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Abstract 

In this research, we provide novel methods for analyzing some models of PDEs 

that occur in a wide range of scientific and engineering applications. Adomian 

polynomials have been utilized for this purpose. The simplicity and accuracy of the 

suggested Integrated technique are confirmed by combining the Adomian 

decomposition method with the conventional Double Elzaki transform. An 

experimental study has been conducted. To illustrate the efficiency of the proposed 

scheme, the Rangaig transform-based Homotopy analysis method is used for the 

comparison study of the solutions.  

Keywords: Adomian decomposition method; Double Elzaki transform; Benjamin-

Bona-Mahony equations; KdV equations; Linear Schrodinger equations; Test 

examples.  

 
I.    Introduction 

When the change in input is not proportionate to the change in output, the 

system is said to be nonlinear. Many scientists, including mathematicians, physicists, 

biologists, and engineers, are interested in nonlinear problems. In this research, we will 

discuss three classical models of partial differential equations.  

The double Elzaki transform has been used for solving wave-like equations, and the 

outcomes are compared with the double Laplace transform approach in [I]. In [II], to 

find the solutions of differential equations, a novel integral transform known as the 

Elzaki transform has been devised. ODEs with variable coefficients have been solved 

using the Elzaki transform in [III]. The relationship between Laplace transforms and 

Elzaki has been described in [IV]. In [V], to solve both linear and nonlinear PDEs, a 

combination of the Elzaki and differential transforms has been used. To solve 

differential equations, two precise techniques based on the Elzaki and Sumudu 

transforms have been established and put into practice in [VI]. In [VII], the analytical 

solution of the telegraph equations is examined using the double Laplace transform. 

Singular systems of hyperbolic equations have been solved using the double integral 

transform approach in [VIII]. Nonlinear partial differential equations have been studied 
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using the Double Elzaki decomposition approach in [IX]. The convergence of the 

double Elzaki transform scheme for solving PDEs has been discussed in [X]. A 

modification in the double Sumudu transform method has been carried out. 

The composition of the research paper is as follows: The complete details on 

the double Elzaki transform and its characteristics are provided in section 2. 

Section 3 presents a suggested method for resolving partial differential equation 

mathematical models. In section 4, the suggested method for resolving such 

equations has been used in some computational work. The conclusion of the 

study is presented in Section 5. 

II.  Characteristics of the Double Elzaki Transform 

The Double Elzaki transform, its inverse Elzaki transform, and a number of its 

important characteristics are examined in this section.  

II.i.  Double Elzaki Transform: An Introduction 

Assume 𝑓(𝜇, 𝜂) be a function with 𝜇 , 𝜂 > 0. Because an infinite series can be 

used to represent the function. The Double Elzaki Transform can be expressed as 

follows: 

𝐷𝐸 {𝑓(𝜇, 𝜂); 𝜏, 𝜐} = 𝑇(𝜏, 𝜐) = 𝜏𝜐 ∫ ∫ 𝑓(𝜇, 𝜂)

∞

0

𝑒 −
(
𝜇
𝜏
+
𝜂 
𝜐
)
𝑑𝜇𝑑𝜂

∞

0

, 

whenever an integral exists.  

II.ii.  Double Elzaki Inverse Transform    

 The following is the Double Elzaki transform's inverse: 

𝐷𝐸−1{𝑇(𝜏, 𝜐)} = 𝑓(𝜇, 𝜂), 𝜇, 𝜂 > 0 

If   𝑎 > 0, 𝑏 > 0 in the area correspond to the interval 0 ≤ 𝜇 < ∞, 0 ≤ 𝜂 < ∞,then ∃ 

a positive constant 𝑘 for which the function 𝑓(𝜇, 𝜂) is said to have exponential order: 

|𝑓(𝜇, 𝜂)| ≤ 𝑘 𝑒
(
𝜇
𝑎
+
𝜂
𝑏
)
 

II.iii.   Double Elzaki Transform Standard Characteristics  

This section will discuss a few characteristics of the double Elzaki transform: 

