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Abstract 

In this paper, we present an effective semi-analytical method for solving non-

linear partial differential equations that arise in various scientific and engineering 

fields. The Homotopy Perturbation Method (HPM) combines the concepts of 

homotopy analysis and perturbation theory to obtain approximate solutions for 

diverse partial differential equations. Several numerical examples are presented to 

illustrate the accuracy and efficiency of the proposed method. 
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I.   Introduction 

Partial differential equations (PDEs) are mathematical models used to 

represent phenomena involving functions of multiple variables, often relying on 

spatial or temporal characteristics. Consequently, scientists in physics, biology, 

economics, and engineering utilize PDEs to study and understand processes that 

depend on space and time. For biological applications, PDEs are extremely important 

for describing reaction-diffusion type systems that govern the dynamics of biological 

populations or the propagation of chemical substances. Here, diffusion describes how 

the random movement of particles impacts their arrangement, while the term reaction 

describes interactions between species or substances. Thus, many important 

phenomena can be modelled, including tumor growth, population dynamics, the 

spread of infectious disease, and morphogenesis in developmental biology. 

PDEs offer an adaptable paradigm for investigating the complicated dynamics of 

systems whose evolution depends on local interactions and spatial distribution. For 
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example, an extremely simplified reaction-diffusion model might suggest a 

population grows or dies locally in response to an environmental factor, while also 

diffusing across the geographic area. 

The Variational Homotopy Perturbation Method (VHPM) represents a major 

advancement in solving nonlinear PDEs. This method combines the advantages of 

both the Variational Iteration Method (VIM) and the Homotopy Perturbation Method 

(HPM). VHPM has successfully solved several problems, including the n-

dimensional Burgers' equation in fluid dynamics. This powerful and flexible method 

can be extended and utilized by researchers to solve nonlinear systems that are 

intractable with classical techniques [XII, II, IV]. 

Traveling wave solutions, characterized by a propagating wave speed, are often the 

focus of real-world applications. This is because compact support initial conditions, 

where the disturbance is localized in space, are more common and applicable than 

infinite or large initial conditions in real-world scenarios. These compact, or 

localized, initial conditions often represent disturbances, such as a shock wave or 

pulse, that originate in a small area and propagate outwards over time. The minimum 

wave speed is particularly effective as it represents the slowest speed at which a 

disturbance can propagate. In nonlinear dynamics, this minimum speed often marks 

the threshold between the spread and extinction of a phenomenon. We can learn about 

the stability of these solutions through their dynamics [X, XVI, XV, XVI]. 

In the current article, we provide both recent theoretical and numerical approaches in 

a study of traveling wave solutions. More specifically, we could identify the traveling 

wave candidates that traveled with the lowest wave speed. Both theoretical and 

numerical approaches were valuable to provide a variety of theoretical ideas as well 

as useful numerical approximations, which we felt were essential to better understand 

the myriad complicated dynamics associated with nonlinear PDEs. First, we 

considered the qualitative behaviours of the reduced system through phase plane 

analysis and computed the wave profiles and determined their stability. Second, since 

the shooting technique addresses the boundary value problem by turning it into an 

initial value problem, we considered using it to calculate the wavefronts and 

determine permissible speeds of travel because it is such a reliable numerical method. 

Third, we implemented some finite difference schemes to attempt to simulate the 

complete time-dependent PDE to check analytical predictions, and we could visualize 

the solutions from the compactly supported initial condition. Taken together, these 

three differing but complementary approaches provide a very rich and complete basis 

for studying traveling behavior in reaction-diffusion systems, or indeed other 

nonlinear models [III, V, VI-IX, XII, XIV]. 

