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Abstract 

Hepatitis B remains a serious global health concern, affecting approximately 

one-third of the world’s population and causing nearly one million deaths annually. 

The 𝑆𝐸𝐼𝐶𝐼𝐴𝑅 model that distinguishes between acutely and chronically infected 

individuals becomes a significant addition to public health research about Hepatitis B 

virus transmission. This study provides rigorous insights using fixed-point theory with 

generalised Hyers-Ulam stability criteria to produce thorough results about solution 

existence, uniqueness, and stability. The model demonstrates through visualisation 

using the RK-5 method that proper population control measures, such as vaccination 

systems, transmission rate, lead populations toward the eradication of disease states. 

This research both enhances mathematical epidemiology and supports worldwide 

hepatitis B elimination programs. 

Keywords: Hepatitis B Virus, Banach Contraction Principle, Fixed Point Approach, 

Picard Theorem, Generalised Hyers-Ulam stability. 

I.     Introduction: 

Hepatitis B Virus (HBV) is a highly contagious infection that infects over one-

third of the global population and kills nearly a million people per year. In 2024, the 

World Health Organisation (WHO) reports that more than 14 million individuals in the 

European Region are affected by chronic hepatitis B. Each year, European Centre for 

Disease Prevention and Control (2024), the disease leads to approximately 43,000 

fatalities, primarily due to severe complications like cirrhosis and liver cancer.  HBV 

is an infection that leads to the inflammation of the liver, and when the virus is 

competent to come into contact with the bloodstream and affects the liver, then it 

causes the infection. In the Hepatitis B infection, the virus multiplies rapidly in the 

liver and discharges enormous amounts of virus into the bloodstream. The Acute 

Hepatitis B and Chronic Hepatitis B are the two classes of HBV. Dienstag (2008), 

McMahon (2009), and Seto et al. (2018) focused on the Chronic Hepatitis B virus 
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because it often leads to serious liver disease, such as fibrosis, cirrhosis, and 

hepatocellular cancer. Cirrhosis or primary liver cancer are complications of chronic 

HBV infection.  

Seto et al. (2018) and Garg and Chauhan (2024) provide papers that show that the HBV 

can be spread in various ways, such as it can be detected in specific body fluids or 

blood, and it is transferred when infected specific body fluid or blood enters the body 

of an uninfected individual. Sexual contact with a diseased individual, blood-to-blood 

products, and sometimes sharing their things like razors and brushes are all examples 

of how this might happen. Sometime during pregnancy or breastfeeding, mothers pass 

the infection to their children and many other ways.  

Eliminating HBV as a public health threat requires universal screening, timely 

diagnosis, effective treatment, and an understanding of the virus's transmission 

dynamics. Mathematical modeling is crucial in this effort. Moneim and Khalil (2015) 

investigated the model in which infectious latent infection is present in HBV disease. 

The scientists also used an 𝒮ℰℐℛ, a model with a static vaccination rate, to investigate 

the worldwide behaviour of the disease's spread. The infectivity throughout the 

incubation stage is a secondary mode of transmission. There are major flaws in that 

study, i.e., the acute infected persons and chronic infected persons are clubbed into one 

compartment, which may result in the treatment not being taken into account. Then 

Desta and Koya (2019) introduced the modified model of 𝒮ℰℐℛ, which is entitled as 

𝒮ℰℐ𝒞ℐ𝒜ℛ model in which created the individual sections house for both acute and 

chronically sick people. In the 𝒮ℰℐ𝒞ℐ𝒜ℛ  model vaccine and treatment are both 

considered to prevent the overspread of the Hepatitis B virus. 

In this research paper, the fixed point approach is used to provide the theoretical result, 

which is used to solve complex 𝒮ℰℐℛ models. Fixed point approach is used to analyse 

the existence and uniqueness of 𝒮ℰℐ𝒞ℐ𝒜ℛ model. Furthermore, the generalised Hyers-

Ulam stability criteria is carried out to determine the stability condition for 𝒮ℰℐ𝒞ℐ𝒜ℛ 

model. Also, for the first time, simulation of 𝒮ℰℐ𝒞ℐ𝒜ℛ  model is conducted using the 

Runge-Kutta (RK-5) method to determine the system’s dynamic behaviour of every 

compartment of 𝒮ℰℐ𝒞ℐ𝒜ℛ model and displayed graphically. The simulated data show 

that the point of convergence is the disease-free equilibrium point (fixed point). 

