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Abstract 

To differentiate itself from other integral transformations, this article 

presents a novel integral transformation known as the 𝒜 (or Aman) transform. This 

transformation was inspired by a thorough study of the effectiveness of the Laplace 

and Sumudu transforms, specifically with regard to fractional differential equations. 

Applying these transformations might occasionally make processing their inverse 

transform challenging. This concept encourages us to reconsider and put in more 

effort to develop fresh, essential transformations that will make difficult problems 

easier to tackle. The proposed transformation has been successfully used to solve the 

Riemann-Liouville and Caputo FDE analytically. The outcomes of using this new 

approach are in perfect harmony with those of using contemporary methods. This 

demonstrates the 𝒜 transform's dependability and efficiency in the analytical 

resolution of complex mathematical situations. 

Keywords: Laplace Transform, Sumudu Transform, Caputo's Fractional Differential 

Equations, Riemann-Liouville's Fractional Differential Equations.   

Nomenclature 

LT   Laplace Transform 

ST   Sumudu Transform  

FC         Fractional Calculus 

FDE       Fractional Differential Equations 
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𝛽

0
𝐶   Caputo Fractional Derivative 

𝐷𝑡
𝛽

0
𝑅𝐿      Riemann-Liouville’s Fractional Derivative 
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 erf  Error function 

IVP      Initial Value Problems 

I.    Introduction   

The fact that not all differential equations have analytical solutions, 

determining the analytical solution is never an easy process. Numerous analytical 

methods may be used to solve differential equations. Laplace created the integral 

transform, or LT [XVIII], to solve differential equations. The LT makes it simple to 

tackle IVP. Differential equations can also be solved with the help of the Fourier 

transform [VI] and the Mellin transform [XI]. While the Fourier transform is used in 

wave analysis and the Mellin transform is used in asymptotic analysis, the Laplace 

transform is mostly used in time domain issues. 

Later, in 1993, Watugala [XXIII] presented the Sumudu Transform, which was 

developed especially to deal with differential equations and engineering control 

problems. It's noteworthy to notice that while performing the inverse transform of ST 

is simple, issues solved by LT are considerably easier for ST to solve. These 

transformations are essential to the broader area of fractional calculus [XXVII] and 

have been extended to handle the complexities of FDE, as shown in references [XIV, 

XXII]. Additionally, these transformations are valuable because they can aid in 

solving nonlinear differential equations when employed alongside methods such as 

the variation iteration technique, the homotopy perturbation method, the new iteration 

method, and the Adomian decomposition method. For further details, refer to [X, XII, 

XIII, XIX, XX, XXI, XXVI]. 

The Shehu transformation, a novel transformation that Shehu developed, is a 

generalization of LT and ST [XXV]. Despite the aforementioned techniques, other 

transformations are also available in the realm of differential equations. These include 

the Aboodh transform [IV], ZZ transform [XVI], Mohand transform [II], Mahgoub 

transform [I], Sawi transform [III], Elzaki transform [IX], and Yang transform 

[XXIV].   

Applying these transformations might be difficult when working with non-integer 

orders, particularly when solving fractional-order differential equations. This 

conceptual issue has led to the creation of a unique transformation known as the 𝒜 

transformation, which is likely also known as the Aman transformation. It offers a 

very useful tool for solving fractional-order differential equations. 

II.   Basics of 𝓐 Transform 

This section defines the 𝒜 transform, outlines its fundamental properties, and 

discusses how it relates to the Sumudu and Laplace transforms. 

Definition of 𝓐 Transform: Consider the set Տ as the set of functions as specified in 

[XXIII]: 

               Տ = {ξ(τ): ∃ℳ, 𝑣1, ν2 > 0, |ξ(τ)| < ℳ𝑒(|τ|/ν𝑖), if, τ ∈ (−1)𝑖 × [0, ∞)}         (1) 
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Then, there exists an 𝓐 transform of ξ(τ) specified throughout the collection of 

functions Տ, having the following definition:     

               𝒜[ξ(τ)] = ξ̅(𝑣2) =
1

𝑣
∫ ξ(𝑣τ)𝑒

−τ

𝑣 𝑑𝑡
∞

0
, 𝑣 ∈ (−ν1, ν2).                    (2)        

The inverse of 𝓐 transform:                                                                          

The definition of the 𝒜 transform's inverse is:  

𝒜−1 (ξ(v2)) = ξ(τ), 𝑓𝑜𝑟 τ ≥ 0.         

Or 

ξ(τ) = 𝒜−1[ξ̅(𝑣2)] =
1

2πι
∫

1

𝑢
𝑒

τ

𝑢ξ(𝑣2)𝑑𝑣
α+𝑖∞

α−𝑖∞
.                                  (3)       

In the complex plane i.e., (u = x+iy), this integral is taken along v = α2. The real α 

constants and the 𝒜 Transform variables v2 are used here. 

The relationship between Sumudu and 𝓐 Transform 

First of all, write the ST [XXIII] of ξ (τ) ∈ Տ as given below: 

𝑆[ξ(τ)] = 𝐺(𝑣) = ∫ ξ(𝑣τ)𝑒−τ𝑑τ
∞

0
=

1

𝑣
∫ ξ(τ)𝑒−

τ

𝑢𝑑𝑡
∞

0
, 𝑣 ∈ (−ν1, ν2)             (4) 

Lemma 1: If G(v) and ξ̅(𝑣2) is the ST and 𝒜 transform of g(τ), respectively, then 

ξ̅(𝑣2) = 𝐺(𝑣2). 

