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Abstract 

Built based on the fundamental principles of quantum mechanics, Quantum 

Key Distribution (QKD) enables secure communication for distant parties. 

Entanglement-based protocols are a type of QKD protocol that uses the phenomenon 

of entanglement for detecting eavesdroppers between two communicating parties. In 

this paper, a novel QKD protocol is devised that uses the concept of superdense coding 

and padding bits to share the one-time pad, i.e., the key. The super dense coding is 

achieved by sharing a pre-existing entangled pair of qubits by leveraging the beautiful 

property of entanglement. The communicating parties can share a one-time pad using 

this protocol securely. This paper will demonstrate this phenomenon using the 

proposed protocol by showing the experimental results which has been surfaced with 

IBM Qiskit simulator, and the simulation establishes the applicability of the protocol 

and shows its effectiveness in detecting eavesdropping attempts while being simple to 

implement. 

Keywords: Entanglement, Guard Qubit, QKD, Qiskit, Secret Key. 

I.    Introduction   

In today’s interconnected world with rising cyber-threats and the looming 

potential for quantum-enabled attacks, as explained by Pirandola et al. [VI], the 

quantum key distribution (QKD) has emerged as a groundbreaking solution. Unlike 

traditional cryptographic algorithms, which rely on mathematical models and 

computational assumptions and are vulnerable to the advances in quantum computing, 

Gao et al. [IV] has shown that the QKD leverages the principles of quantum mechanics 

to establish secure key agreements resistant to both quantum and classical adversaries 

in long range communication also and Cariolaro [III] has shown this in his work. QKD 

exploits the inherent randomness of quantum states to generate a secret key through a 
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quantum channel. This process is further strengthened by the no-cloning theorem, 

which has already proven that a quantum state cannot be cloned, ensuring the 

uniqueness of the generated key. Additionally, Werner Heisenberg’s Uncertainty 

Principle reveals the presence of an eavesdropper attempting to intercept and retransmit 

quantum states. Any measurement attempt on the quantum system inevitably alters it, 

thus alerting the communicating parties to the presence of an intruder, as shown by 

Mina and Simion [VIII]. 

In the case of Quantum Computing (QC), it processes the quantum information in the 

form of a quantum bit(qubit), as discussed by Gujar [X], which is the physical carrier 

of the quantum information. A qubit can be thought of as the quantum version of the 

classical bit, and to describe the quantum state of a qubit, the symbols |0⟩ and |1⟩ are 

used. The basic but major difference between a classical bit and a quantum bit is: the 

classical bit can represent only one of two states, either 0 or 1, whereas the quantum 

bit can be in any superposition of |0⟩ and |1⟩. Hence, a 2D-column vector of real or 

complex numbers, whose norm is 1, such vector can represent the quantum state of a 

qubit. Mathematically, for any two complex numbers α and β, the vector ቂ
𝛼
𝛽ቃ can 

represent the state of a qubit where |𝛼|2 + |𝛽|2 = 1. Another important property of 

quantum theory is entanglement. Mermin [V] has shown that quantum entanglement 

produces such a state where two systems are so strongly correlated that knowing 

information about a system immediately generates knowledge about the other system, 

even though the systems may be located far apart in the Universe, and this is the key 

concept of quantum teleportation. 

II.    The Proposed Protocol 

The authors have devised a QKD protocol that uses a circuit of Superdense 

coding as depicted in Figure 1, and the protocol prepends and appends padding bits of 

the same length to the one-time pad, and the length of the padding is announced by the 

sender(Alice) in the classical post-processing phase. Since the proposed protocol uses 

both the classical post-processing and super dense circuit, the protocol is a hybrid of 

“Prepare and Measure”(PM) and “Entanglement Based”(EB) class, as discussed by 

Nielsen and Chuang [XII]. Here in this protocol, a 2-qubit quantum channel is used and 

a pair of qubits ∈ {00,01,10,11} is processed and transmitted simultaneously as key, 

i.e., one-time pad. A set of padding bits ∈ {10,11} is used. A padding bit stream of 

length p is appended as well as prepended to the one-time pad of length N, where p and 

N both are even numbers, because the bits, for both the one-time pad and the padding, 

are created in pairs. As a consequence, a total of “p+N+p” bits are needed to transmit 

to exchange a one-time pad of length N between the communicating parties. 