The structure of this paper is as follows: in section two, fundamental definitions are 

stated; in section three, the identified system's governing equations and some 

parameter values are described; in section four, the main result is presented, in which 

we evaluate the “existence and uniqueness” of solution with the help of fixed point 

approach; in section five, model's stability results is given; in section six, numerical 

simulation is presented and in section seven, the results are briefly summarised. 

II.    Preliminaries: 

Here we are giving some fundamental definitions that will be used in the 

sequel. 

Ansari (2010), Kutbi and Sintunavarat (2014), Phiangsungnoen et al. (2014), Singh 

and Aggarwal (2016), Khan(2019) provide the fundamental definition of metric space, 
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Banach contraction principle, Picard theorem, and generalised Hayer-Ulam stability 

can be found in many papers.  

Definition 2.1: Metric space (Singh and Aggarwal (2016), Khan(2019)) A function 

d  ∶ A2 → ℝ+ ∪ {0}  (where A ≠ {∅} )  is called a distance function (or metric) on 𝐴, 

if it meets the subsequent requirements: 

1) d(ℸ"1, ℸ"2) ≥  0 if ℸ"1 ≠ ℸ"2 and ℸ"1 = ℸ"2⇔ d(ℸ"1, ℸ"2) = 0, 
2) d(ℸ"1, ℸ"2)  =  d(ℸ"2, ℸ"1), 
3) d(ℸ"1, ℸ"3)  +  d(ℸ"3, ℸ"2)  ≥  d(ℸ"1, ℸ"2), ∀ ℸ"1, ℸ"2, ℸ"3 ∈ A. 

So the function “d” composed with a set “A” is titled as a metric space, which is denoted 

by (A, d). 

Definition 2.2: Contraction mapping (Ansari (2010)) Let (ℶ, 𝑑) be a metric space 

and Φ: ℶ → ℶ is said to be a contraction mapping, if ∃ 𝜏 ∈ ℶ such that 

𝑑(Φ(ℶ℩), Φ(ℶ2)) ≤ 𝜏𝑑(ℶ℩, ℶ2) ∀ℶ℩, ℶ2 ∈ ℶ, where 𝜏 ∈ (0,1) 

Theorem 2.1: “Banach Contraction Principle (B.C.P.)” (Ansari (2010))  Let Φ:ℶ →
ℶ be a contraction mapping where (ℶ, 𝑑) be a complete metric space. Then there is a 

fixed point in Φ that is unique. 

Theorem 2.2: Picard Theorem (Ansari (2010)) Let Φ(ℶ℩, ℶ2) be a continuous 

function of two variables defined on a rectangle Å = {(ℶ℩, ℶ2): α ≤ ℶ℩ ≤ β, γ ≤ ℶ2 ≤
δ} and fulfill the subsequent Lipschitz condition in the second variable:  

|Φ(ℶ℩, ℶ2) − Φ(ℶ℩
′, ℶ2

′ )| ≤ ρ|ℶ℩ − ℶ2|, ∀ ℶ2, ℶ2
′ ∈ [γ, δ]. 

Further, let (ℶα, ℶ𝛽) be an interior point of Å. Then the differential equation 
dℶ2

dℶ1
=

Φ(ℶ℩, ℶ2) with the given initial condition ℶ2(ℶα) = ℶ𝛽 has a unique solution.  

Definition 2.3: Hayers-Ulam stability (Phiangsungnoen et al. (2014)) Suppose (ℶ, 𝑑) 
be a metric space and Φ:ℶ → ℶ  have a fixed solution ρ = Φ(ρ), if  ∃ c> 0 such that 

∀ ϵ > 0 and ω′ ∈ Φ which is an ϵ-solution of fixed point, i.e., satisfy the inequality 

d(ω′, Φ(ω′)) ≤ ϵ 

∃ ϖ′ ∈ Φ  satisfying ρ = Φ(ρ), 

and 

d(ω′, ϖ′) ≤ cϵ 

Then ℋ is called generalised Hayers-Ulam stable. 

