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Abstract 

In this paper, we propose a refined mathematical framework-termed the ‘ESIS 

model’, to address key limitations found in the classical SSEIR model of information 

propagation. Since the SSEIR model offers a foundational approach to capturing the 

dynamics of information spread, it falls short in representing scenarios where 

information circulates or stays active in a population over time. To overcome this, the 

ESIS model introduces a modified structure with additional compartments that more 

accurately represent the real-world flow of information. We develop its corresponding 

system of dynamic differential equations and offer a thorough state transition diagram 

to illustrate the behavior of individuals across different stages of information exposure. 

To assess the performance of the ESIS model, we simulate and compare it against the 

SSEIR framework through graphical analysis. The results indicate that the ESIS model 

enables more sustained and realistic propagation, making it a more effective tool for 

studying long-term influence in social networks and other information-driven systems. 

Keywords: Information, model, SSEIR, active, hypergraph, Social, Susceptible.   

   

Nomenclature 

𝒲  Set of nodes (users) in the hypergraph. 

𝜓  Number of neighboring nodes (adjacency count) 

𝔪  Number of groups (hyperedges) formed per new node.  

𝔪1  Number of existing nodes selected per group. 

𝑆𝔦  Susceptible inactive users  

𝑆𝑎  Susceptible active users 

𝑆ℎ  Highly active users. 
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𝐸1  Passively exposed. 

𝐸2  Engaged exposed. 

𝐼1  Informer. 

𝐼2  Influencer.  

R Recovered (no longer spreading information) 

∆𝔨  Small time increment in simulations at a time 𝔨. 

𝑑𝑒  Neighbor relation function in mean-field theory 

𝒫𝑆𝑖𝑆𝑖
(𝜓, 𝔨) Proportion of 𝑆𝔦 nodes with 𝜓 neighbors at a time 𝔨. 

𝒫𝑎𝑆𝑎
(𝜓, 𝔨) Proportion of 𝑆𝑎 nodes with 𝜓 neighbors at a time 𝔨. 

𝒫𝑆ℎ𝑆ℎ
(𝜓, 𝔨) Proportion of 𝑆ℎ nodes with 𝜓 neighbors at a time 𝔨.  

Greek Symbols 

α  probability of inactive users becoming active. 

𝛽  probability of active user becoming highly active. 

𝜇  probability of highly active user becoming passive exposed upon contact. 

η  probability of highly active user becoming engaged exposed upon contact. 

𝛿1 probability of passive exposure stage transition to engaged exposure. 

𝛿2 probability of passive exposure stage transition to the Informed state. 

𝛿2 probability of engage exposure stage transition to the Influence state. 

𝛾1, 𝛾2 probability of users transitioning to the recovered state. 

𝜌 ∙ 𝜏 ∙ 𝒸  re-exposure probability weighted by trust 𝜏 and community factor 𝒸. 

I.    Introduction   

Rapid growth of online social networks, such as Facebook, Twitter, and 

Reddit, is fundamentally changing the way information circulates amongst people and 

communities, since the content is received rapidly, far and wide through various 

channels and sources. One of the earliest and most foundational analogies was drawn 

by Goffman and Newill [III], who pioneered the treatment of information spread 

through the lens of epidemic theory, marking a turning point in how influence 

propagation was modeled mathematically. Over the decades, this perspective has 

evolved dramatically, fueled by the emergence of complex online platforms and user 

behaviors that are far richer and less predictable than simple contagion models could 

accommodate. Contemporary studies have explored this phenomenon through 

increasingly refined mathematical frameworks. Al-Oraiqat et al. [I] emphasized the 

role of strategic modeling in capturing diverse influence behaviors within social 

networks, showcasing how different parameters affect the reach and velocity of 

information dissemination. Similarly, Tong et al. [XII] introduced a fractional SEIRS 

model tailored for social media contexts, reflecting memory effects and delayed 

interactions often overlooked in classical models. 
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While graph-based models have formed the backbone of much of this research, a 

growing body of literature advocates for the use of hypergraphs to better represent 

higher-order relationships within networks. For example, Zhang et al.[XVII] proposed 

a hypergraph-based framework for influence maximization, enabling the modeling of 

group-level interactions rather than just pairwise links. These higher-order structures 

are particularly crucial in settings where information originates from communities or 

shared interests rather than individual nodes. Further supporting this shift, Xiao et al. 

[XIV] and Vasilyeva et al. [XIII] delved into hypergraph entropy and distance metrics, 

respectively, expanding the mathematical vocabulary available for understanding such 

networks. Several models have also incorporated behavioral nuances such as user 

competition, emotional response, or stifler dynamics. For instance, Liu et al. [IX] 

developed the SHIR model to analyze competing information streams, while Wang et 

al. [XV] proposed the ESIS model, capturing emotional feedback in spreader-ignorant-

stifler dynamics. More recently, Zhu et al. [XVIII] explored how sensitive information, 

such as privacy-related data, disseminates across social networks, suggesting that 

content type significantly alters propagation patterns. 

In parallel to the evolution of these models, mathematical advancements have enabled 

more precise control and analysis of information flow. Fixed-point theory, particularly 

within generalized metric frameworks, has proven useful in analyzing stability and 

convergence properties in these systems. Notably, Gonder et al. [IV] applied fixed-

point results to graphical cone bbb-metric spaces to address complex boundary value 

problems, offering valuable insights into the underlying structure of dynamic systems. 