III.     Selection of Padding Bits 

 While searching for the best pattern for padding bits, the aim was to find such 

pattern that will generate the maximum number of bit mismatches between the 

sender(Alice) and receiver(Bob) in the presence of the Eavesdropper(Eve). For the 

experiment, a padding bits stream of size p = 400 was considered. This bit stream was 

transmitted through the circuit for 100 iterations following Algorithm 1. There was no 

mismatch in sent and received padding bits in the absence of Eve. But in the presence 
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of Eve, the protocol has found the percentage of average bit mismatch between Alice 

and Bob as per Table 1. 

  

Fig. 1. The circuit used for communication 

Table 1: Mismatch in Padding Bits for Different Padding Patterns 

Percentage Bit-pair Patterns of Pre and Post Padding of Length p Each 

24.89% ≈ 25%  Padding created with p/2 number of 00 

24.90% ≈ 25% Padding created with p/2 number of 01 

49.94% ≈ 50% Padding created with p number of random {0,1} 

75.06% ≈ 75% Padding created with p/2 number of 10 

74.85% ≈ 75% Padding created with p/2 number of 11 

75.05% ≈ 75% Padding created with p/2 number of {10,11} 

The experimental facts are plotted in Figure 2 for better visualization. Guided by the 

results of the experiments, the proposed protocol has created padding bits with 

randomly generated 10 or 11 from the set {10,11}. Such p/2 elements from the said set 

of {10,11} are taken to form a pre- and post-padding of length p each. After the creation 

of padding bits, the proposed protocol moves to the next phase, i.e. Encoding Phase. 

IV.   Encoding of Padding at Sender End 

 During Encoding phase, N number of random classical bits ∈ {0,1}, which will 

be the actual one-time pad(i.e. the key), are generated and p number of padding bits are 

appended and prepended to the one-time pad and this total of p+N+p number of 

classical bits are converted to the corresponding qubits ∈ {|0⟩, |1⟩}. From this stream of 

qubits, pair qiqi+1 is selected where i = 0, 2, 4, ... ,(p + N + p)- 2. For each pair of qubits 

qiqi+1, quantum gates are applied on qi as per the following logic described in Algorithm 

1. The whole process of encoding is executed at the end of Alice. Alice also stores the 
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Fig. 2. Mismatch in Padding Bits for Different Padding Patterns 

one-time pad and the padding bit stream for future. A test of intrusion detection will be 

executed after Bob receives the communicated bits. 

V.   Decoding at Receiver End 

 In the Decoding phase, Bob applies a quantum Controlled-Not(CX)-gate on 

pair qiqi+1 with qi as control bit and qi+1 as target bit. After that, a quantum Hadamard-

gate is applied to qi. Finally, Bob measures the pair qiqi+1. The decoding is done by 

following the logic described in Algorithm 2. During the communication, if Eve(the 

intruder) is present, she also applies the same logic of Algorithm 2, and after each 

measurement, she transmits her results (i.e., pair qiqi+1) through the quantum channel 

without interrupting the communication so that no one can trace her. 

VI.   Intrusion Detection Phase 

 On the completion of the communication, over a classical channel, sender 

Alice announces one decimal number p, which is the length of each padding. From the 

measurement outcome, Bob extracts the prepended and appended p and p classical bits 

and makes a classical XOR of them. If the result turns out to be 0, it means a successful 

transmission without any intrusion; otherwise, the result is discarded and the whole 

process is started again. The logic of intrusion detection is described in Algorithm 3. 