LINEARITY PROPERTY: If 𝑓(𝜇, 𝜂) and 𝑔(𝜇, 𝜂) be two functions of 𝜇, 𝜂 > 0 such 

that 𝐷𝐸[𝑓(𝜇, 𝜂)] =  𝑇1(𝜏, 𝜐)  and   𝐷𝐸[𝑔(𝜇, 𝜂)] = 𝑇2(𝜏, 𝜐), then  

𝐷𝐸{ 𝑎𝑓(𝜇, 𝜂) + 𝑏 𝑔(𝜇, 𝜂)} = 𝑎 𝐷𝐸{𝑓(𝜇, 𝜂)} + 𝑏 𝐷𝐸 {𝑔(𝜇, 𝜂)}
= 𝑎 𝑇1(𝜏, 𝜐) + 𝑏𝑇2(𝜏, 𝜐) 

CHANGE SHIFTING PROPERTY: If 𝐷𝐸{𝑓(𝜇, 𝜂)} = 𝑇(𝜇, 𝜂), then  

𝐷𝐸{𝑓(𝑎𝜇, 𝑏𝜂)} =
1

𝑎𝑏
 𝑇(𝑎𝜇, 𝑏𝜂) 
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FIRST SHIFTING PROPERTY:  

(a) If 𝐷𝐸{𝑓(𝜇, 𝜂)} = 𝑇(𝜏, 𝜐), then  

𝐷𝐸{𝑒𝑎𝜇+𝑏𝜂  𝑓(𝜇, 𝜂 ) = 𝑇 [
𝜏

1 − 𝑎𝜏
,

𝜐

1 − 𝑏𝜐
] 

(b) If 𝐷𝐸{𝑓(𝜇, 𝜂)} = 𝑇(𝜏, 𝜐), then  

𝐷𝐸{ 𝑒−𝑎𝜇−𝑏𝜂  𝑓(𝜇, 𝜂 ) =  𝑇 [
𝜏

1 − 𝑎𝜏
,

𝜐

1 − 𝑏𝜐
] 

 
II.iv.   Partial Derivatives’ Double Elzaki Transform :  

In this section, we introduce the double Elzaki transform of a few partial derivatives:  

 

a) 𝐷𝐸 {
𝜕

𝜕𝜇
 𝑓(𝜇, 𝜂)} =

1

𝜏
 𝑇(𝜏, 𝜐) − 𝜏𝑇(0, 𝜐) 

b) 𝐷𝐸 {
𝜕

𝜕𝜂
 𝑓(𝜇, 𝜂)} =

1

𝜐
 𝑇(𝜏, 𝜐) − 𝜐 𝑇(𝜏, 0) 

c)   𝐷𝐸 {
𝜕2

𝜕𝜇2) 𝑓(𝜇, 𝜂) } = 
1

𝜏2 𝑇(𝜏, 𝜐) − 𝑇(0, 𝜐) − 𝜏
𝜕

𝜕𝜇
 𝑇(0, 𝜐) 

d) 𝐷𝐸{
𝜕2

𝜕𝜂2 𝑓(𝜇, 𝜂) } = 
1

𝜐2 𝑇(𝜇, 𝜐) − 𝑇(𝜏, 0) − 𝜐
𝜕

𝜕𝑞3
 𝑇(𝜏, 0) 

e) 𝐷𝐸{
𝜕2

𝜕𝜇𝜕𝜂
  𝑓(𝜇, 𝜂) } = 

1

𝜏𝜐
 𝑇(𝜏, 𝜐) −

𝜏

𝜐
𝑇(𝜏, 0) −

𝜏

𝜐𝜐
 𝑇(0,0) +

𝜏𝜐 𝑇(0,0) 

III.    Proposed Technique for Solving Models of PDEs 

Consider the universal partial differential equation that is nonlinear and has the form: 

𝐿 𝑢(𝜇, 𝜂) + 𝑁 𝑢( 𝜇, 𝜂) = 𝑔(𝜇, 𝜂)                                        (2) 

Under the initial condition 

𝑢(𝜇, 0) = ℎ(𝜇),                                                          (3) 

In this case 𝑔(𝜇, 𝜂) is the source term, a linear differential operator is denoted by 𝐿, 

and a nonlinear differential operator by 𝑁, where 𝐿 =
𝜕

𝜕𝜂
 . 