The integration of hypergraph structures with fixed-point techniques offers a promising 

frontier. Seidman [XI] laid the foundational work on hypergraph-induced social 

structures, which has since been extended by studies on hypernetworks and scale-free 

properties, as seen in the work of Hu et al. [V]. Such approaches have now been adopted 

to model complex user behaviors, attention shifts, and influence hierarchies in 

heterogeneous and dynamic networks [XVI, XIX]. Despite significant progress, 

current models often fail to fully capture the layered nature of influence propagation in 

real-world networks, particularly in scenarios involving reactivation, selective 

attention, and controlled spread. This paper proposes an enhanced information 

diffusion model that incorporates behavioral feedback loops, differentiated activity 

states, and a hypergraphical network representation. Building upon recent surveys and 

comparative evaluations [VI, VII, VII], the model generalizes existing frameworks 

such as SSEIR and ESIS, providing greater adaptability and realism. It aims to bridge 

the gap between abstract mathematical formalism and the practical complexities of 

online social ecosystems. 

 Yet, most of these models only take into consideration one source of information and 

rarely take into account the complexities present in the case of multiple sources of 

information having a simultaneous impact on user behavior. However, we propose a 

refined information dissemination model as an evolution of the classical SSEIR model 

-ESIS model, which incorporates multiple sources of information with their pathway 

of exposure and transmission from each source. One of the key enhancements in our 

model lies in distinguishing between different activity levels within the susceptible 

population. By introducing intermediate stages of exposure and influence, as well as 
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the possibility of user re-engagement, the model captures a more nuanced and realistic 

view of how information spreads in online environments. These refinements reflect the 

complexities of user behavior, where individuals may not simply adopt or reject 

information, but might pass through phases of passive observation, active sharing, or 

later reactivation. Such a detailed framework can offer deeper insights into the 

pathways through which content circulates across digital platforms. Ultimately, this 

improved modeling approach may contribute to more effective strategies for managing 

information flows, identifying key audience segments for outreach, and mitigating the 

spread of harmful or misleading content. 

Limitations of the SSEIR Model: 

Despite its wide use to analyze information dissemination, the SSEIR model suffers 

from the fact that it has limitations, which limit its application to realistic scenarios. Its 

skill to expand without a check on the information in unrestricted exponential bounces 

off over the timescale is one of the major drawbacks. In the SSEIR, once the 

information starts flowing, it flows at an increasing rate, and all of that is without regard 

to natural barriers like saturation of individuals, attention limits, or potential barriers in 

the population. This means that the model often has errors on the side of overestimating 

the spread, which is not consistent with what is observed in controlled or time-limited 

environments such as social networks, education systems, or strategic communication. 

In addition, the SSEIR model is somewhat passive as it assumes that the entire 

population is affected equally toward infinity with no decaying interest or 

information fatigue. 

Proposal of the Enhanced Social Information Spread Model : 

In response to key challenges observed in earlier models, we propose a refined 

formulation that generalizes the SSEIR framework by introducing additional 

behaviorally realistic features and structural dynamics. The goal is to better mirror the 

nature of information spread in real-world networks, where virality often reaches a 

peak and then stabilizes, rather than continuing unchecked. To capture this, the 

proposed model incorporates self-limiting mechanisms such as attention decay, 

selective engagement, and saturation effects, allowing the system to converge to a 

stable state over time that are depicted in Figure 1. 
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    Fig. 1. 

This improvement provides a framework for researching situations of controlled and 

sustained dissemination in addition to viral and explosive information cascades. 

Through its layered compartmental structure, the model captures the gradual evolution 

of user states across varying degrees of engagement and influence, offering more 

flexibility than the original SSEIR frameworks [VIII]. The updated state transition 

diagram (Figure X) illustrates eight distinct user compartments: inactive (𝑆𝔦), active 

(𝑆𝑎), highly active (𝑆ℎ), passive exposure (𝐸1), engaged exposure (𝐸2), informer (𝐼1), 

influencer (𝐼2), and recovered (R). Transitions between these compartments capture the 

natural progression from initial exposure to becoming an active disseminator—or 

eventually losing interest and dropping out of the cycle. For instance, a user in the 

inactive state (𝑆𝔦) may become active (𝑆𝑎) with rate 𝛼 , and subsequently progress to a 

highly active status (𝑆ℎ) via 𝛽, depending on engagement intensity. Active users can 

be passively exposed (𝐸1) at rate μ, while highly active users may directly move to 

engaged exposure (𝐸2) via η. From these exposure compartments, individuals can 

transition to informer (𝐼1) or influencer (𝐼2) roles at rates 𝛿2  and 𝛿3 , respectively. 

Eventually, informers and influencers stop spreading and become recovered (R) 

through rates 𝛾1 and 𝛾2 , which represent the natural fade-out due to loss of novelty or 

relevance. 

One of the notable extensions in our model is the re-exposure loop, where recovered 

individuals may return to the passive exposure class (𝐸1) due to renewed interactions 

with content shared by active nodes. This dynamic is modeled through the composite 

function ρ⋅τ⋅c, capturing how content re-circulation reactivates dormant users, a 

common feature of social media behavior. Importantly, the parameterization of our 

model partially builds upon values used in the original SSEIR model, particularly for 

the rates α, β, γ, and θ, which were derived from empirical patterns in prior studies. We 

preserve these foundational choices to ensure compatibility and traceability of model 

behavior, while extending the framework with additional states and parameters to 
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improve realism. To validate the robustness of our model, we conducted a sensitivity 

analysis by varying key parameters such as η, 𝛿2, 𝛿3,  𝛾1 and 𝛾2 across different ranges, 

while holding others fixed. Results demonstrate that while the quantitative magnitude 

of spread varies (e.g., peak values of 𝐼2), the qualitative dynamics and convergence 

behavior remain consistent. This confirms that the model is not overly sensitive to small 

fluctuations in parameter values, supporting its suitability for varied real-world 

scenarios. By combining extended state modelling with grounded parameter choices 

and robustness testing, the proposed model offers a comprehensive and flexible tool 

for studying multi-source information propagation in complex networks. 