II.   Application of the Homotopy perturbation-based technique for Non-linear 

Partial Differential Equations 

Let us consider the following non-linear equation  

  A (∅) – f(r)=0, r∈ Ω         (1)                                             
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with conditions: 

  B (∅,𝜕∅ 𝜕𝑛⁄  ) = 0, r∈ Ӷ             (2)                

  A = L + N 

Equation (1) can be written as 

  L(∅) + N(∅) – f(r) = 0, r∈ Ω               (3) 

  H (𝜑, p) = (1-p) [L(𝜑) – L (∅0) ] = p[A(𝜑) – f(r)] = 0, p ∈ [0,1], r∈  Ω    (4) 

  H (𝜑, p) =L(𝜑) −L(∅0) + 𝑝𝐿(∅0) + 𝑝[𝑁(𝜑) − f(r)] =0    (5) 

  H(𝜑,0) = L(𝜑) – L (∅𝑜) = 0        (6)   

  H(𝜑,0) = L(𝜑) – L (∅𝑜) = 0        (7)  

  H(𝜑,0) = L(𝜑) – L (∅𝑜) = 0        (8)   

  𝜑 = 𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯           

Approximate solution of equation (1): 

  ∅   = lim
         𝑝→1

𝜑 =  𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯  ,   (9)   

Non-linear problems of partial differential equations: 

Problem 1. Consider a two-component evolutionary system, such that... 

𝜕∅

𝜕𝑡
− 

𝜕3∅

𝜕3𝑥
− ∅

𝜕∅

𝜕𝑥
 − 𝜑

𝜕∅

𝜕𝑥
 =  0       10 

 
𝜕𝜑

𝜕𝑡
+ 2 

𝜕3𝜑

𝜕3𝑥
+  𝑣

𝜕𝜑

𝜕𝑥
 =  0       11 

 (
∅(𝑥,0)=3−6tan ℎ

2(
𝑥

2
),

𝜑(𝑥,0)=3−6tan ℎ
2(

𝑥

2
)
)        12 

Construction Homotopy for the system, we obtain 

 
𝜕∅ 

𝜕𝑡
+ 𝑝 (

𝜕∅

𝜕𝑡
  −  𝜕

3∅

𝜕𝑥3  − ∅ 
𝜕∅

𝜕𝑥
  − 𝜑  

𝜕∅

𝜕𝑥
)                   13 

 
𝜕𝜑

𝜕𝑡
+ 𝑝 (

𝜕3𝜑

𝜕𝑥3  +   𝜑
𝜕∅

𝜕𝑥
) = 0                                                                         14 

The solution of the Systems form, 

 ∅ = ∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯      (15)   

 𝜑 = 𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯      (16)   
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Substituting equation (15)-(16) in equation (13)-(14) r and comparing the 

coefficients, we obtain 

 
𝜕

𝜕𝑡
(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3+. . ) 

+𝑝

[
 
 
 
 −

𝜕3

𝜕𝑥3
(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯ ) − (∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯)

𝜕

𝜕𝑥
(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯) −  (𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯)

𝜕

𝜕𝑥
(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯ ) ]

 
 
 
 

 =  0 

𝜕

𝜕𝑡
(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯) 

+𝑝

[
 
 
 
 2

𝜕3

𝜕𝑥3
(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯)

+∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯
𝜕

𝜕𝑥
(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯) ]

 
 
 
 

 =  0 

Now comparing the coefficients, 

 𝑝0 : 
𝜕∅0

𝜕𝑡
 =  0         (17) 

 𝑝0 : 
𝜕𝜑0

𝜕𝑡
 =  0        (18) 

 𝑝1 : 
𝜕∅1

𝜕𝑡
 −  ∅0

𝜕∅0

𝜕𝑥
 −

𝜕3∅0

𝜕𝑥3  −  𝜑0
𝜕𝜑0

𝜕𝑥
  =  0 ,    (19) 

 𝑝1 : 
𝜕𝜑1

𝜕𝑡
 −  ∅0

𝜕𝜑0

𝜕𝑥
 − 2

𝜕3∅0

𝜕𝑥3  =  0 ,      (20) 

