underscores the method's ability to manage multivalued functions 

and converge even in domains with analytical complexities such as branch cuts and 

singularities. 
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Fig. 3. Graphical Analysis of 𝑓(𝑤) =  sinh 𝑤 − 1 over the Complex Plane 

 

This contour plot visualizes the magnitude of the function 𝑓(𝑤) =  sinh 𝑤 − 1 across 

the complex plane, with the computed root marked as a red dot at approximately w ≈ 

0.8814. Unlike earlier examples where complex roots were involved, this function 

yields a purely real root, situated along the real axis. 

The symmetric structure observed along the imaginary axis is characteristic of the 

hyperbolic sine function. The vertical gradient bands on either side indicate 

exponential growth in magnitude for large negative and positive real values of w, 

which aligns with the behaviour of sinh 𝑤 as it increases rapidly with|𝑤|. The darkest 

region near the center, where the red dot is located, confirms that the root lies in a 

flat, well-conditioned zone, promoting rapid convergence. 

This plot is a clear example of a function where the solution space is dominated by 

real-valued behaviour, and the method precisely identifies the root with minimal 

complexity in the imaginary direction. 

   
Fig. 4. Graphical Analysis of 𝑓(𝑤) = 𝑤5 +  𝑤3 +  1 over the Complex Plane 
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The contour plot displays the magnitude |𝑓(𝑤)|of the function 𝑓(𝑤) = 𝑤5 +  𝑤3 +
 1 over a bounded region in the complex plane. The red dot indicates the numerically 

found root, which is located in the upper-left quadrant of the complex plane at a 

position where the magnitude of the function is close to zero. 

In contrast to some previous plots involving exponential or trigonometric functions, 

this plot consists of a polynomial with no discontinuities or singularities, and 

therefore the landscape is smooth and radially symmetrical around the root.  

The colour gradient in the vicinity is gradual in its increase in|f(w)|from the root, and 

this indicates good conditions for convergence in an iterative process. This plot 

effectively visualizes the behaviour of a complex polynomial and confirms that the 

iterative method can efficiently locate roots in multi-dimensional, smooth solution 

spaces. 

 

VI.    Conclusion 

This paper introduces a robust, convergent iterative method for nonlinear 

equationsolutionswithaspecialabilityto find real and complex roots even when the 

first derivative is zero. Using a cubic expression, it eliminates the use of higher-order 

derivatives while maintaining second-order convergence, finding an optimal balance 

between accuracy and work. 

Through detailed convergence proofs and a wide array of numerical tests, we’ve 

shown that this method remains stable and reliable across many kinds of nonlinear 

functions like polynomials, trigonometric, logarithmic, and transcendental. It 

succeeds where classic approaches like Newton-Raphson often falter or diverge, 

particularly when real initial guesses lead to complex solutions. 

The plots and tables always show fewer iterations to convergence, irrespective of 

function complexity or root type. The fact that this algorithm can solve multi-valued 

and complex-valued problems without sacrificing speed or accuracy makes it a useful 

addition to the root-finding arsenal. 

In short, this derivative light approach provides an applicable alternative for 

computational mathematics, physics, engineering, and other related disciplines, where 

conventional methods would fail. It also opens doors for future developments, 

mentions more general and adaptive root-finding paradigms. 
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