Definition 2.4: Generalised Hayers-Ulam stability(Kutbi and Sintunavarat (2014))  

Suppose (ℶ, 𝑑) be a metric space and Φ: ℶ → ℶ has a fixed solution ρ = Φ(ρ) if  ∃ an 

increasing function ϱ: ℝ+⟶ℝ+also continuous at 0 and ϱ(0) = 0 such that ∀ ϵ > 0 

and ω′ ∈ Φ, which is an ϵ-solution of a fixed point, i.e., satisfying the inequality 

d(ω′, Φ(ω′)) ≤ ϵ 
 ∃ ϖ′ ∈ Φ  satisfying ρ = Φ(ρ),   
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and 

d(ω′, ϖ′) ≤ ϱ(ϵ) 

Then Φ is called generalised Hayers-Ulam stable. 

III.      Identified Mathematical Model and Parameter Values:  

 Desta and Koya (2019)  proposed the 𝒮ℰℐ𝒞ℐ𝒜ℛ model, in which the total 

population is distributed into five compartments, such as 𝒮: the susceptible 

population, ℰ: the exposed population, ℐ𝒞: the chronic infectious population, ℐ𝒜: the 

acute infective population and ℛ: the recovered population. 

The likelihood of becoming infected is unaffected by age, gender, social standing, or 

race. Only by coming into contact with contagious people, the susceptible person gets 

infected. Individuals who have been exposed are not contagious, i.e., they are incapable 

of transmitting the virus. 

In the Susceptible population (𝑆(𝑡)), likely to get infected individuals take place (i.e., 

an individual is not yet infected but has a chance to get infected in the future). In the 

exposed population (𝐸(𝑡)), the non-infectious infected individuals take place (i.e., 

infected individuals who are incapable of transferring the virus). The rate of HBV 

transmission is determined by the rate of contact between the susceptible and the 

infective. So, Nana-Kyere (2017) introduced the incidence rate [
(β1ℐ𝒞+β2ℐ𝒜)

𝒩
] is used in 

the growth of the exposed population. The infectious individuals are classified as 

chronic population (𝐶(𝑡)) and acute population (𝐴(𝑡)). The acute infections are not 

treated with antiviral drugs, but they may be cured in some cases due to natural 

immunity. On the other hand, chronically infected people can transmit the disease. 

However, a chronic group of people requires medical treatment. The Recovered 

population (𝑅(𝑡))is recovered from the infection. 

The symbolizations and characterisation of the variables/ constants utilised in the 

𝒮ℰℐ𝒞ℐ𝒜ℛ model are listed in Table 1. 

Table 1: The symbolizations and characterisation of the variables/ constants 

utilised in the 𝓢𝓔𝓘𝓒𝓘𝓐𝓡 model equations 

Variables/ Constants Characterization 

𝒩(t) Global population size 

β1 Rate of transmission from 𝒮 to ℐ𝒞  

β2 Rate of transmission from 𝒮 to ℐ𝒜  

ς Rate of recruitment 

θ Death rate in ℐ𝒞 

γ1 Treatment rate in ℐ𝒞 

γ2 Recovered rate of ℐ𝒜  

c1 Transfer rate from ℰ to ℐ𝒞 

c2 Transfer rate from ℰ to ℐ𝒜  

η Rate of natural death 

α Death rate in ℐ𝒜  

ζ Rate of vaccination 
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In the flow chart, all the compartments and flow direction of their input and output 

parameters are indicated, where parameters include recruitment rate, treatment, 

vaccination, transfer, and death rate. 

 

Fig. 1. Flow chart of  𝒮ℰℐ𝒞ℐ𝒜ℛ model. 