Proof. The 𝒜 transform of ξ(τ) ∈ Տ is  

𝒜[ξ(τ)] = ξ̅(𝑣2) =
1

𝑣
∫ ξ(𝑣τ)𝑒

−τ
𝑣 𝑑𝑡

∞

0

, 

Put t = vw in the above equation, and we get 

𝒜[ξ(τ)] = ξ̅(𝑣2) =
1

𝑢
∫ ξ(𝑣2𝑤)𝑒−𝑣𝑣𝑑𝑤

∞

0

 

= ∫ ξ(𝑣2𝑤)𝑒−𝑤
∞

0

𝑑𝑤 = 𝐺(𝑣2) 

Hence proved. 

The relationship between Laplace and 𝓐 Transform 

As we know, the LT of the function ξ(τ) is [XVIII]: 

ℒ[ξ(τ)] = 𝐹(𝑠) = ∫ ξ(τ)𝑒−𝑠τ𝑑τ
∞

0

. 

Lemma 2: If ξ̅(𝑣2) and F(s) is the 𝒜 transform and LT of ξ(τ) respectively then 

ξ̅(𝑣2) =
1

𝑣2 𝐹 (
1

𝑣2)  𝑜𝑟 𝐹(𝑠) =
1

𝑠
ξ̅ (

1

𝑠
) . 
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  Proof. The 𝒜 transform of ξ(τ) ∈ S is 

𝒜[ξ(τ)] = ξ̅(𝑣2) =
1

𝑣
∫ ξ(𝑣τ)𝑒

−τ
𝑣 𝑑τ

∞

0

, 

Put v τ =w in the above equation, and we get 

𝒜[ξ(τ)] = ξ̅(𝑣2) =
1

𝑣
∫ ξ(𝑤)𝑒

−𝑤
𝑣2

𝑑𝑤

𝑣

∞

0

 

=
1

𝑣2
∫ ξ(𝑤)𝑒

−𝑤
𝑣2

∞

0

𝑑𝑤 

=
1

𝑣2
𝐹 (

1

𝑣2
) 

The reverse relationship is derived with the help of ST (see Lemma 1) 

 ξ̅(𝑣2) = 𝐺(𝑣2) 

It implies                      ξ̅(𝑣) = 𝐺(𝑣) =
1

𝑣
∫ ξ(τ)𝑒−

τ

𝑣𝑑τ
∞

0
 

Now                            𝑔̅ (
1

𝑠
) = 𝑠 ∫ ξ(τ)𝑒−𝑠τ𝑑τ

∞

0
 

1

𝑠
ξ̅ (

1

𝑠
) = ∫ ξ(τ)𝑒−𝑠τ𝑑τ

∞

0

= 𝐹(𝑠) 

which completes the proof. 

𝓐 transform of some basic functions 

Theorem 1: The 𝒜 transform of τ𝑛, n ≥ 1 is given as: 

                                              𝒜[τ𝑛] = 𝑛! 𝑣2𝑛                                        (5) 

Proof: By definition, 

𝒜[τ𝑛] =
1

𝑣
∫ (𝑣𝑛τ𝑛)𝑒

−τ
𝑣 𝑑τ

∞

0

 

Put τ = vw, we get 

𝒜[τ𝑛] =
1

𝑣
∫ (𝑣2𝑛𝑤𝑛)𝑒−𝑤𝑣𝑑𝑤

∞

0

 

= 𝑣2𝑛 ∫ (𝑤𝑛)𝑒−𝑤𝑑𝑤
∞

0  

= 𝑣2𝑛 ∫ (𝑣𝑛+1−1)𝑒−𝑤𝑑𝑤
∞

0  

= 𝑛! 𝑣2𝑛 

Corr. 𝒜[τα] = Γ(α + 1)𝑣2α, α ≻ −1 

Hint. By using the Gamma function.  
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Table 1: The 𝓐 transformation of some basic functions 

ξ(𝛕) Laplace Transform 

[XVIII] 

Sumudu 

Transform [XXIII] 

𝓐 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎 

             1 1

𝑠
 

              1          1   

           τ𝑚, 𝑚 ≥1 𝑚!

𝑠𝑚+1
 

𝑚! 𝑢𝑚 𝑚! 𝑣2𝑚 

τ𝛼 , 𝛼 ≻ 1 Γ(α + 1)

𝑠𝛼+1
 

Γ(𝛼 + 1)𝑢𝛼  Γ(𝛼 + 1)𝑣2𝛼  

𝑒𝑎τ 1

𝑠 − 𝑎
 

1

1 − 𝑎𝑢
 

1

1 − 𝑎𝑣2
 

si n(𝑎τ)

𝑎
 

1

𝑠2 + 𝑎2
 

𝑢

1 + 𝑎2𝑢2
 𝑣2

1 + 𝑎2𝑣4
 

𝑐𝑜𝑠(𝑎τ) 𝑠

𝑠2 + 𝑎2
 

1

1 + 𝑎2𝑢2
 

1

1 + 𝑎2𝑣4
 

𝑒𝑟𝑓(√𝑎τ)

√𝑎
 

1

𝑠(√𝑠 + 𝑎)
 

√𝑢

√1 + 𝑎𝑢
 

𝑣

√1 + 𝑎𝑣2
 

𝑒𝑎τ
𝑒𝑟𝑓(√𝑎τ)

√𝑎
 

1

√𝑠(𝑠 − 𝑎)
 

√𝑢

1 − 𝑎𝑢
 

𝑣

1 − 𝑎𝑣2
 

Some properties of 𝓐 transform  

Like the Laplace and Sumudu transforms, the 𝒜 transform has the following 

properties (Table 2). Moreover, these properties have been proved in this manuscript 

or can be easily derived from the relationship of 𝒜 transform with the Laplace and 

the Sumudu transform.             