This enhanced model captures more realistic dynamics of information dissemination 

by: 

a) Differentiating between passive and active exposure, 

b) Distinguishing between informers and influencers, 

c) Introducing re-engagement for recovered users, 

d) Recognizing varying activity levels in social behavior. 

The structure and transitions in this model are visually represented in Figure 1, where 

each node and directional flow reflect a specific user state and its possible evolutions. 

II.   Mathematical Model 

To examine the behavior of the proposed model and validate the theoretical 

formulations, a numerical simulation was carried out under a fixed set of parameter 

values: 

Let 𝒲(𝜓, 𝔨) represent the total number of nodes connected to 𝜓 neighbors at time 𝔨. 
Under this assumption, the following dynamics take place: 

𝑆𝑖(𝜓, 𝔨) + 𝑆𝔞(𝜓, 𝔨) + 𝒮ℎ(𝜓, 𝔨) + 𝐸1(𝜓, 𝔨) + 𝐸2(𝜓, 𝔨) + 𝐼1(𝜓, 𝔨) + 𝐼2(𝜓, 𝔨) + 𝑅(𝜓, 𝔨) =
𝒲(𝜓, 𝔨)                                                                                                                       (1) 

Over the time span from 𝔨 to 𝔨 + ∆𝔨, the variation in the count of nodes within each 

state can be described as follows: 

  𝑆𝑖 → 𝑆𝑖(𝜓, 𝔨 + ∆𝔨) = 𝑆𝑖(𝜓, 𝔨) ∙ 𝒫𝑆𝑖𝑆𝑖
(𝜓, 𝔨)                                                                  (2) 

  𝑆𝑎 → 𝑆𝑎(𝜓, 𝔨 + ∆𝔨) = 𝑆𝑎(𝜓, 𝔨) ∙ 𝒫𝑆𝑎𝑆𝑎
(𝜓, 𝔨)                                                               (3) 

  𝑆ℎ → 𝑆ℎ(𝜓, 𝔨 + ∆𝔨) = 𝑆ℎ(𝜓, 𝔨) ∙ 𝒫𝑆ℎ𝑆ℎ
(𝜓, 𝔨)                                                              (4) 

  𝐸1 → 𝐸1(𝜓, 𝔨 + ∆𝔨) = 𝐸1(𝜓, 𝔨) + 𝑆𝑎(𝜓, 𝔨) ∙ [1 − 𝒫𝑆𝑎𝑆𝑎
(𝜓, 𝔨)]−𝐸1(𝜓, 𝔨) ∙

              [𝒫𝐸1𝐼1
(𝜓, 𝔨) + 𝒫𝐸1𝐸2

(𝜓, 𝔨)]                                                                                         (5) 

  𝐸2 → 𝐸2(𝜓, 𝔨 + ∆𝔨) = 𝐸2(𝜓, 𝔨) + 𝑆ℎ(𝜓, 𝔨) ∙ [1 − 𝒫𝑆ℎ𝑆ℎ
(𝜓, 𝔨)]−𝐸1(𝜓, 𝔨) ∙

              𝒫𝐸1𝐸2
(𝜓, 𝔨)−𝐸2(𝜓, 𝔨). 𝒫𝐸2𝐼2

(𝜓, 𝔨)                                                                                (6) 
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  𝐼1 → 𝐼1(𝜓, 𝔨 + ∆𝔨) = 𝐼1(𝜓, 𝔨) + 𝑆𝑎(𝜓, 𝔨) ∙ [1 − 𝒫𝑆𝑎𝑆𝑎
(𝜓, 𝔨)] + 𝐸1(𝜓, 𝔨) ∙

              𝒫𝐸1𝐼1
(𝜓, 𝔨)−𝐼1(𝜓, 𝔨) ∙ 𝒫𝐼1𝑅(𝜓, 𝔨)                                                                                 (7) 

  𝐼2 → 𝐼2(𝜓, 𝔨 + ∆𝔨) = 𝐼2(𝜓, 𝔨) + 𝑆ℎ(𝜓, 𝔨) ∙ [1 − 𝒫𝑆ℎ𝑆ℎ
(𝜓, 𝔨)] + 𝐸2(𝜓, 𝔨) ∙

               𝒫𝐸2𝐼2
(𝜓, 𝔨)−𝐼2(𝒩, 𝔨) ∙ 𝒫𝐼2𝑅(𝜓, 𝔨)                                                                               (8) 

  𝑅 → 𝑅(𝜓, 𝔨 + ∆𝔨) = 𝑅(𝜓, 𝔨) + 𝐼1(𝜓, 𝔨) ∙ 𝒫𝐼1𝑅(𝜓, 𝔨) + 𝐼2(𝜓, 𝔨) ∙ 𝒫𝐼2𝑅(𝜓, 𝔨) +

             𝐸1(𝜓, 𝔨) ∙ 𝒫𝐸1𝑅(𝜓, 𝔨) − 𝑅(𝜓, 𝔨) ∙ 𝒫𝑅𝐸1
(𝜓, 𝔨)                                                                   (9) 

Where, 𝒫𝑅𝐸1
(𝜓, 𝔨) = 𝜌 ∙ 𝜏(𝜓, 𝔨) ∙ 𝒸(𝜓, 𝔨) (re-exposure probability weighted by trust 𝜏 

and community factor 𝒸). Here, it means recovered individuals can re-enter the 

exposure stage, potentially modeling fatigue recovery or re-engagement with 

information. 