The 𝒮ℰℐ𝒞ℐ𝒜ℛ mathematical model as follows:  

  
d𝒮

dt
= ς(1 − ζ) − [

(β1ℐ𝒞+β2ℐ𝒜)𝒮

𝒩
] −  η𝒮                                              (1)                                              

  
dℰ

dt
= [

(β1ℐ𝒞+β2ℐ𝒜)𝒮

𝒩
] −  ηℰ − c1ℰ − c2ℰ                                                        (2)  

  
dℐ𝒞

dt
= c1ℰ − θℐ𝒞 − ηℐ𝒞 − γ1ℐ𝒞                                                                               (3) 

  
dℐ𝒜

dt
= c1ℰ − αℐ𝒜 − ηℐ𝒜 − γ2ℐ𝒜                                                                                (4) 

  
dℛ

dt
= γ2ℐ𝒜 + γ1ℐ𝒞 +  ς ζ − ηℛ                                                                                 (5) 

In this model, the global population size is represented by 𝒩.  Where, 𝒩 = 𝒮 + ℰ +
ℐ𝒞 + ℐ𝒜 +ℛ.  

For demonstrating the modified 𝒮ℰℐ𝒞ℐ𝒜ℛ model is significant and well defined; all 

the variables need to be non-negative to establish the necessary fact. This fact is 

presented in this theorem. 

Theorem 3.1: Positivity of the solution (Desta and Koya (2019)) The size of the 

population at any time (𝑡) is non-negative if the model's initial population sizes are 

non-negative. In other words, if  𝒮(0), ℰ(0), ℐ𝒞(0), ℐ𝒜(0),ℛ(0) ≥ 0 then the 

solutions of  𝒮(t), ℰ(t), ℐ𝒞(t), ℐ𝒜(t),ℛ(t) are non-negative for all t > 0. 

Theorem 3.2: Boundedness of the solution (Desta and Koya (2019)) All  the 

solutions 𝒮(t), ℰ(t), ℐ𝒞(t), ℐ𝒜(t), ℛ(t) of modified 𝒮ℰℐ𝒞ℐ𝒜ℛ model equations (1) to 

(5) are bounded. 

Now, any solution of modified 𝒮ℰℐ𝒞ℐ𝒜ℛ model is bounded when the global population 

size (𝒩(t)) is between [0,
ς

η
]. (i.e, 0 ≤ 𝒩(t) ≤

ς

η
 )   
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IV.      Main Result: Existence and Uniqueness of the Solution of 𝓢𝓔𝓘𝓒𝓘𝓐𝓡 model 

using Fixed Point Approach: 

  The main result is presented in this section, i.e., the “existence and uniqueness” 

of the equilibrium point of  𝒮ℰℐ𝒞ℐ𝒜ℛ model is presented in this section.  

Theorem 4.1: Let ℑ′(t) = K(t, ℑ(t)) with  ℑ(0) = ℑ0; t > 0 is a linear differential 

equation where K(t, ℑ(t)) is a function depending on 𝑡 and ℑ(t), where 𝑡 is the time 

variable and ℑ(t) is another function of various variables depending on  

𝒮(t), ℰ(t), ℐ𝒞(t), ℐ𝒜(t), ℛ(t). 

The following suppositions are true for the existence of the solution.  

(P1) K(t, ℑ) is a continuous function on a compact subset 𝐴 ⊆ ℝ2 . So ∃ constant k >
0 s.t., 

|K(𝑡, ℑ) | ≤ k; ∀ (t, ℑ) ∈ [0,
ς

η
] = Α 

(P2) There exists constant α > 0 such that ∀ ℑ1(t), ℑ2(t) satisfy the Lipschitz 

condition, i.e., 

|K(t, ℑ1(t)) − K(t, ℑ2(t))| ≤ α|ℑ1(t) − ℑ2(t)| 

Further, under the assumption (P1) and (P2), the differential equation has a unique 

solution. 