Equations (2) and (3) can be solved by applying the double Elzaki transform and the 

single Elzaki transform, respectively. We arrive at 

𝐷𝐸(𝐿 𝑢(𝜇, 𝜂)) + 𝐷𝐸(𝑁 𝑢(𝜇, 𝜂)) = 𝐷𝐸 (𝑔(𝜇, 𝜂))                                 (4) 

and 

𝐸1(𝑢(𝜇, 0)) =  𝐸1(ℎ(𝜇)) = 𝑇(𝜏, 0)                                             (5) 

Using Equation (4), we get   
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1

𝜐
  𝑇(𝜏, 𝜐 ) − 𝜐 𝑇(𝜏, 0) = 𝐷𝐸 (𝑔(𝜇, 𝜂 )) − 𝐷𝐸 (𝑁 𝑢 (𝜇, 𝜂 ) 

This implies 

𝑇(𝜏, 𝜐) = 𝜐2𝑇(𝜏, 0) + 𝜐𝐷𝐸 (𝑔(𝜇, 𝜂)) − 𝜐𝐷𝐸 (𝑁 𝑢(𝜇, 𝜂)) 

Or 

𝐷𝐸(𝑢(𝜇, 𝜂))    = 𝜐 𝐸1(ℎ(𝜇)) + 𝜐 𝐷𝐸 (𝑔(𝜇, 𝜂))   − {𝜐𝐷𝐸(𝑁 𝑢(𝜇, 𝜂))}                   (6) 

Applying the inverse double Elzaki transform to equation (6) yields, 

𝑢(𝜇, 𝜂) = 𝐺(𝜇, 𝜂) − 𝐷𝐸−1{𝜐𝐷𝐸(𝑁 𝑢(𝜇, 𝜂))}                              (7) 

where 

𝐺(𝜇, 𝜂) = 𝐷𝐸−1{𝜐2 𝐸1(ℎ(𝜇)) + 𝜐 𝐷𝐸 (𝑔(𝜇, 𝜂))} 

Assume that the following is the form of the solution: 

𝑢(𝜇, 𝜂) = ∑ 𝑢𝑛(𝜇, 𝜂)

∞

𝑛=0

                                                         (8) 

Write the nonlinear term as follows:  

𝑁𝑢(𝜇, 𝜂) = ∑ 𝐴𝑛(𝑢),

∞

𝑛=0

                                                           (9) 

Here 𝐴𝑛(𝑢) stands for the Adomian polynomials, which can be computed as follows: 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜖𝑛 {𝑁(∑𝜖𝑗𝑢𝑗

∞

𝑗=0

)}

𝜖=0

, 𝑛 = 0, 1, 2, 3, … 

putting the values from (8) and (9) into (7), we get  

∑ 𝑢𝑛(𝜇, 𝜂)

∞

𝑛=0

= 𝑆(𝜇, 𝜂) − 𝐷𝐸−1 {𝜐𝐷𝐸 (∑ 𝐴𝑛(𝑢)

∞

𝑛=0

)}                                      (10) 

From (10), we obtain 

𝑢0(𝜇, 𝜂) = 𝑆(𝜇, 𝜂), 

𝑢1(𝜇, 𝜂) = −𝐷𝐸−1{𝜐 𝐷𝐸(𝐴0)}, 

𝑢2(𝜇, 𝜂) = −𝐷𝐸−1{𝜐 𝐷𝐸(𝐴1)}, 

⋮ 

The following is the problem's approximate solution: 
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𝑢(𝜇, 𝜂) = lim
𝑛→∞

∑ 𝑢𝑛(𝜇, 𝜂).

∞

𝑛=0

 

IV.   Computational Work   

In this section, a few examples are presented to obtain the solution of nonlinear 

PDEs that develop during liquid drop formation. 

Example 1: Take the nonlinear Benjamin-Bona-Mahony (BBM) equation   

𝑢η + 𝑢μ + 𝑢𝑢μ − 𝑢μμη = 0                                                  (11) 

with 𝑢(𝜇, 0) = 𝜇 as the initial condition. The precise solution is as follows: 

𝑢(μ, η) =
μ − η

1 + η
 

 The double Elzaki transform applied to equation (11) yields, 

𝐷𝐸(𝑢η) = −𝐷𝐸(𝑢μ + 𝑢𝑢μ − 𝑢μμη) 

This implies  

1

υ
𝑇(τ, υ) − υ. 𝑇(τ, 0) = −𝐷𝐸(𝑢μ + 𝑢𝑢μ − 𝑢μμη)                           (12) 