Algorithm 1: Encoding at Sender End 

1: TotalKeySize ← p + N + p 

2: AliceSent ← [] 

3: AliceSent ← AliceSent ∪ p padding bits 

4: AliceSent ← AliceSent ∪ N randomly generated Key bits 

5: AliceSent ← AliceSent ∪ p padding bits 

6: for i = 0, 2, 4, ..., TotalKeySize − 2 do 

   7:  Create a Quantum circuit with 2-qubits q0 and q1 

   8:  Hadamard gate is applied on q0 
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   9:           Controlled-Not gate is applied on q1 with q0 as control bit 

 10:           if AliceSent[i] = 0 and AliceSent[i + 1] = 0 then 

 11: Apply Identity gate on q0 

 12:      else 

 13: if AliceSent[i] = 0 and AliceSent[i + 1] = 1 then 

 14: Apply Pauli-X gate on q0 

 15:  else 

 16: if AliceSent[i] = 1 and AliceSent[i + 1] = 0 then 

 17: Apply Pauli-Z gate on q0 

 18:          else 

 19: Apply Pauli-X gate on q0 

 20: Apply Pauli-Z gate on q0 

 21:         end if 

 22:  end if 

 23:  end if 

 24:  end for 

  

Algorithm 2: Decoding at Receiver End 

1: BobFound ← [] 

2: for i = 0, 2, 4, ..., TotalKeySize − 2 do 

3:           Controlled-Not gate is applied on q1 with q0 as control bit 

4: Hadamard gate is applied on q0 

5: Classical bit c0 ← measurement of q0 

6: Classical bit c1 ← measurement of q1 

7:           BobFound[i] ← c0 and BobFound[i+1] ← c1 

8: end for 

 

 

 
Algorithm 3: Detection of Intrusion 

1:  Alice announces decimal number p over classical channel 

2:  Bob sets PrePadding ← [] 

3:  Bob sets PostPadding ← [] 

4:  for i = 0, 1, 2, ..., p-1 do 

5: PrePadding[i] ← BobFound[i] 

6: PostPadding[i] ← BobFound[i+p+N] 

7:  end for 

8:  if PrePadding[0, 1, ..., p-1] Classical-XOR PostPadding[0 ,1, ..., p-1] = 0 then 

  9:            No Intrusion, Return BobFound[p, p+1, …, p+N-1] as one-time pad 

10:  else 

 11:            Intrusion detected, Return FALSE 

12:  end if 
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VII.    Results and Comparisons 

Proof of no increment or no injection of entanglement 

  Here, in this work, there are two trusted parties, Alice(A) and Bob(B), and the 

third party is the eavesdropper Eve(C). The parties A and B create  any of the following 

Bell states |𝜙+⟩, |𝜙−⟩, |Ψ+⟩ and |Ψ−⟩ where: 

|𝜙+⟩ =  
1

√2
(|00⟩ + |11⟩), 

|𝜙−⟩ =  
1

√2
(|00⟩ − |11⟩), 

|Ψ+⟩ =  
1

√2
(|01⟩ + |10⟩) and 

|Ψ−⟩ =  
1

√2
(|01⟩ − |10⟩). 

Inherently, these Bell States are maximally entangled. Therefore, A is maximally 

entangled with B, meaning entanglement, of A and B is maximal, which is shown in 

Equation (i) as follows: 

  𝐸𝐴𝐵 = 1                                                                   (1) 

If possible, the third-party C tries to inject entanglement locally. But the monogamous 

property of entanglement states that entanglement cannot be injected between two 

systems using only local operations and classical communication. Equation (ii) states 

the monogamy inequality for qubits: 

  𝐸𝐴|𝐵𝐶 ≥ 𝐸𝐴𝐵 + 𝐸𝐴𝐶                                                     (2) 

where 𝐸𝑋𝑌is an entanglement measure between the two systems of qubits X and Y. 