Proof: For the existence of the solution of  𝒮ℰℐ𝒞ℐ𝒜ℛ model using fixed point 

approach, we convert equation (1) to (5) into the following integral equation using the 

initial conditions, we get 

∫ 𝒮′ds
t

0

= ∫ (ς(1 − ζ) − [
(β1ℐ𝒞 + β2ℐ𝒜)𝒮

𝒩
] −  η𝒮 

t

0

)ds 

𝒮(t) − 𝒮(0) = ∫ (ς(1 − ζ) − [
(β1ℐ𝒞 + β2ℐ𝒜)𝒮

𝒩
] −  η𝒮 

t

0

)ds 

𝒮(t) = 𝒮(0) + ∫ (ς(1 − ζ) − [
(β1ℐ𝒞 + β2ℐ𝒜)𝒮

𝒩
] −  η𝒮 

t

0

)ds 

                     𝒮(t) = 𝒮(0) + ∫ K1(s, 𝒮)
t

0
ds            (6) 

  Where,  

  K1(s, 𝒮) = ς(1 − ζ) − [
(β1ℐ𝒞+β2ℐ𝒜)𝒮

𝒩
] −  η𝒮      (7) 

Similarly, 

 ∫ ℰ′ds
t

0

= ∫ ([
(β1ℐ𝒞 + β2ℐ𝒜)𝒮

𝒩
] −  ηℰ − c1ℰ − c2ℰ 

t

0

)ds 

                 ℰ(t) = ℰ(0) + ∫ ([
(β1ℐ𝒞 + β2ℐ𝒜)𝒮

𝒩
] −  ηℰ − c1ℰ − c2ℰ 

t

0

)ds 
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                         ℰ(t) = ℰ(0) +∫ K2(s, ℰ)
t

0

ds                                                                (8) 

Where, 

K2(s, ℰ) = [
(β1ℐ𝒞 + β2ℐ𝒜)𝒮

𝒩
] −  ηℰ − c1ℰ − c2ℰ                                                     (9) 

Similarly, 

                             ∫ ℐ𝒞
′ds

t

0

= ∫ (c1ℰ − θℐ𝒞 − ηℐ𝒞 − γ1ℐ𝒞 
t

0

)ds 

ℐ𝒞(t) = ℐ𝒞(0) + ∫ (c1ℰ − θℐ𝒞 − ηℐ𝒞 − γ1ℐ𝒞 
t

0

)ds 

                               ℐ𝒞(t) = ℐ𝒞(0) + ∫ K3(s, ℐ𝒞)
t

0

ds                                                     (10) 

Where,  

K3(𝑠, ℐ𝒞) = c1ℰ − θℐ𝒞 − ηℐ𝒞 − γ1ℐ𝒞                                                                           (11) 

Similarly, 

                       ∫ ℐ𝒜
′ds

t

0

= ∫ (c1ℰ − αℐ𝒜 − ηℐ𝒜 − γ2ℐ𝒜 
t

0

)ds    

ℐ𝒜(t) = ℐ𝒜(0) + ∫ (c1ℰ − αℐ𝒜 − ηℐ𝒜 − γ2ℐ𝒜  
t

0

)ds 

                            ℐ𝒜(t) = ℐ𝒜(0) + ∫ K4(s, ℐ𝒜) 
t

0

ds                                                    (12) 

Where,  

K4(s, ℐ𝒜) = c1ℰ − αℐ𝒜 − ηℐ𝒜 − γ2ℐ𝒜                                                                        (13) 

Similarly, 

∫ ℛ′ds
t

0

= ∫ (γ2ℐ𝒜 + γ1ℐ𝒞 +  ς ζ − ηℛ  
t

0

)ds 

ℛ(t) = ℛ(0) + ∫ (γ2ℐ𝒜 + γ1ℐ𝒞 +  ς ζ − ηℛ  
t

0

)ds 

                              ℛ(t) = ℛ(0) + ∫ K5(s,ℛ)
t

0

ds                                                       (14) 

Where,  

K5(s,ℛ) = γ2ℐ𝒜 + γ1ℐ𝒞 +  ς ζ − ηℛ                                                                        (15) 

Using equations (6)-(15), we can express the model in the following way[15].   