For any state, given that node 𝔦 at time 𝔨, the transition probability should sum to 1: 

  {

𝒫𝔦
𝑆𝑖𝑆𝑖

(𝜓, 𝔨) + 𝒫𝔦
𝑆𝑖𝑆𝑎

(𝜓, 𝔨) = 1

𝒫𝔦
𝑆𝑎𝑆𝑎

(𝜓, 𝔨) + 𝒫𝔦
𝑆𝑎𝐸1

(𝜓, 𝔨) + 𝒫𝔦
𝑆𝑎𝑆ℎ

(𝜓, 𝔨) = 1

𝒫𝔦
𝑆ℎ𝑆ℎ

(𝜓, 𝔨) + 𝒫𝔦
𝑆ℎ𝐸2

(𝜓, 𝔨) = 1

                                                     (10) 

At time 𝔨, let 𝜒𝐼 denote the number of neighbours of node 𝔦 currently in the I-state; 

under this condition, the following takes place: 

  𝒫𝔦
𝑆𝑖𝑆𝑖

(𝜓, 𝔨) = (1 − ∆𝔨 ∙ 𝛼(𝜓, 𝔨))𝜒𝐼                                                                             (11) 

  𝜓 = 𝔫 ∙ 𝔪1                                                                                                                 (12) 

  ⟨𝔫⟩ = ∫ 𝔫 ∙ 𝒫(𝔫)𝑑𝔫
∞

𝔪
= 𝔪 ∙ 𝔪1                                                                                 (13) 

Now, 

  𝛼(𝜓, 𝔨) = ∑ 𝔭(𝜓1|𝜓)𝜓1
∙ 𝔭𝐼(𝜓1, 𝔨)                                                                            (14) 

  𝒫𝑆𝑖𝑆𝑖
(𝜓, 𝔨) = [1 − 𝛼 ∙ ∆𝔨 ∙ 𝛼(𝜓, 𝔨)]𝜒𝐼 = [1 − 𝛼 ∙ ∆𝔨 ∙ ∑ 𝔭(𝜓1|𝜓) ∙𝒩1

𝔭𝐼(𝜓1, 𝔨)]𝜓     (15) 

  𝒫𝑆𝑎𝑆𝑎
(𝜓, 𝔨) = [1 − 𝛽 ∙ ∆𝔨 ∙ 𝛼(𝜓, 𝔨)]𝜒𝐼 = [1 − 𝛽 ∙ ∆𝔨 ∙ ∑ 𝔭(𝜓1|𝜓)𝒩1

∙ 𝔭𝐼(𝜓1, 𝔨)]
𝜓

   (16) 

  𝒫𝑆ℎ𝑆ℎ
(𝜓, 𝔨) = [1 − 𝜂 ∙ ∆𝔨 ∙ 𝛼(𝜓, 𝔨)]𝜒𝐼 = [1 − 𝜂 ∙ ∆𝔨 ∙ ∑ 𝔭(𝜓1|𝜓)𝒩1

∙ 𝔭𝐼(𝜓1, 𝔨)]
𝜓

   (17) 

Now, transition probability for Engaged states: 

𝒫𝐸1→𝐼1
+ 𝒫𝐸1→𝐸2

+ 𝒫𝐸2→𝐼2
+ 𝒫𝐸1→𝐸1

= 1 

Let: 

• 𝛿1 be the probability that 𝐸1 → 𝐼1. 

• 𝛿2 be the probability that 𝐸1 → 𝐸2. 

• 𝛿3 be the probability that 𝐸2 → 𝐼2. 
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  {

𝒫𝐸1→𝐼1
= ∆𝔨 ∙ 𝛿2

𝒫𝐸1→𝐸2
= ∆𝔨 ∙ 𝛿1 

𝒫𝐸2→𝐼2
= ∆𝔨 ∙ 𝛿3 

                                                                                                    (18) 

And, 

𝒫𝐸1→𝐸1
= 1 − ∆𝔨 ∙ (𝛿1 + 𝛿2 + 𝛿3) 

Transition probability for Informed states: 

𝒫𝐼1→𝑅 + 𝒫𝐼2→𝑅 + 𝒫𝐼1→𝐼1
= 1 

Let: 

• 𝛾1 be the probability that 𝐸1 → 𝐼1. 

• 𝛾2 be the probability that 𝐸1 → 𝐸2. 