For any maximally entangled Bell state between A and B, for example, |𝜙+⟩ =

 
1

√2
(|00⟩ + |11⟩), it is assumed that there exists a third system C in a state |Ψ⟩𝐶, and 

tries to entangle it with either A or B via a unitary |𝑈⟩𝐴𝐶, therefore, the new system 

will be in state, shown in Equation (iii) as follows: 

  |Ψ⟩𝐴𝐵𝐶 = 𝑈𝐴𝐶(|𝜙+⟩𝐴𝐵 ⊗ |Ψ⟩𝐶)                                         (3) 

Since unitary operations preserve entanglement, and the third, system is acting locally, 

the total entanglement between A and B cannot be increased. 

Therefore, as per Equation (i) and the monogamy inequality (ii), 𝐸𝐴𝐶 = 0 and it holds 

always for any local operation.  

Hence, it is proved that, in this work, no third party can increase or inject entanglement 

during communication. Because communication in this work is performed based on 

Bell states |𝜙+⟩, |𝜙−⟩, |Ψ+⟩ and |Ψ−⟩ as shown in the used circuit in Figure 1. 

Analytical Framework parameters 

As demonstrated by Ekert [I] and discussed by Portmann and Renner [XI], the trace 

distance is a measure of the distinguishability between the actual state of the key 

known to Eve after the key transmission and the ideal state of the key. If the final key 

is 𝜌𝑘𝑒 and the ideal state is 𝜏𝑘 ⊗ 𝜌𝑒 and if the key is 𝜖-secure, then: 
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  𝐷 =  
1

2
 || 𝜌𝑘𝑒 − 𝜏𝑘 ⊗ 𝜌𝑒||1 ≤ 𝜖                                        (4) 

where 𝜏𝑘 = uniform random key, 𝜌𝑒 = Eve's marginal state and 𝜖 is the bound on the 

information gathered by Eve about the key. 

The proposed protocol is based on entangled qubits, and to check the presence of Eve, 

the CHSH inequality is used here.  The analytical framework includes: 

• Transmission of the entangled padding and key bits. Total Transmission TT: 

𝑝 + 𝑁 + 𝑝 

• Key shifting, i.e., the number of bits that can be used as key: 𝑁, and the 𝑝 + 𝑝 

padding bits are tested and discarded, hence, shifted key size = 𝑁 

• Estimation of Quantum Bit Error Rate(QBER) 

• Computation of CHSH parameter, 𝑆, for security test 

• Leak to Eve during error correction: 

𝐿𝑒𝑎𝑘 = 𝑓 ∗ 𝑁 ∗ ℎ(𝑄𝐵𝐸𝑅), where 𝑓 is the error correction inefficiency factor 

• Estimation of the lower bound of Eve’s knowledge(smooth min-entropy): 

  𝐻𝑚𝑖𝑛
𝜖 (𝑋|𝐸) ≥ 𝑁 ∗ (1 − ℎ(𝑄𝐵𝐸𝑅) 

• Final key length: 

𝐿 ≤ 𝐻𝑚𝑖𝑛
𝜖 (𝑋|𝐸) − 𝐿𝑒𝑎𝑘 − 2 log2 (

1

𝜖𝑃𝐴
) , where 𝜖𝑃𝐴 is privacy amplification 

error 

In Table 2, column 𝑇 represents the total padding used in the proposed work, where 

𝑇 = 𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑝𝑟𝑒 𝑎𝑛𝑑 𝑝𝑜𝑠𝑡 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 𝑝 + 𝑝, which is shown in different 

percentage values of total transmitted entangled pairs(TT), i.e., T is 10% of TT, or 20% 

of TT, and so on. Table 2  shows the mentioned parameters of the proposed protocol, 

and Table 3 shows the same for the E91  protocol for 𝜖𝑃𝐴 = 10−6 and 𝑓 = 1.2. 