 𝑝2 : 
𝜕∅2

𝜕𝑡
 −  ∅1

𝜕∅0

𝜕𝑥
−  ∅0

𝜕∅1

𝜕𝑥
− 𝜑1

𝜕𝜑0

𝜕𝑥
−  ∅0

𝜕𝜑1

𝜕𝑥
− 

𝜕3∅1

𝜕𝑥3    =  0 ,  (21) 

 𝑝2 : 
𝜕𝜑2

𝜕𝑡
 −  ∅1

𝜕𝜑0

𝜕𝑥
−  ∅0

𝜕𝜑1

𝜕𝑥
 +  2

𝜕3𝜑0

𝜕𝑥3  =  0 ,    (22) 

 ∅0 = ∅(𝑥, 0) = 3 − tan ℎ
2
(
𝑥

2
) ,  

 𝜑0 = 𝜑(𝑥, 0) = 3𝑡√2 tan ℎ
2
(
𝑥

2
) , 

Now the solution of Equations, 

 𝑝1 : 
𝜕∅1

𝜕𝑡
 −  ∅0 

𝜕∅0 

𝜕𝑥
 − 

𝜕3𝜑0

𝜕𝑥3 - 𝜑0
𝜕𝜑0

𝜕𝑥
 =  0, 

 
𝜕∅1

𝜕𝑡
 =   ∅0 

𝜕∅0 

𝜕𝑥
 +  

𝜕3𝜑0

𝜕𝑥3 + 𝜑0
𝜕𝜑0

𝜕𝑥
. 

Now taking the integral, we get: 

 ∫
𝜕∅

𝜕𝑥
 =  ∫ [∅0 

𝜕∅0 

𝜕𝑥
 + 

𝜕2∅0

𝜕𝑥2  +  𝜑0
𝜕𝜑0

𝜕𝑥
] 𝑑𝑡, 

 ∅1  =  ∫ [∅0 
𝜕∅0 

𝜕𝑥
 + 

𝜕2∅0

𝜕𝑥2  +  𝜑0
𝜕𝜑0

𝜕𝑥
] 𝑑𝑡.

1

0
    (23) 
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Using the values of ∅0 and 𝜑0 we get: 

 ∅1  =  −48𝑠𝑐ℎ3 (𝑥 (sin ℎ
4 (

𝑥

2
))). 

Similarly, for 𝜑1, we 

 𝜑1 = ∫ (− ∅0 
𝜕𝜑0 

𝜕𝑥
 − 2 

𝜕3𝜑0

𝜕𝑥3  𝑑𝑡) .
1

0
      (24)   

Now putting the values of 𝜑0and ∅0 in the Equation, we get: 

 ∅1  =  𝑡 (
9𝑡√2sec ℎ2(

𝑥

2
) tanh(

𝑥

2
)−12𝑡√2sec ℎ4(

𝑥

2
) tanh(

𝑥

2
)

−12𝑡√2sec ℎ2(
𝑥

2
) tanℎ

3(
𝑥

2
).

) 

 ∅𝑎𝑝𝑝(𝑥, 𝑡) = ∑ ∅𝑖
7
𝑖=0  =  

 =  3 −  6 tan ℎ
2 (

𝑥

2
) − 48𝑡𝑠𝑐ℎ3(𝑥) (sin ℎ

4(
𝑥

2
) + . . . . ) , 

 𝜑𝑎𝑝𝑝 = ∑ 𝜑𝑖
7
𝑖=0  

 = 3𝑡√2 tan ℎ
2 (

𝑥

2
) + 𝑡 (9𝑡√2 sec ℎ2 (

𝑥

2
) tanh (

𝑥

2
)) , 

  −12𝑡√2 secℎ4 (
𝑥

2
) tan ℎ (

𝑥

2
) − 12𝑡√2 sec ℎ2 (

𝑥

2
) tan ℎ

3 (
𝑥

2
)+. .  

Problem 2. Consider a two-component evolutionary system of homogeneous 

equations of third order. 