{
𝒫𝐼1→𝑅 = ∆𝔨 ∙ 𝛾1

𝒫𝐼2→𝑅 = ∆𝔨 ∙ 𝛾2
                                                                                                        (19) 

And, 

𝒫𝐼1→𝑅 = 1 − ∆𝔨 ∙ (𝛾1 + 𝛾2)  

𝐿𝑒𝑡 𝜌, τ, and 𝒸 are parameters governing the feedback transition from Recovered nodes 

to Passive Exposure. Then,  

  {
𝒫𝐸1→𝑅 = ∆𝔨 ∙ (𝛿2 + 𝛾1)

𝒫𝑅→𝐸1
= ∆𝔨 ∙ 𝜌 ∙ 𝜏 ∙ 𝒸

                                                                                           (20) 

Now, substituting equation (15) in equation (2), 

  𝑆𝑖 → 𝑆𝑖(𝜓, 𝔨 + ∆𝔨) = 𝑆𝑖(𝜓, 𝔨) ∙ [1 − 𝛼 ∙ ∆𝔨 ∙ ∑ 𝔭(𝜓1|𝜓)𝜓1
∙ 𝔭𝐼(𝜓1, 𝔨)]

𝜓
       (21) 

Substituting equation (16) in equation (3), 

  𝑆𝑎 → 𝑆𝑎(𝜓, 𝔨 + ∆𝔨) = 𝑆𝑎(𝜓, 𝔨) ∙ [1 − 𝛽 ∙ ∆𝔨 ∙ ∑ 𝔭(𝜓1|𝜓)𝜓1
∙ 𝔭𝐼(𝜓1, 𝔨)]

𝜓
    (22) 

Substituting equation (17) in equation (4),  

  𝑆ℎ(𝜓, 𝔨 + ∆𝔨) =  𝑆ℎ(𝜓, 𝔨) ∙ [1 − 𝜂 ∙ ∆𝔨 ∙ ∑ 𝔭(𝜓1|𝜓)𝜓1
∙ 𝔭𝐼(𝜓1, 𝔨)]

𝜓
     (23) 

Substituting equation (16),(18) in equation (5), 

  𝐸1(𝜓, 𝔨 + ∆𝔨) = 𝐸1(𝜓, 𝔨) + 𝑆𝑎(𝜓, 𝔨) ∙ [1 − 𝒫𝑆𝑎𝑆𝑎
(𝜓, 𝔨)]−𝐸1(𝜓, 𝔨) ∙

[𝒫𝐸1𝐼1
(𝜓, 𝔨) + 𝒫𝐸1𝐸2

(𝜓, 𝔨)  = 𝐸1(𝜓, 𝔨) + 𝑆𝑎(𝜓, 𝔨) ∙ [1 − [1 − 𝛽 ∙ ∆𝔨 ∙ ∑ 𝔭(𝜓1|𝜓)𝜓1
∙

 𝔭𝐼(𝜓1, 𝔨)]
𝜓

] −𝐸1(𝜓, 𝔨) ∙ ∆𝔨 ∙ (𝛿2 + 𝛿1)                                                                    (24) 

Substituting equation (18),(17) in equation (6), 
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𝐸2(𝜓, 𝔨 + ∆𝔨) = 𝐸2(𝜓, 𝔨) + 𝑆ℎ(𝜓, 𝔨) ∙ [1 − 𝒫𝑆ℎ𝑆ℎ
(𝜓, 𝔨)]−𝐸1(𝜓, 𝔨) ∙

𝒫𝐸1𝐸2
(𝜓, 𝔨)−𝐸2(𝜓, 𝔨). 𝒫𝐸2𝐼2

(𝜓, 𝔨) = 𝐸2(𝜓, 𝔨) + 𝑆ℎ(𝜓, 𝔨) ∙ [1 − [1 − 𝜂 ∙ ∆𝔨 ∙

∑ 𝔭(𝜓1|𝜓)𝜓1
∙ 𝔭𝐼(𝜓1, 𝔨)]

𝜓
] −𝐸1(𝜓, 𝔨) ∙ ∆𝔨 ∙ (𝛿3 + 𝛿1)                                             (25) 

Substituting equation (16),(18),(19) in equation (7), 

𝐼1(𝜓, 𝔨 + ∆𝔨) = 𝐼1(𝜓, 𝔨) + 𝑆𝑎(𝜓, 𝔨) ∙ [1 − 𝒫𝑆𝑎𝑆𝑎
(𝜓, 𝔨)] + 𝐸1(𝜓, 𝔨) ∙

𝒫𝐸1𝐼1
(𝜓, 𝔨)−𝐼1(𝜓, 𝔨) ∙ 𝒫𝐼1𝑅(𝜓, 𝔨) = 𝐼1(𝜓, 𝔨) + 𝑆𝑎(𝜓, 𝔨) ∙ [1 − [1 − 𝛽 ∙ ∆𝔨 ∙

∑ 𝔭(𝜓1|𝜓)𝒩1
∙ 𝔭𝐼(𝜓1, 𝔨)]

𝜓
] + 𝐸1(𝜓, 𝔨) ∙ ∆𝔨 ∙ 𝛿2−𝐼1(𝜓, 𝔨) ∙ ∆𝔨 ∙ 𝛾1                          (26) 

Substituting equation (17),(18),(19) in equation (8), 

𝐼2(𝜓, 𝔨 + ∆𝔨) = 𝐼2(𝜓, 𝔨) + 𝑆ℎ(𝜓, 𝔨) ∙ [1 − 𝒫𝑆ℎ𝑆ℎ
(𝜓, 𝔨)] + 𝐸2(𝜓, 𝔨) ∙

𝒫𝐸2𝐼2
(𝜓, 𝔨)−𝐼2(𝜓, 𝔨) ∙ 𝒫𝐼2𝑅(𝜓, 𝔨) = 𝐼2(𝜓, 𝔨) + 𝑆ℎ(𝜓, 𝔨) ∙ [1 − [1 − 𝜂 ∙ ∆𝔨 ∙

∑ 𝔭(𝜓1|𝜓)𝒩1
∙ 𝔭𝐼(𝜓1, 𝔨)]