Table 2: Some properties of 𝒜 transform 

Formula Property Name 

𝒜[ξ(τ)] = ξ̅(𝑣2) =
1

𝑣
∫ ξ(𝑣τ)𝑒

−τ
𝑣 𝑑τ

∞

0

 
Definition of 𝒜 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 

𝒜−1[ξ̅(𝑣2)] = ξ(τ) The inverse of A Transform 

𝒜[𝑎ξ(τ) + 𝑏𝜂(τ)]
= 𝑎𝒜[ξ(τ)] + 𝑏𝒜[𝜂(τ)] 

Linearity 

𝒜[𝑒𝑎τξ(τ)] =
1

(1 − 𝑎𝑣2)
ξ̅ (

𝑣2

1 − 𝑎𝑣2
) 

First Shifting Theorem 

𝒜[ξ𝑛(τ)] =
𝒜(ξ(τ))

𝑣2𝑛
−

ξ(0)

𝑣2𝑛
−

ξ′(0)

𝑣2(𝑛−1)

− ⋯ −
ξ𝑛−1(0)

𝑣2
 

𝒜 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
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𝒜 [∫ ξ(𝜇)𝑑𝜇
τ

0

] = 𝑣2𝒜(ξ(τ)) = 𝑣2ξ̅(𝑣2) 
𝒜 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑖𝑛𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝒜(ξ ∗ 𝜂) = 𝑣2𝒜[ξ(τ)]𝒜[𝜂(τ)] Convolution 

𝒜[ξ(𝑎τ)] = ξ̅(𝑎𝑣2) First Scale Preserving Theorem 

 𝓐 transformation of the derivative of a function 

Theorem 2: The 𝒜 transform of 
𝑑ξ(τ)

𝑑τ
 i.e., the first derivative of ξ(τ) over a set Տ, is 

given below 

                                                        𝒜 [
𝑑ξ(τ)

𝑑τ
] =

𝒜(ξ(𝑡))

𝑣2 −
ξ(0)

𝑣2                                      (6) 

Proof.  𝒜 [
𝑑ξ(τ)

𝑑τ
] = 𝒜(𝑣2) =

1

𝑣
∫

𝑑ξ(𝑣τ)

𝑑τ
𝑒

−τ

𝑣 𝑑τ
∞

0
 

=
1

𝑣
[(𝑒

−τ
𝑣

ξ(𝑣τ)

𝑣
)

τ=0

∞

− ∫
−1

𝑣
𝑒

−τ
𝑣

ξ(𝑣τ)

𝑣

∞

0

] 

=
1

𝑣
[(−

ξ(0)

𝑣
) +

1

𝑣

1

𝑣
∫ 𝑒

−τ
𝑣

∞

0

ξ(𝑣τ)] 

=
1

𝑣
[(−

ξ(0)

𝑣
) +

1

𝑣
𝒜(ξ(τ))] 

Thus, we have,                   𝒜 [
𝑑ξ(τ)

𝑑𝑡
] =

𝒜(ξ(τ))

𝑣2 −
ξ(0)

𝑣2  

Alternative Proof:  By using Lemma 2, we can prove it as below: 

                               ℒ (
𝑑ξ(τ)

𝑑τ
) = 𝑠ξ(𝑠) − ξ(0) = 𝐹(𝑠) 

Now, 

𝒜 [
𝑑ξ(τ)

𝑑τ
] =

1

𝑣2
𝐹 (

1

𝑣2
) 

=
1

𝑣2 (
1

𝑣2
ξ (

1

𝑣2
) − ξ(0)) 

=
1

𝑣2
((ξ̅(𝑣2) − ξ(0)) 

=
1

𝑣2
(𝒜(ξ(τ)) − ξ(0)) 

Hence proved. 

Theorem 3:  The 𝒜 transform of 
d2ξ(τ)

dτ2  i.e., the 2𝑛𝑑 derivative of ξ(τ) is given as 
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𝒜 [
𝑑2ξ(τ)

𝑑τ2
] =

𝒜(ξ(τ))

𝑣4
−

ξ(0)

𝑣4
−

1

𝑣2

𝑑ξ(τ)

𝑑τ
|𝑡=0 

Proof. Proceed similarly as explained in Theorem 2. 

Theorem 4:  The 𝒜 transform of ξn(t) i.e. the nth 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒, n ≥ 1 of ξ(t) is given 

as: 

      𝒜[ξ𝑛(τ)] = 𝑣−2𝑛 (𝒜(ξ(τ)) − ∑ 𝑣2𝑘𝑛−1
𝑘=0 ξ𝑘(0+)) , −1 < 𝑛 − 1 < β ≤ 𝑛      (7) 

Proof: Follow the mathematical induction. 

Theorem 5: If f(̅v2) is the 𝒜 transform of f(t), then ∫ f(τ)d𝜏 
t

0
has an 𝒜 transform, 

which is given by 

𝒜 [∫ 𝑓(τ)𝑑τ
𝑡

0

] = 𝑣2𝒜(𝑓(𝑡)) = 𝑣2𝑓̅(𝑣2) 

Proof: By definition  

𝒜 [∫ 𝑓(τ)𝑑τ
𝑡

0

] =
1

𝑣
∫ (∫ 𝑓(𝑣τ)𝑑τ

𝑡

0

) 𝑒
−𝑡
𝑣 𝑑𝑡

∞

0

 

 =  
1

𝑣
[(𝑒

−𝑡
𝑣 (−𝑣) ∫ 𝑓(𝑣𝜏)𝑑𝜏

𝑡

0

) |𝑡=0
𝑡=∞ + 𝑢 ∫ 𝑒

−𝑡
𝑣 𝑓(𝑣𝑡)𝑑𝑡

∞

0

]  

= 𝑣2 (
1

𝑣
𝑒

−𝑡
𝑣 𝑓(𝑣𝑡)𝑑𝑡) 

= 𝑣2𝒜(𝑓(𝑡)) = 𝑣2𝑓(̅𝑣2) 

Hence proved. 