Table 2: Leak, Smooth min-entropy and Final Key length of Proposed Work 

TT T N=TT-T QBER 𝑺 𝒇 𝒉(𝑸𝑩𝑬𝑹) 𝑳𝒆𝒂𝒌 𝑯𝒎𝒊𝒏
𝝐 (𝑿|𝑬) 𝑳 

105 10%  90000 2% 2.6 1.2 ≈ 0.141441 ≈15276 ≥ 77270 ≤ 61954 

105 10% 90000 3% 2.6 1.2 ≈ 0.194392 ≈20994 ≥ 72505 ≤ 51471 

105 10% 90000 4% 2.6 1.2 ≈ 0.242292 ≈26167 ≥ 68194 ≤ 41987 

105 20%  80000 2% 2.6 1.2 ≈ 0.141441 ≈13578 ≥ 68685 ≤ 55067 

105 20% 80000 3% 2.6 1.2 ≈ 0.194392 ≈18661 ≥ 64449 ≤ 45748 

105 20% 80000 4% 2.6 1.2 ≈ 0.242292 ≈23260 ≥ 60617 ≤ 37317 

105 30%  70000 2% 2.6 1.2 ≈ 0.141441 ≈11881 ≥ 60099 ≤ 48178 

105 30% 70000 3% 2.6 1.2 ≈ 0.194392 ≈16329 ≥ 56392 ≤ 40023 

105 30% 70000 4% 2.6 1.2 ≈ 0.242292 ≈20352 ≥ 53039 ≤ 32647 

105 50%  50000 2% 2.6 1.2 ≈ 0.141441 ≈8486 ≥ 42928 ≤ 34402 

105 50% 50000 3% 2.6 1.2 ≈ 0.194392 ≈11663 ≥ 40280 ≤ 28577 

105 50% 50000 4% 2.6 1.2 ≈ 0.242292 ≈14537 ≥ 37885 ≤ 23308 
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Table 3: Leak, Smooth min-entropy and Final Key length of E91 

𝑻𝑻 𝑵 = 𝑻𝑻/𝟒 𝑸𝑩𝑬𝑹 𝑺 𝒇 𝒉(𝑸𝑩𝑬𝑹) 𝑳𝒆𝒂𝒌 𝑯𝒎𝒊𝒏
𝝐 (𝑿|𝑬) 𝑳 

105 25000 2% 2.6 1.2 ≈ 0.141441 ≈4243 ≥ 21464 ≤ 17181 

105 25000 3% 2.6 1.2 ≈ 0.194392 ≈5832 ≥ 20140 ≤ 14268 

105 25000 4% 2.6 1.2 ≈ 0.242292 ≈7269 ≥ 18943 ≤ 11634 

Key Rate per Transmitted Qubit 

The asymptotic key rate per entangled pair that corresponds to one transmitted qubit 

per party can be approximated by Equation (v) as: 

  𝑅 = 𝑝𝑠ℎ𝑖𝑓𝑡( 1 − ℎ(𝑄𝐵𝐸𝑅) −  𝑓 ∗ ℎ(𝑄𝐵𝐸𝑅))                              (5) 

where ℎ(𝑄𝐵𝐸𝑅) =  −𝑄𝐵𝐸𝑅 ∗ log2 𝑄𝐵𝐸𝑅 − (1 − 𝑄𝐵𝐸𝑅) ∗ log2(1 − 𝑄𝐵𝐸𝑅), and 𝑓 

is the error correction inefficiency and 𝑝𝑠ℎ𝑖𝑓𝑡 = 𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐾𝑒𝑦.  

In this work, 𝑝𝑠ℎ𝑖𝑓𝑡 =  
𝑁𝑢𝑚𝑛𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑢𝑠𝑒𝑑 𝑎𝑠 𝐾𝑒𝑦

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝐵𝑖𝑡𝑠
=  

𝑁

𝑝+𝑁+𝑝
 , because of the pre 

and post padding of length 𝑝 each, and with 𝑁 as the precise length of the key. Hence, 

the 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑏𝑖𝑡𝑠 = 𝑝 + 𝑁 + 𝑝. Since padding length can vary in size as 

𝑝 = 𝑥% 𝑜𝑓 𝑁, Table 4 shows the measurements of 𝑅 with different 𝑄𝐵𝐸𝑅, 𝑓, and 𝑝 

values. 