𝜓
] + 𝐸2(𝜓, 𝔨) ∙ ∆𝔨 ∙ 𝛿3 −𝐼2(𝜓, 𝔨) ∙ ∆𝔨 ∙ 𝛾2                          (27) 

Substituting equations (16), (18), (19) in equation (9), 

𝑅(𝜓, 𝔨 + ∆𝔨) = 𝑅(𝜓, 𝔨) + 𝐼1(𝜓, 𝔨) ∙ 𝒫𝐼1𝑅(𝜓, 𝔨) + 𝐼2(𝜓, 𝔨) ∙ 𝒫𝐼2𝑅(𝜓, 𝔨) + 𝑅(𝜓, 𝔨) ∙

𝒫𝐸1𝑅(𝜓, 𝔨) − 𝑅(𝜓, 𝔨) ∙ 𝒫𝑅𝐸1
(𝜓, 𝔨) = 𝑅(𝜓, 𝔨) + 𝐼1(𝜓, 𝔨) ∙ ∆𝔨 ∙ 𝛾1 + 𝐼2(𝜓, 𝔨) ∙ ∆𝔨 ∙ 𝛾2 +

𝐸1(𝜓, 𝔨) ∙ ∆𝔨 ∙ (𝛿2 + 𝛾1) − 𝑅(𝜓, 𝔨) ∙ ∆𝔨 ∙ 𝜌 ∙ 𝜏 ∙ 𝒸                                                       (28) 

The temporal rate of change in the number of nodes over the interval ∆𝔨 can be 

expressed as follows: 

𝑆𝑖(𝜓,𝔨+∆𝔨)−𝑆𝑖(𝜓,𝔨)

𝒲(𝜓,𝔨)∙∆𝔨
=

𝜕𝔭𝑆𝑖(𝜓,𝔨)

𝜕𝔨
= −𝔭𝑆𝑖(𝜓, 𝔨) ∙ 𝜓 ∙ 𝛼 ∙ ∑ 𝔭(𝜓1|𝜓)𝒩1

∙ 𝔭𝐼(𝜓1, 𝔨)              (29) 

𝑆𝑎(𝜓,𝔨+∆𝔨)−𝑆𝑎(𝜓,𝔨)

𝒲(𝜓,𝔨)∙∆𝔨
=

𝜕𝔭𝑆𝑎(𝜓,𝔨)

𝜕𝔨
= −𝔭𝑆𝑎(𝒩𝜓, 𝔨) ∙ 𝜓 ∙ 𝛽 ∙ ∑ 𝔭(𝜓1|𝜓)𝒩1

∙ 𝔭𝐼(𝜓1, 𝔨)        (30) 

𝑆ℎ(𝜓,𝔨+∆𝔨)−𝑆ℎ(𝜓,𝔨)

𝒲(𝜓,𝔨)∙∆𝔨
=

𝜕𝔭𝑆ℎ(𝜓,𝔨)

𝜕𝔨
= −𝔭𝑆ℎ(𝜓, 𝔨) ∙ 𝜓 ∙ 𝜂 ∙ ∑ 𝔭(𝜓1|𝒩)𝒩1

∙ 𝔭𝐼(𝜓1, 𝔨)           (31) 

𝐸1(𝜓,𝔨+∆𝔨)−𝐸1(𝜓,𝔨)

𝒲(𝜓,𝔨)∙∆𝔨
=

𝜕𝔭𝐸1(𝜓,𝔨)

𝜕𝔨
= −𝔭𝐸1(𝜓, 𝔨) ∙ (𝛿2 + 𝛿1) + 𝔭𝑆𝑎(𝜓, 𝔨) ∙ 𝜓 ∙ 𝛽 ∙

∑ 𝔭(𝜓1|𝜓)𝒩1
∙ 𝔭𝐼(𝜓1, 𝔨)                                                                                            (32) 

𝐸2(𝜓,𝔨+∆𝔨)−𝐸2(𝜓,𝔨)

𝒲(𝜓,𝔨)∙∆𝔨
=

𝜕𝔭𝐸2(𝜓,𝔨)

𝜕𝔨
= −𝔭𝐸2(𝜓, 𝔨) ∙ (𝛿3 + 𝛿1) + 𝔭𝑆ℎ(𝜓, 𝔨) ∙ 𝜓 ∙ 𝜂 ∙

∑ 𝔭(𝜓1|𝜓)𝒩1
∙ 𝔭𝐼(𝜓1, 𝔨)                                                                                             (33) 

𝐼1(𝜓,𝔨+∆𝔨)−𝐼1(𝜓,𝔨)

𝒲(𝜓,𝔨)∙∆𝔨
=

𝜕𝔭𝐼1(𝜓,𝔨)

𝜕𝔨
= −𝔭𝐼1(𝜓, 𝔨) ∙ 𝛾1 + 𝔭𝐸1(𝜓, 𝔨) ∙ 𝛿2 + 𝔭𝑆𝑎(𝜓, 𝔨) ∙ 𝜓 ∙ 𝛽 ∙

∑ 𝔭(𝜓1|𝜓)𝒩1
∙ 𝔭𝐼(𝜓1, 𝔨)                                                                                             (34) 

𝐼2(𝜓,𝔨+∆𝔨)−𝐼2(𝜓,𝔨)

𝒲(𝜓,𝔨)∙∆𝔨
=

𝜕𝔭𝐼2(𝜓,𝔨)