 
𝜕∅

𝜕𝑡
− 

𝜕3∅

𝜕𝑥3 − 2𝜑
𝜕∅

𝜕𝑥
 − 𝜑

𝜕𝜑

𝜕𝑥
 =  0,                  (25) 

 
𝜕𝜑

𝜕𝑡
−  ∅

𝜕∅

𝜕𝑥
 =  0        (26) 

subject to 

 ∅(x, 0) = −tan ℎ (
𝑥

√3
) 

 𝜑(𝑥, 0) =
−1

6
−

1

2
tan 𝑥2 (

𝑥

√3
)      (27) 

Homotopy for Equations, we get 

 
𝜕∅ 

𝜕𝑡
+ 𝑝(𝜕3∅

𝜕𝑥3  − 2𝜑 
𝜕∅

𝜕𝑥
  − ∅  

𝜕∅

𝜕𝑥
) = 0                         (28)   

 
𝜕𝜑

𝜕𝑡
+ 𝑝 ( −∅

𝜕∅

𝜕𝑥
) = 0                          (29)   

The solution of Systems has the form 

 ∅ = ∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯          (30)   

 𝜑 = 𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯         (31)   
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Substituting Equations,      

𝜕

𝜕𝑡
(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3+. . ) +

𝑝

[
 
 
 
 −

𝜕3

𝜕𝑥3
(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯) − 2(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯ )

𝜕

𝜕𝑥
(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯ ) − (∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯)

𝜕

𝜕𝑥
(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯) ]

 
 
 
 

  =0  (32) 

Using the values of ∅ and𝜑 

 
𝜕

𝜕𝑡
(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3+. . ) + p(

−(∅0+𝑝∅1+𝑝2∅2  +𝑝3∅3 +⋯ )
𝜕

𝜕𝑥
(−(∅0+𝑝∅1+𝑝2∅2  +𝑝3∅3 +⋯ ))

) = 0        (33) 

Now comparing the coefficients, 

 𝑝0 : 
𝜕∅0

𝜕𝑡
 =  0        (34) 

 𝑝0 : 
𝜕𝜑0

𝜕𝑡
 =  0        (35) 

 𝑝1 : 
𝜕∅1

𝜕𝑡
 −  2𝜑0

𝜕∅0

𝜕𝑥
 −

𝜕3∅0

𝜕𝑥3  −  ∅0
𝜕𝜑0

𝜕𝑥
  =  0,    (36) 

 𝑝1 : 
𝜕𝜑1

𝜕𝑡
 −  ∅0

𝜕𝜑0

𝜕𝑥
 =  0,      (37) 

 𝑝2 : 
𝜕∅2

𝜕𝑡
 −  2𝜑1

𝜕∅0

𝜕𝑥
−  2𝜑0

𝜕∅1

𝜕𝑥
− ∅1

𝜕𝜑0

𝜕𝑥
−  ∅0

𝜕𝜑1

𝜕𝑥
− 

𝜕3∅1

𝜕𝑥3    =  0, (38) 

 𝑝2 : 
𝜕𝜑2

𝜕𝑡
 −  ∅1

𝜕∅0

𝜕𝑥
−  ∅0

𝜕∅1

𝜕𝑥
 =  0,     (39) 

 𝜑0 = ∅(𝑥, 0) = − tan ℎ(
𝑥

√3
) , 

 𝜑0(𝑥, 0) =
−1

6
 −  

1

2
tan 𝑥2 (

𝑥

√3
) . 