Theorem 6: If ξ̅(v2), η̅(v2)is A transform of f(τ), g(τ) respectively then the 

Convolution is provided by 𝒜[(ξ ∗ η)] = v2𝒜[ξ(τ)]𝒜[η(τ)]. 

Proof: From the Convolution property of the LT, we have 

                                                   ℒ[(f ∗ g)] = F(s) ∗ G(s)   

From the relationship between 𝒜 and Laplace, i.e, Lemma 2, we have 

𝒜[(ξ ∗ 𝜂)] =
1

𝑣2
𝐹 (

1

𝑣2
) ∗ 𝐺 (

1

𝑣2
) 

= 𝑣2
1

𝑣2
𝐹 (

1

𝑣2
)

1

𝑣2
𝐺 (

1

𝑣2
) 

= 𝑣2ξ̅(𝑣2)η̅(𝑣2) 

= 𝑣2𝒜[ξ(τ)]𝒜[𝜂(τ)] 
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III.   Preliminaries on FC 

Definition 1: A real function ξ(τ) τ >0  be in space 𝐶𝜇, 𝜇 ∈ 𝑹 𝑖𝑓 there exists 

a real number n ( ≥ 𝜇), such that ξ (τ) = τ𝑛ξ1(τ), where ξ(τ) ∈ C(0,∞ ) and belong to 

space 𝐶𝑘  if ξ𝑘 ∈ 𝐶𝜇, k ∈ N [XV].  

Definition 2: The fractional derivative of ξ(τ) ∈ 𝐶−1
𝜇

[XV, XVII] of order 𝛾 defined in 

Caputo's sense as: 

𝐷𝑡
𝛾

0
𝐶 ξ(τ) =

1

Γ(𝑛 − 𝛾)
∫ (τ − 𝑟)𝑛−𝛾−1

τ

0

ξ𝑛(𝑟)𝑑𝑟, 𝑛 − 1 < 𝛾 ≤ 𝑛, 𝑛 ∈ 𝑁, 

And in the Riemann-Liouvilles sense [XVII] as: 

𝐷𝑡
𝛾

0
𝑅𝐿 ξ(τ) =

1

Γ(𝑛 − 𝛾)

𝑑𝑛

𝑑𝑡𝑛 (∫ (τ − 𝑟)𝑛−𝛾−1
τ

0

ξ(𝑟)𝑑𝑟) , 𝑛 − 1 < 𝛾 ≤ 𝑛, 𝑛 ∈ 𝑁 

The following describes the relationship between Reimann-Liouvilles and 
Caputo derivatives: 

                             𝐷𝑡
𝛾

0
𝑅𝐿 ξ(τ) =  𝐷𝑡

𝛾
0
𝐶 ξ(τ) + ∑

τ𝑘−𝛾

Γ(𝑘−𝛾+1)
𝑛−1
𝑘=0  ξ𝑘(0+) 

Definition 3: The LT of the Caputo derivative of order 𝛾 (n-1< ≤ n ) of ξ (t) [XIV], 

is provided as 

ℒ[ 𝐷𝑡
𝛾

0
𝐶 ξ(τ)] = 𝑠𝛾ℒ(ξ(τ)) − ∑ 𝑠𝛾−𝑘−1

𝑛−1

𝑘=0

ξ𝑘(0+), −1 < 𝑛 − 1 < 𝛾 ≤ 𝑛 

For the Reimann-Liouvilles derivative [XIV]  

ℒ[ 𝐷𝑡
𝛾

0
𝑅𝐿 ξ(τ)] = 𝑠𝛾ℒ(ξ(τ)) − ∑ 𝑠𝛾

𝑛−1

𝑘=0

𝐷𝛾−𝑘−1ξ(𝑡)|𝑡=0, −1 < 𝑛 − 1 < 𝛾 ≤ 𝑛 

Definition 4: The definition of the two-parameter Mittag-Leffler function [XVII] is 

ℰα,β(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 𝛽)

∞

𝑘=0

, 𝑧, β ∈ 𝐶, 𝑅𝑒𝑎𝑙(α) > 0. 

Theorem 7: If ξ̅(v2) is 𝒜 transform of ξ(t), then the 𝒜 transform of the Riemann-

Liouville integral, i.e I0,t
n−β

(see [VIII]) is given as: 

𝒜 [𝐼0,𝑡
𝑛−β

ξ(t)] = 𝑣2(𝑛−β)𝒜(ξ(𝑡)) = 𝑣2(𝑛−β)ξ̅(𝑣2), −1 < 𝑛 − 1 < β ≤ 𝑛 

Proof: Let         𝐼0,𝑡
𝑛−β

ξ(𝑡) =
1

Γ(𝑛−β)
∫ (𝑡 − τ)𝑛−β−1𝑡

0
ξ(𝑡)𝑑𝜏 

Applying the 𝒜 transform on both sides, we get 
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𝒜 [𝐼0,𝑡
𝑛−β

ξ(𝑡)] = 𝒜 (
1

Γ(𝑛 − β)
∫ (𝑡 − τ)𝑛−β−1

𝑡

0

ξ(𝑡)𝑑τ) 

= (
1

Γ(𝑛 − β)
) 𝒜[𝑡𝑛−β−1] ∗ 𝒜ξ(𝑡) 

=
1

Γ(𝑛 − β)
𝑣2(𝑛−β−1)(Γ(𝑛 − β))𝑣2𝐴(𝑣2) 

= 𝑣2(𝑛−β)ξ̅(𝑣2) 

which completes the proof. 