                                                               ℑ′(t) = K(t, ℑ(t))                                 (16)                                                    

with                                                       ℑ(0) = ℑ0; t > 0 

where,  
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                                       ℑ(t) = (𝒮(t), ℰ(t), ℐ𝒞(t), ℐ𝒜(t), ℛ(t) ), 

                                       ℑ(0) = ℑ0 = (𝒮(0), ℰ(0), ℐ𝒞(0), ℐ𝒜(0), ℛ(0) ) 

  and                                K(t, ℑ(t)) =

(

 
 
 
 𝐾1
K2
K3
K4
K5

)

 
 
 
 

=

(

 
 
 

ς(1−ζ)−[
(β1ℐ𝒞+β2ℐ𝒜)𝒮

𝒩
]− η𝒮

[
(β1ℐ𝒞+β2ℐ𝒜)𝒮

𝒩
]− ηℰ−c1ℰ−c2ℰ

c1ℰ − θℐ𝒞 − ηℐ𝒞 − γ1ℐ𝒞
c1ℰ − αℐ𝒜 − ηℐ𝒜 − γ2ℐ𝒜
γ2ℐ𝒜 + γ1ℐ𝒞 +  ς ζ − ηℛ )

 
 
 

       

The solution to differential equation (16) is the same as the solution of the integral 

equation. Now, convert the differential equation (16) into an integral equation. we get, 

ℑ(t) − ℑ(0) = ∫ K(s, ℑ(𝑠))
t

0

ds 

                                                 ℑ(t) = ℑ0  + ∫ K(s, ℑ(s))
t

0

ds                                      (17) 

Further, we define transformation Φ:ℒ → ℒ defined by     

Φ(ℑ(t)) = ℑ0  + ∫ K(𝑠, ℑ(s))ds
t

0

 

Now, for the uniqueness, the following steps should be taken. 

 Step 1: First of all, show that Φ is well-defined.  

Take constant ℘ (positive) so that ℘ α < 1, and also take a rectangle Β which is 

contained in Α, where  Β = {(𝑡, ℑ): −  ℘ + 0 ≤ t ≤  ℘ + 0,− ℘k + ℑ0 ≤ ℑ ≤  ℘k +
ℑ0}. 

Let ℒ ∈ ℂ([0,
ς

η
] , ℝ) defined on [− ℘ + 0,℘ + 0] such that  

𝑑(ℑ(t), ℑ0) ≤  ℘k. 

The set ℒ is a closed subset of the metric space ℂ[− ℘ + 0,℘ + 0] with the sup metric. 

Since ℂ[− ℘+ 0,℘ + 0] is complete, then ℒ is complete. 

d(Φ(ℑ(t)), ℑ0) = sup |ℑ0 +∫ K(𝑠, ℑ(s))ds 
t 

0

− ℑ0| 

                                                          = sup |∫ K(𝑠, ℑ(s))ds 
t 

0

| 

            ≤ ∫ sup|K(𝑠, ℑ(s))| ds 
t 

0

 

≤ k(t − 0) = k ℘ 

⟹  Φ(ℑ(t)) ∈ ℒ, so Φ is well defined. 
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Step 2: We have to show that Φ satisfies the self-contraction condition: 

𝑑(Φ(ℑ1(t)),Φ(ℑ2(t)) = sup |ℑ0 +∫ K(s, ℑ1(s))ds 
t

0

− φ0 −∫ K(s, ℑ2(s))ds 
t

0

| 

                                            = sup |∫ K(𝑠, ℑ1(s)) − K(s, ℑ2(𝑠))ds 
t

0

| 

        ≤ ∫ sup|K(s, ℑ1(s)) − K(s, ℑ2(𝑠))|
t

0

ds 

                                           ≤ α ∫ |ℑ1(s) − ℑ2(𝑠)|
t

0

ds 

                                           ≤ ℘ α d(ℑ1(t), ℑ2(t)) 

⟹   𝑑(Φ(ℑ1(t)),Φ(ℑ2(t)) ≤  m. 𝑑(ℑ1(t), ℑ2(t)) 

Where, 0 ≤ m = ℘ α < 1. 

Hence, Φ is a self-contraction mapping on ℒ, and using Banach contraction theorem 

(Singh and Aggarwal (2016)), we demonstrate that Φ has a fixed point that’s unique, 

hence 𝒮ℰℐ𝒞ℐ𝒜ℛ model has a unique solution. 

V.     Stability Result 

In this section, the stability conditions are explored, and for this, we proceed 

as follows. 