When we apply a single Elzaki transform to the starting conditions, we get 

     𝐸1(𝑢(𝜇, 0)) = 𝑇(τ, 0) = 𝐸(μ) = 𝑢3 

From (12), we obtain  

1

υ
𝑇(τ, υ) = υ(𝑢3) − 𝐷𝐸(𝑢μ + 𝑢𝑢μ − 𝑢μμη) 

This implies  

𝑇(𝜏, υ) = υ2(𝑢3) − υ. 𝐷𝐸(𝑢μ + 𝑢𝑢μ − 𝑢μμη) 

When the inverse double Elzaki transforms is used, we get 

𝐷𝐸−1(𝑇(τ, υ)) = 𝐷𝐸−1(υ2(𝑢3)) − 𝐷𝐸−1{υ.𝐷𝐸(𝑢μ + 𝑢𝑢μ − 𝑢μμη)} 

This implies  

𝑢(μ, η) = μ − 𝐷𝐸−1{υ.𝐷𝐸(𝑢μ + 𝑢𝑢μ − 𝑢μμη)} 

Applying Adomian decomposition approach, we get 

∑ 𝑢𝑛(𝜇, η)

∞

𝑛=0

= μ − 𝐷𝐸−1 (υ.𝐷𝐸 {∑ 𝐴𝑛(𝑢)

∞

𝑛=0

})  

According to the Equation above, we get  

𝑢0(𝜇, η) = μ,  
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𝑢1(𝜇, η) = −𝐷𝐸−1(υ.𝐷𝐸{𝐴0}), 
𝑢2(μ, η) = −𝐷𝐸−1(υ.𝐷𝐸{𝐴1}), 

⋮ 
Some of the Adomian polynomials are: 

𝐴0 = (1 + 𝜇), 
𝐴1 = −2(1 + μ)η, 
𝐴2 = (1 + 𝜇)η2, 

⋮ 
 Determine the value of 𝑢0, 𝑢1, 𝑢2, … are given by 

𝑢0(μ, η) = μ,  
𝑢1(𝜇, η) = −(1 + μ)η, 
𝑢2(μ, η) = (1 + μ)η2, 

⋮ 
The solution is: 

𝑢(𝜇, η) = 𝑢0(μ, η) + 𝑢1(μ, η) + 𝑢2(μ, η) + ⋯ 

Or 

𝑢(μ, η) = (μ − (1 + μ)η + (1 + μ)η2 − ⋯) 

The solution in closed form is: 

𝑢(𝜇, η) =
μ − η

1 + η
. 

Rangaig Transform Homotopy Analysis Method (XII): 

Rewrite the given equation as:  

𝑢𝜂 + 𝑢𝜇 + 𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜂 = 0 

Applying the Rangaig transform to both sides, we obtain  

𝑅{𝑢𝜂} = −𝑅{(𝑢𝜇 + 𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜂)} 

This implies  

𝑅(𝑢) =
1

𝜔2
𝑢(𝜇, 0) −

1

𝜔
𝑅{𝑢𝜇 + 𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜂}                         (1) 

Using the initial condition, we obtain 

  

𝑅(𝑢) =
1

𝜔2
𝜇 −

1

𝜔
𝑅{𝑢𝜇 + 𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜂} 

The nonlinear operator is :  

𝑁 = 𝑅(𝑢) −
1

𝜔2
𝜇 +

1

𝜔
𝑅{𝑢𝜇 + 𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜂} 
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Using the Homotopy Analysis Method, we obtain  

ℛ1(𝑢0⃗⃗⃗⃗ (μ, 𝜂)) = −
1

𝜔3
(1 + 𝜇), 

ℛ2(𝑢1⃗⃗⃗⃗ (μ, 𝜂)) = (
1

𝜔3
−

2

𝜔4
) (1 + 𝜇), 

⋮ 

Some components of solutions are:  

𝑢0 = 𝜇, 

𝑢1 = −(1 + 𝜇)𝜂, 

𝑢2 = (1 + 𝜇)𝜂2, 

⋮ 

The solution is:  

𝑢 = 𝑢0 + 𝑢1 + 𝑢2 + ⋯ = 
𝜇 − 𝜂

1 + 𝜂
 

 

 

 
Fig. 1. Physical Interpretation of solutions of Example 1. 

 

𝜇 

 

𝜂 
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Fi. 2. Shows the representations of solutions at different values of parameters. 