Theorem 8:  The 𝒜 transform of the Caputo derivative of ξ(t) is given as: 

𝒜 [ 𝐷𝑡
𝛽

0
𝐶 ξ(𝑡)] = 𝑣−2β (𝒜(ξ(𝑡)) − ∑ 𝑣2𝑘𝑛−1

𝑘=0 ξ𝑘(0+)) , −1 < 𝑛 − 1 < β ≤ 𝑛    (8) 

Proof: Using definition 2, we have 

𝐷𝑡
𝛽

0
𝐶 ξ(𝑡) =

1

Γ(𝑛 − 𝛽)
∫ (𝑡 − 𝜏)𝑛−β−1

𝑡

0

ξ𝑛(𝜏)𝑑𝜏 

Applying the 𝒜 transform, we get 

𝒜 [ 𝐷𝑡
𝛽

0
𝐶 ξ(𝑡)] = 𝒜 (

1

Γ(𝑛 − 𝛽)
∫ (𝑡 − 𝜏)𝑛−β−1

𝑡

0

ξ𝑛(𝜏)𝑑𝜏) 

 

𝒜 [ 𝐷𝑡
𝛽

0
𝐶 ξ(𝑡)] =

1

Γ(𝑛 − β)
𝒜(𝑡𝑛−β−1) ∗ 𝒜(ξ𝑛(𝑡)) 

Now, using Theorems 3 and 4, we get the required result. 

Theorem 9:  The 𝒜 transform of Riemann-Liouville's derivative of ξ(t) is given as: 

𝒜 [ 𝐷𝑡
𝛽

0
𝑅𝐿 ξ(τ)] = 𝑣−2β𝒜(ξ(τ)) − ∑ 𝑣−2(𝑘+1)[𝐷β−𝑘−1ξ(τ)|τ=0]

𝑛−1

𝑘=0

− 1 < 𝑛 − 1 ≤ 𝑛 

Proof: By definition 2, we have 

[ 𝐷𝑡
𝛽

0
𝑅𝐿 ξ(τ)] =

𝑑𝑛

𝑑𝑡𝑛
𝐼𝑛−βξ(τ) 

Let                                          η(τ)= 𝐼𝑛−βξ(τ) 

Now applying A transform to the above, we get 

𝒜 [ 𝐷𝑡
𝛽

0
𝑅𝐿 𝜂(τ)] = 𝒜 [

𝑑𝑛

𝑑𝑡𝑛
𝜂(τ)] 
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= (
𝒜(𝜂(τ))

𝑣2𝑛
− ∑

𝜂𝑘(0+)

𝑣2(𝑛−𝑘)

𝑛−1

𝑘=0

) 

= (
𝒜 (𝐼𝑛−βξ(τ))

𝑣2𝑛
− ∑

𝜂𝑛−𝑘−1(0+)

𝑣2(𝑘+1)

𝑛−1

𝑘=0

) 

= (𝑣2(𝑛−β) 𝒜(ξ(τ))

𝑣2𝑛
− ∑ 𝑣−2(𝑘+1)

𝑛−1

𝑘=0

𝐷𝑛−𝑘−1𝐼𝑛−βξ(𝑡)|𝑡=0) 

= (𝑣2(𝑛−β) 𝒜(ξ(τ))

𝑣2𝑛
− ∑ 𝑣−2(𝑘+1)

𝑛−1

𝑘=0

𝐷β−𝑘−1ξ(𝑡)|𝑡=0) 

= 𝑣−2β𝒜(ξ(τ)) − ∑ 𝑣−2(𝑘+1)[𝐷β−𝑘−1ξ(𝑡)|𝑡=0]

𝑛−1

𝑘=0

 

Hence proved. 

Theorem 10:  𝒜 transform  of  the Mittag-Leffler function, i.e. τβ−1ℰα,β(𝑧)(λτα)  

                                  𝒜[τβ−1ℰα,β(𝑧)(λτα)] =
𝑣2(β−1)

1−λ𝑣2α                                          (9) 

Proof: Expanding the Mittag-Leffler function and utilizing Theorem 3. 

IV.   Applications to FDE 

Example 1: Consider the following Caputo fractional IVP 

                                       𝐷τ
𝛽

0
𝐶 ξ(τ) + 𝑎ξ(τ) =  0, ξ(0) = 𝑐, 0 < 𝛽 ≤ 1                         (10) 

Applying 𝒜 transform to (10), we get, 

𝒜 [ 𝐷𝑡
𝛽

0
𝐶 ξ(τ) + 𝑎ξ(τ)] =  0 

𝒜 [ 𝐷𝑡
𝛽

0
𝐶 ξ(τ)] + 𝒜[𝑎ξ(τ)] = 0 

𝑣−2β(𝒜(ξ(τ)) − ξ(0) +  𝒜[𝑎ξ(τ)] = 0 

ξ̅(𝑣2) = 𝑐 − 𝑣2αξ̅(𝑣2) 

ξ̅(𝑣2) =
𝑐

1 + 𝑎𝑣2α
 

Applying the inverse 𝒜 transform, we get 

𝒜−1[ξ̅(𝑣2)] = 𝒜−1 [
𝑐

1 + 𝑎𝑣2α] 

ξ(τ) = 𝑐ℰα,1(−𝑎τα) 
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(By using Theorem 10.) 