𝜕𝔨
= −𝔭𝐼2(𝜓, 𝔨) ∙ 𝛾2 + 𝔭𝐸2(𝜓, 𝔨) ∙ 𝛿3 + 𝔭𝑆ℎ(𝜓, 𝔨) ∙ 𝜓 ∙ 𝜂 ∙

∑ 𝔭(𝜓1|𝜓)𝒩1
∙ 𝔭𝐼(𝜓1, 𝔨)                                                                                               (35) 
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𝑅(𝜓,𝔨+∆𝔨)−𝑅(𝜓,𝔨)

𝒲(𝜓,𝔨)∙∆𝔨
=

𝜕𝔭𝑅(𝜓,𝔨)

𝜕𝔨
= 𝐼1(𝜓, 𝔨) ∙ 𝛾1 + 𝐼2(𝜓, 𝔨) ∙ 𝛾2 + 𝐸1(𝜓, 𝔨) ∙ (𝛿2 + 𝛾1) −

𝑅(𝜓, 𝔨) ∙ 𝜌 ∙ 𝜏 ∙ 𝒸.                                                                                                          (36) 

After simplifying, we get the final differential dynamic equations for each state as: 

𝑑𝑆𝑖

𝑑𝔨
= −𝑆𝑖 ∙  𝔪 ∙ 𝔪1

2 ∙ 𝛼 ∙ 𝑑𝑒 ∙ 𝐼 

𝑑𝑆𝑎

𝑑𝔨
= −𝑆𝑎 ∙  𝔪 ∙ 𝔪1

2 ∙ 𝛽 ∙ 𝑑𝑒 ∙ 𝐼 

𝑑𝑆ℎ

𝑑𝔨
= −𝑆ℎ ∙  𝔪 ∙ 𝔪1

2 ∙ 𝜂 ∙ 𝑑𝑒 ∙ 𝐼 

𝑑𝐸1

𝑑𝔨
= −(𝛿2 + 𝛿1) ∙ 𝐸1 + 𝑆𝑎 ∙  𝔪 ∙ 𝔪1

2 ∙ 𝛽 ∙ 𝑑𝑒 ∙ 𝐼 

𝑑𝐸2

𝑑𝔨
= −(𝛿3 + 𝛿1) ∙ 𝐸2 + 𝑆ℎ ∙  𝔪 ∙ 𝔪1

2 ∙ 𝜂 ∙ 𝑑𝑒 ∙ 𝐼 

𝑑𝐼1

𝑑𝔨
= −𝛾1 ∙ 𝐼1+𝛿2 ∙ 𝐸1 + 𝑆𝑎 ∙  𝔪 ∙ 𝔪1

2 ∙ 𝛽 ∙ 𝑑𝑒 ∙ 𝐼 

𝑑𝐼2

𝑑𝔨
= −𝛾2 ∙ 𝐼2+𝛿3 ∙ 𝐸2 + 𝑆𝑎 ∙  𝔪 ∙ 𝔪1

2 ∙ 𝜂 ∙ 𝑑𝑒 ∙ 𝐼 

𝑑𝑅

𝑑𝔨
= −𝜌 ∙ 𝜏 ∙ 𝒸 ∙ 𝑅 + 𝛾1 ∙ 𝐼1 + 𝛾2 ∙ 𝐼2 + (𝛿2 + 𝛾1) ∙ 𝐸1 

Equilibrium and Stability Analysis of the ESIS Model 

To provide a deeper understanding of the system’s long-term behavior, we perform 

an equilibrium and stability analysis of the ESIS model. This helps determine whether 

information propagation stabilizes, dies out, or recirculates in the social media 

ecosystem. The model consists of eight compartments representing user states in a 

digital network: inactive (𝑆𝔦), active (𝑆𝑎), highly active (𝑆ℎ), passive exposure (𝐸1),  

engaged exposure (𝐸2),  informer (𝐼1) influencer (𝐼2),  and recovered (R). The full 

population is normalized such that: 

                            𝑆𝔦+𝑆𝑎+𝑆ℎ+𝐸1+𝐸2+𝐼1+𝐼2+R=1  

At equilibrium, all derivatives vanish. Thus, we set: 

   
𝑑𝑆𝑖

𝑑𝔨
=

𝑑𝑆𝑎

𝑑𝔨
=. . . =

𝑑𝑅

𝑑𝔨
= 0 

One natural equilibrium solution corresponds to the information-free (or saturation) 

state, where no further spread occurs: 

  𝐸1
∗ = 𝐸2

∗ = 𝐼1
∗ = 𝐼2

∗ = 0, 𝑅∗ = 𝑅∞, 𝑆𝑖
∗, 𝑆𝑎

∗, 𝑆ℎ
∗ ≥ 0 

This reflects a common scenario on social platforms where, after the peak of attention, 

content becomes outdated or ignored, and users gradually disengage. To evaluate the 

local stability of this equilibrium, we derived the Jacobian matrix of the system around 

this point. If all eigenvalues of the Jacobian evaluated at this equilibrium have negative 



 

 

 

J. Mech. Cont. & Math. Sci., Special Issue, No.- 12, August (2025)  pp 49-63 

Shalni Chandra et al 

 
A Special Issue on ‘Recent Evolutions in Applied Sciences and Engineering-2025’ 

 

59 

 

real parts, the system returns to equilibrium after small disturbances, implying local 

asymptotic stability. The role of re-exposure, captured by the feedback term ρ⋅τ⋅c⋅R, is 

crucial here. This mechanism allows previously disengaged users (in R) to re-enter the 

exposed state (𝐸1), reflecting real-world behavior such as retweets, algorithmic 

resurfacing, or trend resurgence. 