The dynamical and physical characteristics of analytical solutions produced by the 

Adomian decomposition approach based on double Elzaki transform at various ranges 

of 𝜇 and 𝜂. of Example 1, are shown in Figure 1. Figure 2 shows the representations of 

solutions at different ranges of parameters. 

Example 2: Take the nonlinear KdV equation  

𝑢𝜂 − 𝑎𝑢𝑢𝜇 + 𝑢𝜇𝜇𝜇 = 0                                                              (13) 

with initial condition  

𝑢(𝜇, 0) =
1

𝑎
(𝜇 − 1) 

An exact solution is expressed as:  

𝑢(𝜇, 𝜂) =
1

𝑎
(
𝜇 − 1

1 − 𝜂
) 

Using equation (13) and the double Elzaki transform, we obtain 

    𝐷𝐸(𝑢𝜂) = 𝐷𝐸(𝑎𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜇) 

This implies  

1

𝜐
𝑇(𝜏, 𝜐) − 𝜐. 𝑇(𝜏, 0) = 𝐷𝐸(𝑎𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜇)                                           (14) 

When we apply a single Elzaki transform on the starting condition, we obtain 

𝐸1(𝑢(𝜇, 0)) = 𝑇(𝜏, 0) = 𝐸 (
1

𝑎
(𝜇 − 1)) =

1

𝑎
{𝑢3 − 𝑢2} 

 

 

{
𝑝

3
− 5

6
} 

𝒑𝟑  
𝜇 

𝜇 

{
𝜇 − 5

6
} {

𝜇 − 5

6
} 
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From (14), we get 

1

𝜐
𝑇(𝜏, 𝜐) = 𝜐 {

1

𝑎
{𝑢3 − 𝑢2}} + 𝐷𝐸(𝑎𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜇) 

This implies  

𝑇(𝜏, 𝜐) = 𝜐2 {
1

𝑎
{𝑢3 − 𝑢2}} + 𝜐. 𝐷𝐸(𝑎𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜇) 

 

When the inverse double Elzaki transforms is used, we get 

 

𝐷𝐸−1(𝑇(𝜏, 𝜂)) = 𝐷𝐸−1 (𝜐2 {
1

𝑎
{𝑢3 − 𝑢2}}) + 𝐷𝐸−1 (𝜐. 𝐷𝐸(𝑎𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜇)) 

This implies  

𝑢(𝜇, 𝜂) =
1

𝑎
(𝜇 − 1) + 𝐷𝐸−1 (𝜐. 𝐷𝐸(𝑎𝑢𝑢𝜇 − 𝑢𝜇𝜇𝜇)) 

Applying Adomian decomposition approach, we get 

∑ 𝑢𝑛(𝜇, 𝜂)

∞

𝑛=0

=
1

𝑎
(𝜇 − 1) + 𝐷𝐸−1 (𝜐. 𝐷𝐸 {∑ 𝐴𝑛(𝑢)

∞

𝑛=0

})  

 

According to the Equation above, we get  

𝑢0(𝜇, 𝜂) =
1

𝑎
(𝜇 − 1),  

𝑢1(𝜇, 𝜂) = 𝐷𝐸−1(𝜐. 𝐷𝐸{𝐴0}), 
𝑢2(𝜇, 𝜂) = 𝐷𝐸−1(𝜐. 𝐷𝐸{𝐴1}), 

⋮ 
 

Some of the Adomian polynomials are: 

𝐴0 =
1

𝑎
(𝜇 − 1), 

𝐴1 =
2

𝑎
(𝜇 − 1)𝜂 

𝐴2 =
3

𝑎
(𝜇 − 1)𝜂2, 

 

⋮ 
The values of 𝑢0, 𝑢1, 𝑢2, … are given by 

𝑢0(𝜇, 𝜂) =
1

𝑎
(𝜇 − 1),  

𝑢1(𝜇, 𝜂) =
1

𝑎
(𝜇 − 1)𝜂 

𝑢2(𝜇, 𝜂) =
1

𝑎
(𝜇 − 1)𝜂2, 

⋮ 
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The solution is: 

𝑢(𝜇, 𝜂) = 𝑢0(𝜇, 𝜂) + 𝑢1(𝜇, 𝜂) + 𝑢2(𝜇, 𝜂) + ⋯ 

Or 

𝑢(𝜇, 𝜂) =
1

𝑎
(𝜇 − 1) +

1

𝑎
(𝜇 − 1)𝜂 +

1

𝑎
(𝜇 − 1)𝜂2 + ⋯ 

Or 

𝑢(𝜇, 𝜂) =
1

𝑎
(𝜇 − 1)(1 + 𝜂 + 𝜂2 + 𝜂3 + ⋯) =

1

𝑎
(
𝜇 − 1

1 − 𝜂
) 

 

 

  
 

Fig. 3. Physical Interpretation of solutions of Example 2 for 𝐚 = 𝟐. 