Derive the solutions of Equations, 

 
𝜕∅1

𝜕𝑡
− 2𝜑𝑜

𝜕∅𝑜

𝜕𝑥
 − ∅𝑜

𝜕𝜑𝑜

𝜕𝑥
−

𝜕3∅𝑜

𝜕𝑥3  =  0, 

 
𝜕𝜑1

𝜕𝑡
− ∅𝑜

𝜕∅𝑜

𝜕𝑥
 =  0, 

 
𝜕∅1

𝜕𝑡
 =  2𝜑𝑜

𝜕∅𝑜

𝜕𝑥
 − ∅𝑜

𝜕𝜑𝑜

𝜕𝑥
−

𝜕3∅𝑜

𝜕𝑥3 , 

 
𝜕𝜑1

𝜕𝑡
= ∅𝑜

𝜕∅𝑜

𝜕𝑥
 =  0, 

Taking the integral of both sides, 

 ∅1  =  ∫ [2𝜑0 
𝜕∅0 

𝜕𝑥
 +  ∅0

𝜕𝜑0

𝜕𝑥
− 

𝜕3∅0

𝜕𝑥3 ] 𝑑𝑡.
1

0
    (40) 
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 𝜑1 = ∫ (−∅0 
𝜕∅0 

𝜕𝑥
 𝑑𝑡) .

1

0
       (41)   

Using the values of ∅0 and 𝜑0  

 ∅1  =  
1

√3
𝑡 sec ℎ2 (

𝑥

√3
) 

 𝜑1  =  
1

√3
𝑡 tan ℎ (

𝑥

√3
) sec ℎ2 (

𝑥

√3
) 

 ∅𝑎𝑝𝑝(𝑥, 𝑡) = ∑ ∅𝑖
8
𝑖=0  =  

 = − tan ℎ (
𝑥

√3
) −

1

√3
𝑡𝑠𝑐 ℎ2 (

𝑥

√3
) +. . . . ,     (42) 

 𝜑𝑎𝑝𝑝 = ∑ 𝜑𝑖
8
𝑖=0  

 =
−1

6
−

1

2
tan ℎ

2 (
𝑥

√3
) + 

1

√3
𝑡 tan ℎ (

𝑥

√3
) secℎ2 (

𝑥

√3
) + . . . . ,  (43) 

Problem 3. Consider the generalized coupled Hirota-Satsuma system. 

 
𝜕∅

𝜕𝑡
−

1

2

𝜕2∅

𝜕𝑥2 − 3∅
𝜕∅

𝜕𝑥
(𝜑, 𝜃) = 0,       (44) 

 
𝜕𝜑

𝜕𝑡
− 

𝜕3𝜑

𝜕𝑥3 − 3∅
𝜕𝜑

𝜕𝑥
 =  0       (45) 

 
𝜕𝜃

𝜕𝑡
− 

𝜕3𝜃

𝜕𝑥3 − 3∅
𝜕𝜃

𝜕𝑥
 =  0       (46) 

Subject to 

 ∅(𝑥, 0) =
−1

3
+ tan ℎ

2(𝑥)         (47)   

 𝜑(𝑥, 0) = tan ℎ (𝑥),                     (48)   

 𝜃(𝑥, 0) =
8

3
tan ℎ(𝑥)        (49) 

By the Homotopy Perturbation Method, we get 

 
𝜕∅ 

𝜕𝑡
+ 𝑝(

−1

3

𝜕3∅

𝜕𝑥3−2∅
𝜕∅

𝜕𝑥
−3

𝜕

𝜕𝑥
(𝜑𝜃)) = 0                                                  (50) 

 
𝜕𝜑

𝜕𝑡
+ 𝑝 (

𝜕3𝜑

𝜕𝑥3 − 3∅
𝜕𝜑

𝜕𝑥
) =  0       (51) 

 
𝜕𝜃

𝜕𝑡
+ 𝑝(

𝜕3𝜃

𝜕𝑥3 − 3∅
𝜕𝜃

𝜕𝑥
) = 0               (52) 

The solution of the Equation, 

 ∅ = ∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯      (53) 

 𝜑 = 𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯              (54) 

 𝜃 = 𝜃0 + 𝑝𝜃1 + 𝑝2𝜃2  + 𝑝3𝜃3 + ⋯      (55) 
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Substituting Equations, 

 
𝜕

𝜕𝑡
(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯ ) +

𝑝

[
 
 
 