Our analysis shows two distinct asymptotic regimes: 

a) Stable decay (saturation equilibrium): If re-exposure is negligible or recovery 

dominates (i.e., ρ⋅τ⋅c ≪ γ1,γ2), the system converges to 𝑅∗→1, with no 

ongoing spread. 

b) Persistent engagement (cyclic or endemic-like state): When reactivation 

exceeds decay, the model may exhibit plateaued or cyclic behavior, 

maintaining non-zero values of 𝐸1, 𝐼1, 𝐼2  even as 𝔨→∞. 

This behavior mirrors real social media dynamics where older content can regain 

attention or go viral again due to re-sharing mechanisms, audience targeting, or 

periodic relevance (e.g., memes, anniversary posts). By including both saturation and 

sustained dynamics, the ESIS model provides a comprehensive framework for 

analyzing multi-source information spread in dynamic online environments. 

III.    Result and Discussion   

Figure 2: Evolution of Information Compartments Over Time in the ESIS 

Model  

 

     Fig. 2. 

This figure illustrates the progression of key compartments in the ESIS model across 

discrete time steps, representing the dynamic flow of individuals through stages of 

exposure, influence, and recovery. The model distinguishes between two categories of 

exposed individuals-𝐸1 (from partially active users 𝑆𝑎) and 𝐸2 (from highly active users 

𝑆ℎ)-to reflect different sources of initial contact with information. Both exposure 
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classes increase rapidly in the early stages, with 𝐸2 eventually surpassing 𝐸1, indicating 

that high-activity sources (𝑆ℎ) exert greater influence over time. 

The transition into the informer class (𝐼1) is marked by a sharper rise, signifying rapid 

conversion of exposed individuals into active spreaders. The influencer class (𝐼2) while 

growing more gradually, maintains a consistent upward trend, highlighting persistent 

engagement and influence. The recovered compartment (R) increases slowly, 

suggesting that disengagement or full internalization of information is a gradual 

process. Overall, the figure reflects the layered and asynchronous nature of real-world 

information propagation, capturing how varying source types and user behaviors 

contribute to exposure, influence dynamics, and eventual disengagement. 

Figure 3: Comparative Analysis of Active Spreaders in the SSEIR and ESIS 

Models 

 

     Fig. 3. 

This figure compares the temporal evolution of infectious individuals in the classical 

SSEIR model (black dashed curve) and the proposed ESIS model (solid magenta curve) 

over a fixed simulation period. The SSEIR curve displays a sharp initial peak followed 

by a rapid decline, reflecting short-lived engagement due to the absence of sustained 

reactivation or influence mechanisms. In contrast, the ESIS model, which incorporates 

re-exposure dynamics and stratifies active users into informers (𝐼1) and (𝐼2)  
influencers exhibit a higher peak and a slower decay. This prolonged activity indicates 

extended content visibility and a more persistent propagation pattern. 

The structural enhancements in the ESIS framework, especially the separation of 

influence roles and the modeling of re-engagement, allow it to capture realistic 

phenomena observed in online information ecosystems. Such dynamics include content 

resurfacing via sharing loops, platform-driven exposure (e.g., notifications, 

algorithms), and prolonged user influence. This comparison illustrates how refined 

compartmentalization and behaviorally inspired modeling lead to more accurate 

representations of long-term digital influence and information virality. 
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Figure 4: Comparative Sensitivity Analysis of Re-Exposure Strength and 

Engagement Level in the ESIS Model 

 
   Fig. 4. 

This figure displays a comprehensive sensitivity analysis of the ESIS model with 

respect to two key behavioral parameters: the re-exposure strength (ρ⋅τ⋅c) and the 

engagement level (η). The objective is to assess how variations in these parameters 

influence the dynamics of total active spreaders  (𝐼1 + 𝐼2) over time. The figure 

comprises a grid of 12 subplots, each corresponding to a distinct parameter 

combination where ρ⋅τ⋅c ∈ {0,0.01,0.05,0.10} (rows) and η∈{0.005,0.010,0.020} 

(columns). All other model parameters were held constant to isolate the effects of these 

two variables. 

The leftmost column highlights that lower engagement values yield slower and more 

prolonged information spread, whereas the rightmost column shows that higher 

engagement levels cause rapid but short-lived peaks in active spreaders. Similarly, 

increasing re-exposure strength down the rows prolongs the tail of the propagation 

curve, indicating sustained influence in the population. The results demonstrate the 

synergistic effect of re-exposure and engagement: higher values of both lead to more 

intense and enduring propagation, while lower values result in rapid decay. This 

analysis underlines the behavioral richness and adaptability of the ESIS model in 

capturing complex dynamics of long-term influence spread in social networks. 

IV.   Conclusions 

For that purpose, in this study, we have developed the ESIS model as a richer 

model than the classical SSEIR framework for modeling the information propagation 

dynamics. The ESIS model takes into account more compartments and finesse the 

transition mechanisms, which lie more effectively in the persistence and the cyclical 

nature of information flow. Through dynamic differential equations and corresponding 

state transition diagrams, we can formulate our result more clearly in terms of 
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individual movement from different stages of exposure. Finally, simulation results 

confirm that the ESIS model provides more sustained and realistic information spread 

over time as compared to what would be provided by the SSEIR model. By doing so, 

it places ESIS as a better, more practicable means of analysing long-term effects in 

complex social systems, and it opens salient research applications in digital marketing, 

control of misinformation, or behavioral forecasting. Future work may consider the 

parameter estimation from real data and also extend to the hybrid flexible version with 

AI-driven exposure mechanisms.  
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