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Abstract 

The Laplace Transform method and variational iterative approach are 

combined to create a new semi-analytical methodology that is used in this research to 

solve one-dimensional heat equations. To illustrate the effectiveness and precision of 

the suggested approach, numerical results are provided. 
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I.    Introduction   

Joseph Fourier initially presented the idea of heat equations in 1822. It 

occurs in many scientific and technical applications when we need to describe 

the flow of a quantity, like heat, through a certain area. Here is a description of 

the 1-D heat equation: 

∂u(α, t)

∂t
=  c²

∂2u(α, t)

∂α2
 

Several applications in the sciences and engineering may be resolved using the Laplace 

transform approach. The variational iterative method is also a widely used numerical 

technique to resolve differential equations. Differential equations may have an accurate 

solution, which can be obtained using variational iterations. 

A variety of mathematical techniques were developed to solve heat equations in one 

dimension. The finite difference method has been used in [II] to solve heat equations 

in 2-D. The 2-D heat equations’ Chebyshev series solution was presented in [IX]. In 

[VII], a method combining the Finite Difference approach to solve 2-D heat equations 

with a collocation method was devised. Heat equations in two dimensions are 

solved using the radial basis function approach in [VIII]. The approach of 

variational iteration was presented in [IV] to solve nonlinear equations. This paper 

discusses a few more approaches to solving Heat Equations [VI-XII]. [I, III, V, VI, X, 

XI, XII]. 
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II.      Linearity Property of the Laplace Transform Method 
 

Let v(t), w(t) be the functions of t which are defined for all positive t values. 

Then 

L{a. v(t) + b. w(t)} = a. L{v(t)} + b. L{w(t)} 

where a, b are arbitrary constants. 

III.    Laplace transform for differentiation 

Assume that for any positive value of t, u(t) is a function of t. Consequently, 

the nth derivative of the function u(t), the Laplace transform is 

L [
DN(U(T))

DTN
] = PNU̅(P) − PN−1U(0) − PN−2U′(0) − PN−3U′′(0) − ⋯ − PU(N−2)(0)

− U(N−1)(0) 

where u̅(p) = L{u(t)}. 

IV.      Linearity Property of Inverse Laplace Transform 
 

For any positive value of t, let v(t), w(t) be two functions of t. Let v̅(p) and 

w̅(p) be functions of s such that v̅(p) = L{v(t)} and w̅(p) = L{w(t)}. Then 

L−1{c. v̅(p) + d. w̅(p)} = c. L−1{v̅(p)} + d. L{w̅(p)} = c. v(t) + d. w(t) 

where the constants c and d are arbitrary. 

Numerical Examples 

Example 1: 

This section provides examples to illustrate the efficacy of the proposed semi-

analytical method.   

Example 1: Consider the following 1-D heat equation 

    
∂u(α,t)

∂t
=  

∂2u(α,t)

∂α2                                                        (1) 

the initial conditions  

  u(α, 0) = sinα   

By L.T. of (1), 

  L {
∂u(α,t)

∂t
} =  L{

∂2u(α,t)

∂α2 }                                                (2) 

This implies 

  pL{u(α, t)} − u(α, 0) = L{
∂2u(α,t)

∂α2 }   

By initial conditions, we  have 

pL{u(α, t)} = sinα + L{
∂2u(α, t)

∂α2
}   
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            L{u(α, t)} =
sinα  

p
+

1

p
L{

∂2u(α,t)

∂α2 }                                                          (3) 

By inverse L.T. of (3), 

u = sinα + L−1 [
1

p
L{

∂2u(α, t)

∂α2
}  ]                                (4) 

Using the iteration method, from (4), we obtain    

     um+1 = sinα + L−1 [
1

p
L {L{

∂2um

∂α2 }  }]                                                        (5) 

From (5), we obtain 

  u0 = sinα  
  u1 = sinα (1 − t) 

  u2 = sinα (1 − t +
(t)2

2!
) 

  u3 = sinα (1 − t +
(t)2

2!
−

(t)3

3!
) 

                                                 . 

                                                 . 