Table 4: Asymptotic Key Rate per Entangled Pair in Proposed Protocol 

𝑸𝑩𝑬𝑹 𝒇 𝒑  𝒑𝒔𝒉𝒊𝒇𝒕 𝒉(𝑸𝑩𝑬𝑹) 𝑹 

2% 1.2 10% of N 5/6  ≈ 0.141441 ≈ 0.574023 

3% 1.2 10% of N 5/6 ≈ 0.194392 ≈ 0.476948 

4% 1.2 10% of N 5/6 ≈ 0.242292 ≈ 0.389131 

2% 1.2 20% of N 5/7 ≈ 0.141441 ≈ 0.492021 

3% 1.2 20% of N 5/7 ≈ 0.194392 ≈ 0.408812 

4% 1.2 20% of N 5/7 ≈ 0.242292 ≈ 0.333541 

The following Table 5 shows the measurements of 𝑅 for the E91 protocol with different 

𝑄𝐵𝐸𝑅 and 𝑓 values, and 𝑝𝑠ℎ𝑖𝑓𝑡 is taken as 1/2. 

Table 5: Asymptotic Key Rate per Entangled Pair in E91 Protocol 

𝑸𝑩𝑬𝑹 𝒇 𝒑𝒔𝒉𝒊𝒇𝒕 𝒉(𝑸𝑩𝑬𝑹) 𝑹 

2% 1.2 1/2  ≈ 0.141441 ≈ 0.344415 

3% 1.2 1/2  ≈ 0.194392 ≈ 0.286169 

4% 1.2 1/2  ≈ 0.242292 ≈ 0.233479 

Bit Mismatch in Simulation with Qiskit 

According to Algorithms 1, 2, and 3 described above, and using the IBM Qiskit, as 

demonstrated by Shaik and Nakkeeran [VII] in their work, quantum circuits are 

prepared and executed for 400 padding qubits. The circuit system is executed for 100 

iterations. For each iteration, on average, the proposed protocol has found 300 

mismatched bits in padding in the presence  of Eve, and no mismatch is found in the 
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absence of Eve. As explained by Reddy et al. [IX] and demonstrated by Bennett [II], 

the benchmark BB84 protocol, in the presence of Eve, has traced a positional bit 

mismatch in 150 bits on average out of 400 bits. Figure 3 shows a comparison  of bit 

mismatch between the proposed  protocol and BB84. Mathematically, the eavesdropper 

detection capability of the proposed protocol can be found as follows: 

  
300∗100

400
 = 75%                                                          (9) 

Similarly, from the experimental results stated above, the intrusion detection ability 

of the BB84 protocol is calculated as: 

  
150∗100

400
 = 37.5%                                                      (10) 

Table 5 shows the feature-wise comparison of the proposed protocol and the 

benchmark BB84 protocol. 

 

Fig. 3. Bit Mismatch: Proposed Protocol vs. BB84 Protocol Table 

Table 5: Core Comparison between Proposed Protocol and BB84 

Feature Proposed Protocol  BB84 Protocol 

Basis Announcement Not Needed  Both Alice and Bob 

Time Efficiency Alicebannouncesa single 

decimal number 

 Two-wayclassical 

communication 

Effect of intrusion 300 out of 400 bit mismatches, 

i.e., 75% 

150 out of 400 bit mismatches, 

i.e., 37.5% 

Eve Detection Accuracy Much higher in terms of bit 

mismatch 

Lower 

VIII.   Conclusions 

The experimental facts have surfaced that the overhead of the classical post-

processing phase can be decreased as minimum as the announcement overhead of a 

single and small decimal number. No generation of a random basis at both random of 

communication also hugely reduces the overall running time of the QKD process. As 
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a whole, the proposed protocol can detect any intrusion much faster and with lesser 

computational overhead.  
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