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Abstract 

This paper presents a novel consensus clustering framework that integrates 

both cluster-level and clustering-level weighting strategies. Traditional consensus 

clustering methods either weight the clusters or the base clusterings, but often fail to 

optimally combine these two strategies. We propose a dual-weighting scheme where 

weights are assigned to clusters based on internal and external consistency, and to the 

base clusterings based on their agreement with the ensemble. By applying a combined 

weight, we ensure that both high-quality clusters and consistent clusterings contribute 

more to the final consensus. Experimental results on several benchmark datasets 

demonstrate the superiority of the proposed method over existing clustering ensemble 

techniques. 

Keywords: Consensus Clustering, Clustering Ensemble, Clustering Techniques,  

Dual-Weighted Approach,  
 

I.    Introduction 

  Clustering is a fundamental task in unsupervised learning, widely applied 

in areas such as data mining, pattern recognition, and image processing. Its 

objective is to partition a dataset into mutually exclusive and exhaustive groups, 

called clusters, where data points within the same cluster exhibit higher 

similarity to each other compared to those in different clusters. Clustering 

methods differ significantly in how they define and optimize the notion of 

similarity. As a result, no single clustering algorithm consistently performs well 

across different types of datasets. This observation has led to the development 

of clustering ensembles, which combine the outputs of multiple clustering 

algorithms or multiple runs of the same algorithm to produce a more reliable 

and robust consensus clustering. 
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Consensus clustering, also known as clustering ensemble, aims to find a 

median clustering from an ensemble of base clusterings generated by different 

algorithms. Empirical studies suggest that consensus clustering generally yields better 

results compared to the worst base clustering and, in some cases, approaches the 

performance of the best one. By leveraging the diversity among the base 

clusterings, consensus cluster- ing improves the robustness, accuracy, and 

stability of the final clustering. Despite its promise, the effectiveness of consensus 

methods largely depends on how the consensus function weighs the contributions of 

each base clustering and the clusters within them. A key challenge is ensuring 

that both the base clusterings and the individual clusters that capture significant 

structure in the data are emphasized in the final consensus. 

Several approaches have been proposed to improve the quality of consensus 

clustering. These can be broadly categorized into two main strategies: cluster-level 

weighting and clustering-level weighting [XI]. Cluster-level weighting assigns 

weights to individual clusters based on their external agreement with other clusters 

in the ensemble. Clustering-level weighting, on the other hand, assigns weights to 

entire base clusterings based on their internal quality or overall consistency with 

the ensemble. 

It has been observed that a consistent clustering may not necessarily contain high-

quality clusters, and conversely, a high-quality cluster may not belong to a 

consistent clustering. Therefore, there is a need to combine these two 

complementary strategies. This paper proposes a novel method, Dual-

Weighted Consensus Clustering (DWCC), which integrates both cluster-level 

and clustering-level weighting into a unified framework. The core idea is to assign 

weights to each cluster based on the internal quality of its corresponding base 

clustering and agreement with other clusters (as in cluster-level weighting), 

while also assigning weights to each base clustering based on its consistency 

with the ensemble (as in clustering-level weighting). By combining these two 

weighting schemes, we aim to build a more robust and accurate consensus 

clustering that reflects both the reliability of the base clusterings and the quality 

of the clusters within them. The proposed method differs from existing ensemble 

clustering techniques in that it balances the contributions of both individual 

clusters and base clusterings. This dual-weighting approach allows us to filter 

out unreliable base clusterings while still capturing valuable information from 

high-quality clusters. 

The rest of this paper is organized as follows: Section 2 reviews related work 

in cluster and clustering-level weighting strategies. Section 3 presents the problem 

formulation. Section 4 describes our proposed method. Section 5 presents 

empirical evaluations of the method on several benchmark datasets. Finally, 

Section 6 concludes the paper and suggests avenues for future research. 

II.    Literature Review 

  Consensus clustering has evolved as a robust approach for stabilizing 

clustering solutions by aggregating multiple clusterings. Fred et al. [I] pioneered 
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the evidence accumulation clustering method, which revealed stable cluster 

structures by integrating multiple clustering solutions, establishing consensus 

clustering as a means to enhance clustering accuracy and stability. Strehl et al. 