 

 

 
  

Fig. 4. Representations of the solutions of Example 1 at different values of the 

parameters 
 

Figure 3 displays the physical and dynamical characteristics of analytical solutions 

produced by the Adomian decomposition approach based on the double Elzaki 

𝜇 

𝜂 

 

𝜇  

{ 
1 − 𝑝3 

2
} 

{ 
1 −𝜇 

8
} 

{ 
1 − 𝜇 

2
} 

𝜇  
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transform at various ranges of 𝜇 and 𝜂 of Example 2. Figure 2 shows the representations 

of solutions at different ranges of parameters. 

Example 3:  Take the linear Schrodinger equation of the form  

−𝑖𝑢𝜂 = 𝑢𝜇𝜇 + (𝜋2 + 1)𝑢,                                                         (12) 

with initial condition  

𝑢(𝜇, 0) = sin 𝜋𝜇 

An exact solution expressed as: 

𝑢(𝜇, 𝜂) = 𝑒𝑖𝜂 sin𝜋𝜇 

Rewrite the Equation (12), 

𝑢𝜂 = 𝑖{𝑢𝜇𝜇 + (𝜋2 + 1)𝑢} 

Applying the double Elzaki transform to both sides, we obtain  

𝐷𝐸(𝑢𝜂) = 𝐷𝐸(𝑖{𝑢𝜇𝜇 + (𝜋2 + 1)𝑢}) 

This implies  

1

𝜐
𝑇(𝜏, 𝜐) − 𝜐. 𝑇(𝜏, 0) = 𝐷𝐸(𝑖{𝑢𝜇𝜇 + (𝜋2 + 1)𝑢}) 

After simplifications, we get 

𝑇(𝜏, 𝜐) = 𝜐2. 𝑇(𝜏, 0) + 𝜐. 𝐷𝐸[𝑖{𝑢𝜇𝜇 + (𝜋2 + 1)𝑢}] 

Applying initial conditions, we obtain 

𝑇(𝜏, 𝜐) = 𝜐2.
𝜋𝑢3

1 + 𝜋2𝑢2
+ 𝜐.𝐷𝐸[𝑖{𝑢𝜇𝜇 + (𝜋2 + 1)𝑢}] 

Taking the inverse double Elzaki transform used, we get 

𝑢(𝜇, 𝜂) = sin𝜋𝜇 + 𝐷𝐸−1{𝜐. 𝐷𝐸[𝑖{𝑢𝜇𝜇 + (𝜋2 + 1)𝑢}]} 

Applying the Adomian decomposition approach, we get 

∑ 𝑢𝑛(𝜇, 𝜂)

∞

𝑛=0

= sin𝜋𝜇 + 𝐷𝐸−1 (𝜐. 𝐷𝐸 {∑ 𝐴𝑛(𝑢)

∞

𝑛=0

}) 

Comparing the different powers, we get  

𝑢0(𝜇, 𝜂) = sin𝜋𝜇, 

𝑢1(𝜇, 𝜂) = 𝐷𝐸−1(𝜐. 𝐷𝐸{𝐴0(𝑢)}), 

𝑢2(𝜇, 𝜂) = 𝐷𝐸−1(𝜐. 𝐷𝐸{𝐴1(𝑢)}), 

𝑢3(𝜇, 𝜂) = 𝐷𝐸−1(𝜐. 𝐷𝐸{𝐴2(𝑢)}), 

⋮ 
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and so on. Some of the Adomian components are: 

𝐴0(𝑢) = sin 𝜋𝜇, 

𝐴1(𝑢) = 𝑖𝜂 sin𝜋𝜇, 

𝐴2(𝑢) =
𝑖2𝜂2

2
sin 𝜋𝜇, 

⋮ 

and so on. Components of solutions are: 