Example 2. Next, consider the nonhomogeneous fractional ordinary differential 

equation in the Caputo sense as 

𝐷𝑡
𝛼

0
𝐶 ξ(τ) + ξ(τ) =

2

Γ(3 − α)
τ2−α −

1

Γ(2 − α)
τ1−α + τ2 − τ, 

                                               ξ(0) = 0, τ > 0,0 < α ≤ 1                                      (11) 

Applying the 𝒜 transform to both sides of (11), we get 

𝒜[ 𝐷𝑡
𝛼

0
𝐶 ξ(τ) + ξ(τ)] = 𝒜 [

2

Γ(3 − α)
τ2−α] − 𝒜 [

1

Γ(2 − α)
τ1−α] + 𝒜[τ2] − 𝒜[τ] 

𝑣−2α ((ξ̅(𝑣2)) − ξ(0)) + ξ̅(𝑣2) = 2𝑣4−2α − 𝑣2−2α + 2𝑣4 − 𝑣2 

(1 + 𝑣2α)ξ̅(𝑣2) = 2𝑣4 − 𝑣2 + 2𝑣4+2α − 𝑣2+2α 

ξ̅(𝑣2) =
2𝑣4 − 𝑣2 + 2𝑣4+2α − 𝑣2+2α

(1 + 𝑣2α)
 

= 2𝑣4 − 𝑣2 

After using the inverse 𝒜 transform, the outcome is as follows: 

ξ(τ) = τ2 − τ 

This matches the solution obtained in [VII]. 

Example 3: Consider the following Riemann-Liouville's FDE 

                                        𝐷𝑡

1

2
0

𝑅𝐿 ξ(τ) + 𝑎ξ(τ) = 0, 𝒟τ

−
1

2ξ(τ)|τ=0 = 𝑐                        (12) 

Applying 𝒜 transform, we get, 

𝒜 [ 𝐷𝑡

1
2

0
𝑅𝐿 ξ(τ) + 𝑎ξ(τ)] = 0 

𝒜 [ 𝐷𝑡

1
2

0
𝑅𝐿 ξ(τ)] + 𝒜[𝑎ξ(τ)] = 0 

𝑣−1(𝒜(ξ(τ))  − 𝑣−2𝒟𝓉

−
1
2ξ(0) +  𝒜[𝑎ξ(τ)] = 0 

𝑣𝑣−1ξ̅(𝑣2) − 𝑣−2𝑐 + 𝑎ξ̅(𝑣2) = 0 

(1 + 𝑎𝑣)ξ̅(𝑣2) =
𝑐

𝑣
 

ξ̅(𝑣2) =
𝑐

𝑣(1 + 𝑎𝑣)
 

Applying the Inverse 𝒜 transform, we get 
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𝒜−1[ξ̅(𝑣2)] = 𝒜−1 [
𝑐

1 + 𝑎𝑣2α] 

ξ(τ) = 𝑐τ−
1
2ℰ1

2
,
1
2

(−𝑎τ−
1
2) 

(By using Theorem 10.) 

Example 4. Next, consider the Bagley-Torvik equation [V] as follows 

                     𝒟τ
2ξ(τ) + 𝒟τ

3

2ξ(τ) + ξ(τ) = τ + 1, ξ(0) = ξ(0)′ = 1, τ > 0,             (13) 

Applying the 𝒜 transform to both sides of (13), we get 

𝒜 [𝒟τ
2ξ(τ) + 𝒜 [𝒟τ

3
2ξ(τ)] + 𝒜ξ(τ)] = 𝒜[τ] + 𝒜[1] 

(
𝑔̅(𝑣2)

𝑣4
−

𝑔(0)

𝑣4
−

ξ′(0)

𝑣2 ) + (
𝑔̅(𝑣2)

𝑣3
−

𝑔(0)

𝑣3
−

ξ′(0)

𝑣
) + ξ̅(𝑣2) = 𝑣2 + 1 

ξ̅(𝑣2) − 1 − 𝑣2 + 𝑣ξ̅(𝑣2) − 𝑣 − 𝑣3 + 𝑣4ξ̅(𝑣2) = 𝑣6 + 𝑣4 

ξ̅(𝑣2)(1 + 𝑣 + 𝑣4) = 𝑣6 + 𝑣4 + 1 + 𝑣 + 𝑣2 + 𝑣3 

ξ̅(𝑣2) =
𝑣6 + 𝑣4 + 1 + 𝑣 + 𝑣2 + 𝑣3

(1 + 𝑣 + 𝑣4)
 

= 𝑣2 + 1 

On applying the inverse 𝒜 transform, we get the solution as 

ξ(τ) = τ + 1 

which is the exact solution and matches the solution of the same problem obtained by 

the Shehu transform [V]. 