[II] further proposed clustering ensemble as a framework for knowledge reuse, 

demonstrating that combining diverse solutions leverages the strengths of each 

algorithm through techniques like co-association matrices and graph-based 

consensus functions. 

A primary challenge in consensus clustering is weighing the contributions of each 

base clustering or cluster to optimize the final consensus. Weighted consensus 

clustering addresses this by assigning weights based on the quality or reliability of 

base clusterings or individual clusters [XVIII][XIX]. Initial efforts focused on 

global weighting, where a single weight is applied to each base clustering. For 

example, Zhou et al. [XX] and Berikov et al. [XII] used metrics such as normalized 

mutual information (NMI) and algorithm stability to evaluate base clustering 

quality, allowing more reliable clusterings to exert greater influence. Similarly, 

Vega-Pons et al. [XIII] utilized intra- and inter-cluster distances to weight base 

clusterings. However, global methods often overlook quality variations within 

clusters in the same base clustering, leading to potentially suboptimal results. To 

address this, local weighting strategies were developed to assign weights to 

individual clusters. Ali et al. [XVI] introduced a cluster-specific weighting 

approach based on cluster validity indices, while Huang et al. [XXI] and Nazari et 

al. [XIV] focused on cluster-level reliability measures, assigning higher weights to 

stable clusters to enhance their role in the final consensus. Yang et al. [XV] utilized 

cluster weights derived from internal edge stability for community detection, and 

Banerjee et al. [IV] proposed a cluster-level weight calculation based on overlap 

with clusters from other base clusterings. 

One recent approach, the Two-Level Weighted Ensemble Clustering (TWEC) 

framework by Gu et al. [VIII], integrates global and local weighting by combining 

entropy-based uncertainty measures with base clustering reliability metrics. This 

two-tiered approach assigns weights to clusters based on uncertainty and adjusts 

them according to base clustering reliability, improving robustness and stability 

in consensus results. TWEC includes two consensus functions, Two-Level 

Weighted Evidence Accumulation (TWEA) and Two-Level Weighted Graph 

Partitioning (TWGP), which demonstrated superior performance compared to ten 

state-of-the-art algorithms across multiple datasets. 

Another significant advancement is the Dual-Level Clustering Ensemble 

Algorithm (DCEA) by Shan et al. [X], which introduces an adaptive selection 

framework to eliminate low-quality or redundant base clusterings, enhancing both 

efficiency and accuracy. DCEA also reconstructs relation matrices using spatial 

location and co-occurrence frequency to improve data structure capture and 

uses Dempster-Shafer (DS) evidence theory to adjust reliability for conflicting 

clustering results. 

In cases where access to large and diverse base clustering libraries is limited, 

traditional consensus methods often struggle to achieve high-quality results. To 
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address this, Sedghi et al. [9] proposed the Clustering Ensemble Extraction (CEE) 

framework, which generates new clusters from existing clusterings by using 

Jaccard similarity to group similar clusters and extract new ones, ensuring high 

diversity and quality in the final consensus. CEE is particularly useful when base 

clusterings have low diversity or small size, and it introduces two consensus 

functions that enhance clustering quality without requiring access to original 

dataset features. 

Autoencoder-based methods have also been impactful. Geddes et al. [XI] 

introduced an ensemble method for single-cell RNA-seq data using autoencoders, 

offering robust clustering for complex biological datasets. Li et al. [XII] proposed 

a point-cluster-clustering architecture, which balances representativeness by 

incorporating weighted clusterings. Spectral clustering has also contributed 

significantly. Huang et al. [XXII] developed scalable spectral clustering methods 

for ensemble clustering that efficiently handle large datasets, and Jia et al. [XXIII] 

demonstrated bagging-based spectral clustering for ensemble selection, 

underscoring the importance of ensemble diversity. 

Overall, consensus clustering has evolved from basic aggregation techniques 

to advanced frameworks incorporating weighting, autoencoder-based methods, 

and uncertainty measures. These advancements make consensus clustering 

adaptable for various fields, such as bioinformatics and large-scale data analysis, 

providing robust solutions for data with high dimensionality, heterogeneity, and 

complexity. 