 −

1

3

𝜕3

𝜕𝑥3
(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯ ) + 3(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯)

𝜕

𝜕𝑥
(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯) − 3(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯)

−3
𝜕

𝜕𝑥
(𝜃0 + 𝑝𝜃1 + 𝑝2𝜃2  + 𝑝3𝜃3 + ⋯ ) ]

 
 
 
 

 = 0  

𝜕

𝜕𝑡
(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯) + 𝑝

[
 
 
 

𝜕3

𝜕𝑥3
(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯ )

−3(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯ )
𝜕

𝜕𝑥
(𝜑0 + 𝑝𝜑1 + 𝑝2𝜑2  + 𝑝3𝜑3 + ⋯) ]

 
 
 

    = 0         (56) 

𝜕

𝜕𝑡
(𝜃0 + 𝑝𝜃1 + 𝑝2𝜃2  + 𝑝3𝜃3 + ⋯) + 𝑝

[
 
 
 

𝜕3

𝜕𝑥3
(𝜃0 + 𝑝𝜃1 + 𝑝2𝜃2  + 𝑝3𝜃3 + ⋯)

−3(∅0 + 𝑝∅1 + 𝑝2∅2  + 𝑝3∅3 + ⋯)
𝜕

𝜕𝑥
(𝜃0 + 𝑝𝜃1 + 𝑝2𝜃2  + 𝑝3𝜃3 + ⋯) ]

 
 
 

       = 0             (57) 

Now comparing the coefficients: 

 𝑝0 : 
𝜕∅0

𝜕𝑡
 =  0        (58) 

𝑝0 : 
𝜕𝜑0

𝜕𝑡
 =  0         (59) 

𝑝0 : 
𝜕𝜃0

𝜕𝑡
 =  0        (60) 

 𝑝1 : 
𝜕∅1

𝜕𝑡
 + 3 ∅0

𝜕∅0

𝜕𝑥
− 3 𝜃0

𝜕𝜑0

𝜕𝑥
−  3 𝜑0

𝜕∅0

𝜕𝑥
 −

1

2

𝜕3∅0

𝜕𝑥3    =  0,  (61) 

 𝑝1 : 
𝜕𝜑1

𝜕𝑡
 −  3 𝜃0

𝜕𝜑0

𝜕𝑥
+ 

𝜕3𝜑0

𝜕𝑥3 =  0,      (62) 

 𝑝1 : 
𝜕𝜃1

𝜕𝑡
 −  3 𝜃0

𝜕𝜃0

𝜕𝑥
+ 

𝜕3𝜃0

𝜕𝑥3 =  0,     (63) 

 𝑝2 : 
𝜕∅2

𝜕𝑡
 + 3 ∅1

𝜕∅0

𝜕𝑥
−  3∅0

𝜕∅1

𝜕𝑥
−  3𝜃1

𝜕𝜑0

𝜕𝑥
 − 3𝜃0

𝜕𝜑1

𝜕𝑥
 

−3𝜑1
𝜕𝜃0

𝜕𝑥
 −  3𝜑0

𝜕𝜃1

𝜕𝑥
 −

1

2

𝜕3∅0

𝜕𝑥3  =  0     (64) 

 𝑝2 : 
𝜕𝜑2

𝜕𝑡
 −  3∅1

𝜕𝜑0

𝜕𝑥
− 3∅0

𝜕𝜑1

𝜕𝑥
+ 

𝜕3𝜑0

𝜕𝑥3  =  0,    (65) 

 𝑝2 : 
𝜕𝜃2

𝜕𝑡
 −  3∅1

𝜕𝜃0

𝜕𝑥
− 3∅0

𝜕𝜃1

𝜕𝑥
+ 

𝜕3𝜃0

𝜕𝑥3  =  0,    (66) 

The solution of the Equations we obtain: 

∅(𝑥, 0) =
−1

3
 +  tan ℎ

2(𝑥) , 

𝜑(𝑥, 0) = tan ℎ(𝑥) , 

Θ (𝑥, 0) = 
8

3
tan ℎ(𝑥). 
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We derive the solution of the Equations: 