                                                 . 

  um = sinα (1 − t +
(t)2

2!
−

(t)3

3!
+ ⋯ +

(−1)m(t)m

m!
) 

The solution is 

u = lim
n→∞

um 

After simplification, we obtain 

   u = sinα (1 − t +
(t)2

2!
−

(t)3

3!
… ) 

u = sinα e−t                                                        (6)   

 
Table 1: Absolute Error of Exact, Approximate solution at 𝛂 = 0.5 (up to 3rd iteration) 

 

t u u* |u-u*| 

0 0.479425538604203    0.479425538604203    0    
0.2 0.392520432266236    0.392489707603974    3.0725e-05    

0.4 0.321368549107831    0.320895493839080    4.7306e-04    

0.6 0.263114314226633    0.260807493000686    2.3068e-03    

0.8 0.215419780632368    0.208390300779960    7.0295e-03    

1.0 0.176370799225032    0.159808512868068    1.6562e-02    

1.2 0.144400197270476    0.111226724956175    3.3173e-02    

1.4 0.118224882255866    0.058809532735449   5.9415e-02    

1.6 0.096794346881901   -0.001278468102945 9.8073e-02    

1.8 0.079248508516310    -0.072872681867839   1.5212e-01    

2.0 0.064883191057865 -0.159808512868068 2.2469e-01 
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Pic. 1. Graph of Exact Solution u 

 

 
Pic. 2. Graph of Approximate solution u* (up to 3rd iteration) 

 
Example 2: Consider the one-dimensional Heat equation 

  
∂u(α,t)

∂t
=  

∂2u(α,t)

∂α2          (7) 

where 

 u(α, 0) =  eα 

By L.T. of (7),  

L {
∂u(α, t)

∂t
} =  L{

∂2u(α, t)

∂α2
}   

This implies 

pL{u(α, t)} − u(α, 0) = L{
∂2u(α, t)

∂α2
}   

by initial conditions,  

pL{u(α, t)} = eχ + L{∇2u(α, t)} 

Divide by p, we obtain 

  L{u(α, t)} =
eα

p
+

1

p
L{∇2u(α, t)}                                             (8) 

By inverse L.T. of (8),  

    u = eα + L−1 [
1

p
L{

∂2u(α,t)

∂α2 }  ]        (9) 
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Using the iteration method, from (9), we obtain 

  um+1 = eα + L−1 [
1

p
L {L{

∂2um

∂α2 }  }]        (10) 

From (10), we obtain 

  u0 = eα 

  u1 = eα(1 + t) 

  u2 = eα (1 + t +
(t)²

2!
) 

  u3 = eα (1 + t +
(t)²

2!
+

(t)³

3!
) 

  u4 = eα (1 + t +
(t)²

2!
+

(t)³

3!
+

(t)4

4!
)         

  u5 = eα (1 + t +
(t)²

2!
+

(t)³

3!
+

(t)4

4!
+

(t)5

5!
) 

. 

. 

. 

  um = eα (1 + t +
(t)²

2!
+

(t)³

3!
+ ⋯ +

(t)m

m!
) 

 

The solution is 

  u = lim
n→∞

um 

  u = eα (1 + t +
(t)²

2!
+

(t)³

3!
+ ⋯ ) 

  u = eα(et) 

  u = eα+t 
 

Table 2: Absolute Error of Exact and Approximate solution at 𝛂 = 0.5 (up to 5th 

iteration) 

 

t u u* |u-u*| 
0 1.648721270700128    1.648721270700128    0      

0.2 2.013752707470477    2.013752556623192    1.5085e-07    

0.4 2.459603111156950    2.459593167760838    9.9434e-06    

0.6 3.004166023946433    3.004049293836627    1.1673e-04    

0.8 3.669296667619244    3.668620260220490    6.7641e-04    

1.0 4.481689070338065    4.479026118735348    2.6630e-03    

1.2 5.473947391727199 5.465735238463740 8.2122e-03    

1.4 6.685894442279269    6.664491896554444    2.1403e-02    

1.6 8.166169912567650    8.116843869029104    4.9326e-02    

1.8 9.974182454814718   9.870670021588852   1.0351e-01    

2.0 12.182493960703473 11.980707900420931 2.0179e-01 
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Pic. 3. Behaviour of Exact solution u 