III.   Research Gap and Motivation for the Proposed Method 

Despite the progress in consensus clustering, there remains a significant 

gap in methods that can effectively combine the strengths of both cluster-level and 

clustering-level weighting. Most existing approaches (except Gu et al. [XIII]) 

prioritize either individual clusters or base clusterings, but fail to integrate these 

two strategies in a unified framework. As a result, existing consensus clustering 

methods may either underutilize high-quality clusters from unreliable base 

clusterings or give too much weight to consistent but poorly partitioned base 

clusterings. 

The proposed method, Dual-Weighted Consensus Clustering (DWCC), aims to fill 

this gap by combining both cluster-level and clustering-level weighting into a 

single framework. By assigning weights to clusters based on internal and 

external quality measures, and assigning weights to base clusterings based on 

their entropy, DWCC balances the contributions of high-quality clusters and reliable 

base clusterings. This approach ensures that the final consensus clustering is 

robust, accurate, and aligned with the true underlying structure of the data. In 

the next section, we present the problem formulation. 

III.i.  Problem Formulation 

The goal of this section is to formulate the problem of consensus clustering using 

both cluster-level and clustering-level weighting strategies. 
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Dataset and Clustering Ensemble 

Let 1 2 }, , ..{ . , nD s s s= represent a dataset of n data points, where each is D  is a 
data instance characterized by a set of features. A clustering algorithm 
partitions this dataset into clusters, grouping similar data points. 

In the context of a clustering ensemble, we apply multiple clustering algorithms or 

repeated runs of the same algorithm with different initializations to form a 

collection of base clusterings. Let 1 2 }, , ..{ . , ME C C C= be an ensemble of M base 

clusterings, where each base clustering Ca partitions the dataset D into ka 

clusters: 

1 2{ }, ,...,
aa a a akC C C C=

, }1,2, .{ . .,a M  . 

Here, akC  represents the k-th cluster in the base clustering aC , and 

ak  is the number of clusters in aC . Each cluster akC D and the 
clusters are mutually exclusive in the same base clustering: 

ak alC C =   for  k l , a . 

The task is to compute a consensus clustering 1 2{ }, ,..., kC C C C   = , where k is 

the true number of clusters, which represents the best compromise between the 
different base clusterings, i .e. , a median cluster ing in E. 

IV.   Weighted Consensus Clustering Formulation 

To improve the accuracy and robustness of the consensus clustering, both 

clustering-level and cluster-level weights can be incorporated. 

IV.i.  Clustering-Level Weights:  

Each base clustering aC E  is assigned a weight aw  based on its quality or 
contribution to the overall ensemble. The clustering-level weights can be derived 
from internal validation metrics such as the silhouette index [XXVII], Dunn’s 
index [XXVIII], or external validation measures [XXIX] that assess the clustering 
performance with respect to the entire ensemble: 

  1 2 }, , ..{ . , MW w w w= , with 0 aw  and 

   1

1

M

a

a

w

=

=
 

These weights are used to prioritize higher-quality clusterings in the ensemble, 

ensuring that more reliable clusterings have a stronger influence on the 

consensus. 

IV.ii.  Cluster-Level Weights:  

Within each base clustering Ca, individual clusters Cak are assigned weights µak to 
reflect their stability or consistency across the ensemble. The cluster-level weights 
are determined based on external measurements  compared to other clusters in 
different clusterings: 
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This allows the consensus process to prioritize stable, high-quality clusters, even 

if the base clustering as a whole may not perform well. 

V.   Weighted Consensus Objective Function 

The consensus clustering C∗ is computed by maximizing the weighted 

similarity between the consensus clusters and the base clusters. Let ϕ(C, Cak) 
be a similarity function that measures the agreement between a clustering C 
in the space of all possible clusterings and clusters in a base clustering Ca. 
Then,  t he objective function can be written as: 

                             1 1

     ·  · ,( )
akM

a ak ak
C a k

C argmax w w C C

 = =

=  
                                    (1) 

Where   is the space of all possible clusterings. By incorporating clustering-level 
and cluster-level weighting strategies, the final consensus clustering C∗ reflects 
the strengths of both individual clusters and all clusterings within the 
ensemble. In recent literature, several heuristics have been proposed that use the 
objective function defined in Equation (1) to find the consensus clustering. Two of 
the most prominent works in this area are by Huang et al. [III] and Banerjee et al. 
[IV]. In the following section, we propose our method for weighted consensus and 
demonstrate its superiority over the aforementioned approaches. 