 
𝜕∅1

𝜕𝑡
 + 3 ∅0

𝜕∅0

𝜕𝑥
−  3𝜃0

𝜕𝜑1

𝜕𝑥
−  3𝜑0

𝜕𝜃0

𝜕𝑥
 −

1

2

𝜕3∅0

𝜕𝑥3  =  0    

 
𝜕𝜑1

𝜕𝑥
 −  3∅0

𝜕𝜑0

𝜕𝑥
 − 

𝜕3𝜑0

𝜕𝑥3  = 0, 

 
𝜕𝜃1

𝜕𝑥
 −   3∅0

𝜕𝜃0

𝜕𝑥
 −  

𝜕3𝜃0

𝜕𝑥3  =  0. 

 
𝜕∅1

𝜕𝑡
 = - 3 ∅0

𝜕∅0

𝜕𝑥
−  3𝜃0

𝜕𝜑1

𝜕𝑥
−  3𝜑0

𝜕𝜃0

𝜕𝑥
 −

1

2

𝜕3∅0

𝜕𝑥3      (67) 

 
𝜕𝜑1

𝜕𝑥
 =   3∅0

𝜕𝜑0

𝜕𝑥
 −  

𝜕3𝜑0

𝜕𝑥3       (68) 

 
𝜕𝜃1

𝜕𝑥
 =  3∅0

𝜕𝜃0

𝜕𝑥
 −  

𝜕3𝜃0

𝜕𝑥3          (69) 

Integrals on both sides  

 ∅1  =  ∫ [− 3 ∅0
𝜕∅0

𝜕𝑥
−  3𝜃0

𝜕𝜑1

𝜕𝑥
−  3𝜑1

𝜕𝜃0

𝜕𝑥
 −

1

2

𝜕3∅0

𝜕𝑥3 ] 𝑑𝑡.
1

0
  (70) 

 𝜑1 = ∫ ( 3∅0
𝜕𝜑1

𝜕𝑥
 −  

𝜕3𝜑0

𝜕𝑥3 𝑑𝑡) .
1

0
       (71)  

 𝜃1 = ∫ (3∅0
𝜕𝜃0

𝜕𝑥
 − 

𝜕3𝜃0

𝜕𝑥3 𝑑𝑡) .
1

0
       (72)   

Using the values of ∅0, 𝜑0 and 𝜃0 in Equations (70)-(72) 

 ∅1  =  4𝑡 sec ℎ2(𝑥) tan ℎ (𝑥). 

 𝜑1  =  𝑡 sec ℎ2(𝑥). 

 𝜃1  =  
8

3
𝑡 sec ℎ2(𝑥). 

 ∅𝑎𝑝𝑝(𝑥, 𝑡) = ∑ ∅𝑖
6
𝑖=0  =  

 = 
−1

3
+ tan ℎ

2(𝑥) + 4𝑡 sec ℎ2(𝑥) tan ℎ (𝑥) + ⋯ ,   (73) 

 𝜑𝑎𝑝𝑝(𝑥, 𝑡) = ∑ 𝜑𝑖
6
𝑖=0  

 = tan𝑄 (𝑥) + 4𝑡 sec𝑄2(𝑥) + ⋯     (74) 

 𝜃𝑎𝑝𝑝(𝑥, 𝑡) = ∑ 𝜃𝑖
6
𝑖=0  

 =
8

3
tan ℎ (𝑥) +

8

3
𝑡 secℎ2(𝑥) + ⋯ .     (75) 

III.   Conclusion 

From the above discussed example, it has been demonstrated that the 

perturbation-based technique is a highly efficient method for solving nonlinear partial 

equations, compared to other methods, we can solve the nonlinear problems very 

easily and efficiently in small iterations. We can further use this method to solve 
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many other nonlinear complex problems arising in various fields of science and 

engineering. 
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