Let transformation Φ:ℒ → ℒ have a fixed solution  

                                          Φ(ℑ) = ℑ, (where, ℑ ∈ Φ)                                      (18)                                   

Remark (1). If there exists ϵ∗
∗(t) ∈ 𝐶 ([0,

ς

η
] , 𝑅), then  ℑκ ∈ Φ satisfies (19) if,  

i) |ϵ∗
∗(t)| ≤ ω∗

∗, ∀𝑡 > 0, 

ii) Φ(ℑk(𝑡)) = ℑk(𝑡) + ϵ∗
∗(t), ∀𝑡 > 0, 

For further analysis, consider the perturbed equation for the Perturbed problem (16), 

we have 

                                                              ℑ′(t) = K(t, ℑ(t)) + ϵ∗
∗(t)                        (23)                                                                                                                             

with                                                       ℑ(0) = ℑ0; t > 0 

Lemma (1): The result mentioned below holds for equation (23), 

|ℑ(t) − Φ(ℑ(𝑡))| ≤ ℘ ∗ ω∗
∗, where ℘ = 1/𝛼 

Proof: From the remark (1) and equation (16), this result is easily followed. 

Theorem (2): Under Lemma (1), the solution of the equation (16) is stable, provided 

℘

(1 − ℘𝛼)
 <  1(where, ℘ < 1) 
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Proof: Let ℑι(t) ∈ Φ  be the unique solution of (16) and  ∃ ℑκ ∈ Φ  satisfying 

Φ(ℑk) = ℑk, then,    

                d(ℑι(𝑡), ℑκ(𝑡)) = sup|ℑι(𝑡) − ℑκ(𝑡)| 

                                            ≤ sup|ℑι −Φ(ℑι)| +sup|Φ(ℑι) − Φ(ℑk)| 

                d(ℑι(𝑡), ℑκ(𝑡))   ≤ ℘ +℘ α d(ℑ𝑙(t), ℑ𝑘(t)) 

                d(ℑι(𝑡), ℑκ(𝑡))  − ℘ α d(ℑ𝑙(t), ℑ𝑘(t))≤℘          

               (1 − ℘α)d(ℑ𝑙(t), ℑ𝑘(t)) ≤ ℘         

⇒            d(ℑ𝑙(t), ℑ𝑘(t)) ≤  
℘

(1−℘α)
 

Showing that the problem (16) is UH stable, it is also GUH stable, by defining 

⇒      ϱ(ϵ∗
∗) =

℘

(1−℘α)
  with ϱ(0) = 0. 

Then, Φ is called Generalised Hayers-Ulam stable and Hayers-Ulam stable. 

VI.   Validation of Theoretical Approach using Numerical Simulation: 

For the qualitative characteristics of parameters, legitimate values that are 

biologically plausible are assigned for simulation purposes. The numerical 

methodology is developed with the help of the Runge-Kutta (RK-5) method (Hussain 

2020, Minggi et al. 2021) to solve the 𝒮ℰℐ𝒞ℐ𝒜ℛ model. For analysing the qualitative 

behaviour of the model, a list of all the desired parameters is given in Table 2. In 

addition, the size of the initial population is considered  𝒮(0) = 5000, ℰ(0) =
4000, ℐ𝒞(0) = 3000, ℐ𝒜(0) = 2000,ℛ(0) = 1000.  The source for the parameters is 

Desta and Koya (2019)  proposed 𝒮ℰℐ𝒞ℐ𝒜ℛ model. 

Table 2: List of desired parameters for  𝓢𝓔𝓘𝓒𝓘𝓐𝓡 model’s simulation. 

Parameters Values  

β1 0.017 

β2 0.017 

ς 2000 

θ 0.025 

γ1 0.025 

γ2 0.024 

c1 0.3 

c2 0.2 

𝜂 0.03 

𝛼 0.015 

𝜁 0.4 
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Consequently, we get some graphs from the given data that are shown in figures 2-6, 

where the behaviour of 𝒮(t), ℰ(t), ℐ𝒞(t), ℐ𝒜(t) and ℛ(t) are given. We consider the 

time interval [0,200]. The result of the simulation is described along with the stated 

objective of controlling the spread of the virus, which is to reduce the size of the 

exposed, chronic, and acute populations and increase the size of the recovered 

population.  