Example 5. Next, consider the following equation [XIV] 

                                       𝐷τ

1

2
0

𝑅𝐿 ξ(τ) − ξ(τ) = −1, 𝒟τ

−
1

2ξ(0) = 0, τ > 0,                (14) 

Applying 𝒜 transform to both sides of (14), we get, 

𝒜 [ 𝐷τ

1
2

0
𝑅𝐿 ξ(τ)] − 𝒜[ξ(τ)] = −𝒜(−1) 

(
ξ̅(𝑣2)

𝑣
− 𝒟τ

−
1
2ξ(0)) − ξ̅(𝑣2) = −1 

ξ̅(𝑣2)(1 − 𝑣) = −𝑣 

ξ̅(𝑣2) =
−𝑣

(1 − 𝑣)
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=
𝑣

(𝑣 − 1)
 

=
𝑣(1 + 𝑣)

(𝑣2 − 1)
 

=
(𝑣 + 1 − 1 + 𝑣2)

(𝑣2 − 1)
 

= 1 −
1

(1 − 𝑣2)
−

𝑣

(1 − 𝑣2)
 

After applying the inverse 𝒜 transform, we get the solution as 

ξ(τ) = 1 − 𝑒τ − 𝑒τ 𝑒𝑟𝑓√τ 

Which is the exact solution to the given equation and matches the solution obtained in 

[XIV]; here, erf is the error function. 

V.   Conclusion and Future Work 

This paper concentrates on the 𝒜 transform as an effective method for 

analytically resolving fractional differential equations. This transformative technique 

is very successful and particularly developed for simplifying the solution process for 

specific types of problems. Analytical solutions for fractional differential operators of 

the Caputo and Riemann-Liouville categories are first shown in this paper. The 𝒜 

transform performs admirably in the domain of FDE. Its primary advantage over 

other transformations is that it handles fractional-order operators with such skill. This 

innovation's transformational power is demonstrated by the several challenges it has 

successfully addressed, including the challenging Bagley-Torvik equation. Looking 

ahead, it is envisaged that the direction of future research efforts will further explore 

the intricacies of the 𝒜 transform. Furthermore, this new method's revolutionary 

power will likely allow it to solve differential equations with integer and non-integer 

orders. To solve particularly nonlinear differential equations of both integer and non-

integer orders, this transformation can be used with iteration techniques like ADM, 

VIM, NIM, and HPM. 

  Conflict of Interest:  

Regarding this paper, there were no relevant conflicts of interest. 

 

References 

I. Abdel Rahim Mahgoub, Mohand M. “The New Integral Transform 

Mahgoub Transform.” Advances in Theoretical and Applied 

Mathematics, vol. 11, no. 4, 2016, pp. 391–398. 

https://www.ripublication.com/atam16/atamv11n4_07.pdf 

 

https://www.ripublication.com/atam16/atamv11n4_07.pdf


 

 

 

 

J. Mech. Cont. & Math. Sci., Special Issue, No.- 12, August (2025)  pp 64-79 

Amandeep Singh et al 

 
A Special Issue on ‘Recent Evolutions in Applied Sciences and Engineering-2025’ 

 

 

77 
 

II.  Abdel Rahim Mahgoub, Mohand M. “The New Integral Transform 

Mohand Transform.” Advances in Theoretical and Applied Mathematics, 

vol. 12, no. 2, 2017, pp. 113–120. 

https://www.ripublication.com/atam17/atamv12n2_07.pdf 

III. Abdel Rahim Mahgoub, Mohand M. “The New Integral Transform Sawi 

Transform.” Advances in Theoretical and Applied Mathematics, vol. 14, 

no. 1, 2019, pp. 81–87. 

https://www.ripublication.com/atam19/atamv14n1_05.pdf 

IV. Aboodh, Khalid Suliman. "The New Integral Transform Aboodh 

Transform." Global Journal of Pure and Applied Mathematics, vol. 9, no. 

1, 2013, pp. 35–43. 

https://www.ripublication.com/gjpamv7/gjpamv9n1_04.pdf 

V.  Belgacem, Rachid, Dumitru Baleanu, and Ahmed Bokhari. "Shehu 

Transform and Applications to Caputo-Fractional Differential 

Equations." International Journal of Analysis and Applications, vol. 17, 

2019, no. 6, pp. 917–927. 10.28924/2291-8639-17-2019-917VI.  

VI. Bracewell, Ron, and Peter B. Kahn. "The Fourier Transform and Its 

Applications." American Journal of Physics, vol. 34, no. 8, 1966, pp. 

712–712.        10.1119/1.1973431. 

VII.  Bulut, H., H. M. Baskonus, and F. B. M. Belgacem. "The Analytical 

Solution of Some Fractional Ordinary Differential Equations by the 

Sumudu Transform Method." Abstract and Applied Analysis, vol. 4, 

2013, pp. 1–6.     10.1155/2013/203875 

VIII.  Debnath, Lokenath, and Dambaru Bhatta. “Integral Transforms and 

Their Applications. Chapman and Hall/CRC.” Taylor and Francis Group, 

2007.        10.1201/b17670 

IX. Elzaki, Tarig M. "The New Integral Transform Elzaki Transform." 

Global Journal of Pure and Applied Mathematics, vol. 7, no. 1, 2011, pp. 

57–64. 

X. Elzaki, Tarig M., and Mourad Chamekh. "Solving Nonlinear Fractional 

Differential Equations Using a New Decomposition Method." Universal 

Journal of Applied Mathematics and Computation, vol. 6, 2018, pp. 27–35. 

XI. Erdélyi, A., et al. Tables of Integral Transforms. Vol. 1, McGraw-Hill, 1954. 

XII.  Goswami, Pranay, and Rubayyi T. Alqahtani. "Solutions of Fractional 

Differential Equations by Sumudu Transform and Variational Iteration 

Method." Journal of Nonlinear Sciences and Applications, 2016.      