 

 
Pic. 4. Behaviour of Approximate sol u* to 5th iteration 

Example 3: Consider the one-dimensional Heat equation 

𝜕𝑢(α, 𝑡)

𝜕𝑡
=  

∂2u(α, t)

∂α2
                                                 (11) 

where 

 𝑢(α, 0) = 𝑠𝑖𝑛ℎα  
By L.T. of (11), 

𝐿 {
𝜕𝑢(α, 𝑡)

𝜕𝑡
} =  L{

∂2u(α, t)

∂α2
}   

This implies 

𝑝𝐿{𝑢(α, 𝑡)} − 𝑢(α, 0) = L{
∂2u(α, t)

∂α2
}   

Applying initial conditions, 

𝑝𝐿{𝑢(α, 𝑡)} = 𝑠𝑖𝑛ℎα + L{
∂2u(α, t)

∂α2
}   

𝐿{𝑢(α, 𝑡)} =
𝑠𝑖𝑛ℎα

𝑝
+

1

𝑝
L{

∂2u(α,t)

∂α2 }                           (12)        

Applying inverse T. of (12), 

                                    u = sinhα + L−1 [
1

p
L{

∂2u(α,t)

∂α2 }  ]                                  (13) 
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By the iteration method, from (13),  

          um+1 = sinhα + L−1 [
1

p
L {L{

∂2um

∂α2 }  }]                               (14) 

From (14), we obtain 

𝑢0 = 𝑠𝑖𝑛ℎα  
𝑢1 = 𝑠𝑖𝑛ℎα(1 + 𝑡) 

𝑢2 = 𝑠𝑖𝑛ℎα (1 + 𝑡 +
(𝑡)²

2!
) 

𝑢3 = 𝑠𝑖𝑛ℎα (1 + 𝑡 +
(𝑡)²

2!
+

(𝑡)³

3!
) 

u4 = sinhα (1 + t +
(t)²

2!
+

(t)³

3!
+

(t)4

4!
)         

u5 = sinhα (1 + t +
(t)²

2!
+

(t)³

3!
+

(t)4

4!
+

(t)5

5!
) 

                                                 . 

                                                 . 

                                                 . 

𝑢𝑚 = 𝑠𝑖𝑛ℎα (1 + 𝑡 +
(𝑡)²

2!
+

(𝑡)³

3!
+ ⋯ +

(𝑡)𝑚

𝑚!
) 

The solution is obtained as 

𝑢 = lim
𝑛→∞

𝑢𝑚 

𝑢 = 𝑠𝑖𝑛ℎα (1 + 𝑡 +
(𝑡)²

2!
+

(𝑡)³

3!
+ ⋯ ) 

𝑢 = sinh α (𝑒𝑡) 
Table 3: Absolute Error of Exact and Approximate solution at 𝛂 = 0.5 (up to 5th 

iteration) 

 

t u u* |u-u*| 
0 0.521095305493747    0.521095305493747    0    

0.2 0.636467243394379    0.636467195717544    4.7677e-08    

0.4 0.777382846560495    0.777379703847942    3.1427e-06    

0.6 0.949497552935393    0.949460659184271    3.6894e-05    

0.8 1.159718930021621    1.159505144510173    2.1379e-04    

1.0 1.416483899818968    1.415642246591347    8.4165e-04    

1.2 1.730097342128362 1.727501806673320 2.5955e-03    

1.4 2.113145665561160    2.106381170979195    6.7645e-03    

1.6 2.581001944310608    2.565411941207415    1.5590e-02    

1.8 3.152442893597739    3.119726725029518    3.2716e-02    

2.0 3.850402445182704 3.786625886587898 6.3777e-02   
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Pic. 5. Behaviour of Exact Solution u 

 
Pic. 6. Behaviour of Approximate sol. u* 

 
V.   Conclusion 

 The results of the solved numerical examples show that the novel semi-analytic 

approach, which comprises the Laplace transform with a modified variational iterative 

approach, is an efficient mathematical approach for solving one-dimensional heat 

equations. In the future, linear and non-linear heat equations in two and three 

dimensions may be solved using the suggested mathematical approach. 
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