 

Fig. 2. The solution behaviour of the susceptible population in  𝒮ℰℐ𝒞ℐ𝒜ℛ model. 

Based on Figure 2, it can be seen that the size of the susceptible population is 

constantly increasing up to 𝑡 = 200.  

 

Fig. 3. The solution behaviour of the exposed population in  𝒮ℰℐ𝒞ℐ𝒜ℛ model. 

Based on Figure 3, it can be seen that the size of the exposed population dropped 

drastically till 𝑡 = 60, then after 𝑡 = 60 the size of the exposed population in an 

equilibrium state is 0, which means that after 𝑡 = 60 the model reaches a disease 

eradication stage. 
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Fig. 4. The solution behaviour of the chronically infected population in  𝒮ℰℐ𝒞ℐ𝒜ℛ 

model. 

Based on Figure 4, it can be seen that the size of the chronically infected population 

dropped drastically till 𝑡 = 120, then after 𝑡 = 120 the size of the chronically infected 

population is in an equilibrium state is 0, which means after 𝑡 = 120 the chronic class 

of the model reaches a disease eradication stage. 

 

Fig. 5. The solution behaviour of the acute infected population in  𝒮ℰℐ𝒞ℐ𝒜ℛ model. 

Based on Figure 5, it can be seen that the size of the acute infected population dropped 

drastically till 𝑡 = 125, then after 𝑡 = 125 the size of the acute infected population 

iapproaches an equilibrium state is 0, which means after 𝑡 = 125 the class of acute 

infectives reaches the disease-free state. 

 

Fig. 6. The solution behaviour of the recovered population in  𝒮ℰℐ𝒞ℐ𝒜ℛ model. 
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Based on Figure 6, it can be seen that the size of the recovered population constantly 

increases until 𝑡 =  80, and then it begins to balance with the number of recovered 

individuals. 

VII.   Discussion and Conclusion 

This study enhances HBV dynamics comprehension by deploying a fixed-

point solution in the advanced 𝑆𝐸𝐼𝐶𝐼𝐴𝑅 population model for acute and chronic 

population representation. The implementation of fixed-point methodology provides 

researchers with better tools to prove the existence and uniqueness of solutions.  

The Theoretical results Theorem 4.1 shows that if the linear combination of all 

parameters in each compartment lies between 0≤℘α<1, then all compartments 

approach their equilibrium state. All the parameters are considered according to the 

theoretical conditions to visualize that under the considered condition, all 

compartments are attaining their equilibrium state. The mathematical model evaluation 

runs smoothly through this approach because it solves both the challenges of disease 

transmission non-linearities and the simplification of mathematical calculations.  

Research utilises generalised Hyers-Ulam stability criteria to ensure model solutions 

preserve behavior during minor disturbances because this stability aspect significantly 

impacts long-term systems analysis. The stability framework proves that both 

theoretical and real-world conditions support the existence of a disease-free 

equilibrium, making the model reliable for predictions. The RK-5 method serves as the 

base for simulating dynamic patterns from the proposed model. The study generates 

visual outputs from MATLAB numerical simulations showing how each population 

segment (susceptible, exposed, and infected acute, infected chronic, and recovered) 

changes temporally during the simulation period.  

The simulation outcomes demonstrate how the population moves toward becoming 

disease-free, which indicates that particular assumptions with proper control methods 

can eliminate the disease or reduce it to minimal levels. The population compartments 

converge to this fixed point to verify that properly designed interventions like static 

vaccination can deliver sustained disease management results. 

Researchers who evaluate infectious disease models can use well-established 

mathematical concepts that merge fixed-point analyses with stability measures because 

of their powerful RK-5 computational technique. These dual benefits result from the 

research because it expands the mathematical epidemiological knowledge base and 

enhances Hepatitis B transmission control outcomes in public health systems. Public 

health delivers optimal solutions through research findings only when supported by 

actual epidemiological data, combined with theoretical modeling along computational 

simulations. 
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