10.22436/jnsa.009.04.48 

 

https://www.ripublication.com/atam17/atamv12n2_07.pdf
https://www.ripublication.com/atam19/atamv14n1_05.pdf
https://www.ripublication.com/gjpamv7/gjpamv9n1_04.pdf
https://doi.org/10.1119/1.1973431
https://doi.org/10.1155/2013/203875
https://doi.org/10.1201/b17670
https://doi.org/10.22436/jnsa.009.04.48
https://doi.org/10.22436/jnsa.009.04.48


 

 

 

 

J. Mech. Cont. & Math. Sci., Special Issue, No.- 12, August (2025)  pp 64-79 

Amandeep Singh et al 

 
A Special Issue on ‘Recent Evolutions in Applied Sciences and Engineering-2025’ 

 

 

78 
 

XIII.  Hailat, Ibrahim, Zarita Zainuddin, and Amirah Azmi. "New Approach of 

Modifying Laplace Transform Variational Iteration Method to Solve 

Fourth-Order Fractional Integro-Differential Equations." Authorea, 30 

Jan. 2024.     10.22541/au.170665886.63054022/v1 

XIV.  Liang, Song, Ranchao Wu, and Liping Chen. "Laplace Transform of 

Fractional Order Differential Equations." Electronic Journal of 

Differential Equations, no. 139, 2015, pp. 1–15. 

http://ejde.math.txstate.edu/Volumes/2015/139/liang.pdf 

XV. Miller, Kenneth S., and Bertram Ross. “An Introduction to the Fractional 

Calculus and Fractional Differential Equations.” John Wiley and Sons, 1993. 

XVI.  Moazzam, A., and Z. I. Muhammad. “A New Integral Transform ‘Ali 

and Zafar’ Transformation and Its Application in Nuclear Physics.” 

Proceedings of the 19th International Conference on Statistical Sciences, 

vol. 36, 2022, pp. 177–182. 

https://www.researchgate.net/publication/361409149. 

XVII.  Podlubny, Igor. Fractional Differential Equations. Mathematics in 

Science and Engineering, vol. 198, Academic Press, January 15, 1999. 

URL: https://archive.org/details/fractionaldiffer00podl_878. 

XVIII. Schi, J. L. “The Laplace Transform: Theory and Applications.” Springer, 1999. 

XIX. Singh, Amandeep, et al. "Solving Nonlinear Coupled Fractional Partial 

Differential Equations by ZZ Transform and Adomian Polynomials." 

Journal of Mechanics of Continua and Mathematical Sciences, Special 

Issue no. 11, May 2024, pp. 1–17. 10.26782/jmcms.spl.11/2024.05.00001 

XX.  Singh, Jagdev, Devendra Kumar, and A. Klman. "Homotopy 

Perturbation Method for Fractional Gas Dynamics Equation Using 

Sumudu Transform." Abstract and Applied Analysis, 2013.       

10.1155/2013/934060 

XXI. Sontakke, Bhausaheb R., and Rajashri Pandit. "Convergence Analysis 

and Approximate Solution of Fractional Differential Equations." Malaya 

Journal of Matematik, vol. 7, no. 2, 2019, pp. 338–344.      

10.26637/MJM0702/0029 

XXII. Tuluce Demiray, Seyma, Hasan Bulut, and Fethi Bin Muhammad 

Belgacem. "Sumudu Transform Method for Analytical Solutions of 

Fractional Type Ordinary Differential Equations." Mathematical 

Problems in Engineering, 2015, Article ID 131690.        

10.1155/2015/131690 

 

 

https://doi.org/10.22541/au.170665886.63054022/v1
http://ejde.math.txstate.edu/Volumes/2015/139/liang.pdf
https://archive.org/details/fractionaldiffer00podl_878
https://doi.org/10.26782/jmcms.spl.11/2024.05.00001
https://doi.org/10.1155/2013/934060
https://doi.org/10.1155/2013/934060
https://doi.org/10.26637/MJM0702/0029
https://doi.org/10.26637/MJM0702/0029
https://doi.org/10.1155/2015/131690
https://doi.org/10.1155/2015/131690


 

 

 

 

J. Mech. Cont. & Math. Sci., Special Issue, No.- 12, August (2025)  pp 64-79 

Amandeep Singh et al 

 
A Special Issue on ‘Recent Evolutions in Applied Sciences and Engineering-2025’ 

 

 

79 
 

XXIII. Watugala, G. K. "Sumudu Transform—An Integral Transform to Solve 

Differential Equations and Control Engineering Problems." International 

Journal of Mathematical Education in Science and Technology, vol. 24, 

no. 1, 1993, pp. 35–43.     10.1080/0020739930240105 

XXIV. Yang, Xiao-Jun. Local Fractional Functional Analysis and Its 

Applications. Asian Academic Publisher, 2011. 

XXV. Zhao, Weidong, and Shehu Maitama. "New Integral Transform: Shehu 

Transform—A Generalization of Sumudu and Laplace Transform for 

Solving Differential Equations." International Journal of Analysis and 

Applications, vol. 17, no. 2, 2019, pp. 167–190. 

XXVI. Zhao, Weidong, and Shehu M. "Homotopy Perturbation Shehu 

Transform Method for Solving Fractional Models Arising in Applied 

Science." Journal of Applied Mathematics and Computational 

Mechanics, vol. 20, no. 1, 2021, pp. 71–82. 

XXVII. Yang, Yi, and Haiyan Henry Zhang. Fractional Calculus with its 

Applications in Engineering and Technology. Morgan & Claypool 

(Springer Nature Imprint), 2019. 

https://link.springer.com/book/10.1007/978-3-031-79625-8  

 

 

 

 

 

  

 

https://doi.org/10.1080/0020739930240105