𝑢0(𝜇, 𝜂) = sin𝜋𝜇, 
𝑢1(𝜇, 𝜂) = 𝑖𝜂. sin𝜋𝜇, 

𝑢2(𝜇, 𝜂) =
𝑖2𝜂2

2!
sin𝜋𝜇, 

𝑢3(𝜇, 𝜂) =
𝑖3𝜂3

3!
sin𝜋𝜇, 

⋮ 
 

The solution is: 

𝑢(𝜇, 𝜂) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 + ⋯ 

Or 

𝑢(𝜇, 𝜂) = sin𝜋𝜇 + 𝑖𝜂. sin𝜋𝜇 +
𝑖2𝜂2

2!
sin𝜋𝜇 + ⋯ 

 

Or 

𝑢(𝜇, 𝜂) = 𝑒𝑖𝜂 sin𝜋𝜇 

 

Rangaig Transform Homotopy Analysis Method (XII):  

 

Rewrite the equation 

𝑢𝜂 = 𝑖(𝑢𝜇𝜇 + (𝜋2 + 1)𝑢) 

Applying the Rangaig transform to both sides, we obtain  

𝑅{𝑢𝜂} = 𝑅{𝑖(𝑢𝜇𝜇 + (𝜋2 + 1)𝑢)} 

This implies  

𝑅(𝑢) =
1

𝜔2
𝑢(𝜇, 0) −

𝑖

𝜔
𝑅{𝑖(𝑢𝜇𝜇 + (𝜋2 + 1)𝑢)}                         (1) 

Using the initial condition, we obtain 

    𝑅(𝑢) =
1

𝜔2 𝑠𝑖𝑛𝜋𝜇 −
𝑖

𝜔
𝑅{𝑖(𝑢𝜇𝜇 + (𝜋2 + 1)𝑢)} 
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The nonlinear operator is :  

𝑁 = 𝑅(𝑢) −
1

𝜔2
𝑠𝑖𝑛𝜋𝜇 +

𝑖

𝜔
𝑅{𝑖(𝑢𝜇𝜇 + (𝜋2 + 1)𝑢)} 

Using the Homotopy Analysis Method, we obtain  

ℛ1(𝑢0⃗⃗⃗⃗ (μ, 𝜂)) =
𝑖

𝜔3
𝑠𝑖𝑛𝜋𝜇, 

ℛ2(𝑢1⃗⃗⃗⃗ (μ, 𝜂)) = (−
𝑖

𝜔3
−

𝑖2

𝜔4)𝑠𝑖𝑛𝜋𝜇, 

⋮ 

Some components of solutions are:  

𝑢0 = 𝑠𝑖𝑛𝜋𝜇, 

𝑢1 = 𝑖𝑡 𝑠𝑖𝑛𝜋𝜇, 

𝑢2 =
(𝑖𝑡)2

2!
 𝑠𝑖𝑛𝜋𝜇, 

⋮ 

The solution is:  

𝑢 = 𝑢0 + 𝑢1 + 𝑢2 + ⋯ = 𝑒𝑖𝑡𝑠𝑖𝑛𝜋𝜇 

 
 

 

 

Fig. 5. Demonstrate the dynamical and 

physical behavior of the Real part of 

solutions at various ranges of 𝜇 and 𝜂. 
 

Fig. 6. Display the dynamical and 

physical behavior of the Imaginary 

part of solutions at different ranges of 

𝜇 and 𝜂. 

𝜇  

𝜂 

 

𝒒𝟑 

𝜂 

 𝜇  
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The physical and dynamical behavior of the imaginary and real parts of the solutions 

is shown in Figures 5 and 6 of Example 3 at various ranges of 𝜇 and 𝜂, respectively. 
 

V.    Conclusion   

 To get the solution of the BBM problem, when combined with the Adomian 

decomposition strategy, the double Elzaki transform is an effective mathematical tool., 

Kdv equations and Schrodinger equations, according to the computational data above. 

Even though the terms of infinite series can change, the solutions are still closer to the 

actual answer. The solutions obtained by the proposed scheme are similar and much 

closer to the solutions obtained by the Rangaig transform-based Homotopy analysis 

method. In the future, this technique will be used to solve nonlinear PDEs with semi-

analytical solutions that appear in a range of engineering and scientific applications. 
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