VI.   Proposed Method: Dual-Weighted Consensus Clustering (DWCC) 

The Dual-Weighted Consensus Clustering (DWCC) method incorporates 
both cluster-level and clustering-level weighting for consensus clustering from an 
ensemble of base clusterings. This section explains the method step-by-step using 
mathematical notations. We propose the probability measure of clusters Cak and 
Cbl occurring simultaneously as 

      

| |
( )

| |
, ak bl

ak bl
ak bl

C C
p C C

C C


=


                                                  (2) 

We explain the advantages of the new probability measure: 

i. Better Handling of Differing Cluster Sizes:  

ii. The original measures by Huang et al. [III] and Banerjee et al. [IV] are 
influenced by the size of a single cluster. In contrast, the new measure uses 
the size of the union of clusters, meaning that it takes into account both the 
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overlap and the total size of the combined clusters. This normalization 
reduces bias towards either very small or very large clusters. 

iii. Reduced Sensitivity to Small Overlaps and Outliers: Clusters that have 

a small overlap but a large union will have lower probabilities, reflecting 

weaker association. This helps prevent small, coincidental overlaps from 

having too much influence, especially when clusters have different sizes. 

By using the union in the denominator, the measure is also less sensitive 

to small outliers that might create misleading overlaps. If one cluster 

contains only a few points overlapping with another large cluster, the 

union will be large, and the probability will be small, preventing 

disproportionate influence from small overlaps. 

iv. Smoother Treatment of Intermediate Cases: The new measure effectively 

interpolates between the extremes of total disjointness and complete 

overlap, assigning intermediate probabilities based on how much the two 

clusters overlap. This makes the clustering process smoother and potentially 

more robust in handling diverse datasets. 

Now we propose our Cluster-Level Weighting scheme. Let w(Cak) denote the 

weight of cluster Cak in the base clustering Ca. The weight of each cluster is proposed to 
be based on two factors: 

i. Internal Quality of corresponding base clustering: The internal quality of 

clustering Ca is evaluated using the Calinski-Harabasz score [XXIV], a 

metric that assesses the compactness and separation of the cluster. A high 

Calinski-Harabasz score indicates that the cluster is well-formed, with data 

points tightly packed within the cluster and well-separated from other 

clusters. Our proposed method, however, does not depend on a specific internal 

measure like the one mentioned here and can be applied with any internal quality 

metric found in the literature. 
ii. External Agreement (Entropy): The external agreement of cluster Cak 

with other clusters in different base clusterings is quantified using entropy. 
Entropy measures the consistency of a cluster relative to other clusters in 
the ensemble. A lower entropy value indicates a higher level of agreement 
between the cluster Cak and other clusters across different base clusterings, 
suggesting that the cluster is more reliable. 

The corresponding entropy measure using the proposed probability measure from 

equation 2 is computed as follows:  

                                

2 

1 1
 

| |
 )  

| |
 (

b

bl

kM
C ak bl

a n
ak blb l

C C
Ent C log

C C
= =

 
= −  

 


                      (3) 

The entropy value reflects the extent of the average agreement of the cluster Cak 

with other base clusters in the ensemble, where lower entropy suggests a more 

consistent and reliable cluster. 
 

Cluster Weight Formula 

The weight for each cluster Cak is now given by the following formula, which 
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combines both internal quality and external agreement : 

                  

( )
· 

)
( )

_

(
akEnt C a

ak

Calinski Harabasz C
w C e

Max Score

− −
=

                 (4) 

Where,  

Ent(Cak) measures the entropy of the cluster, indicating its external agreement 

with other clusters. 

i. Calinski-Harabasz(Ca) [XXIV] evaluates the internal quality of the cluster 
based on its compactness and separation. 

ii. Max_Score is the maximum possible Calinski-Harabasz score used for 
normalization. 

Since the Calinski-Harabasz score evaluates cluster compactness and 
separation, if the clusters become less compact or less well-separated, the 
Calinski-Harabasz score decreases. This, in turn, lowers the overall weight

( )akw C as it is directly proportional to this score. 

Higher entropy indicates poor alignment with other clusters in the ensemble. 

Since the weight ( )akw C  depends on 
( )akEnt C

e
−

, an increase in entropy reduces the 
cluster’s weight, reflecting its lower consistency. 

If both the internal quality (Calinski-Harabasz score) decreases and the external 

agreement (entropy) worsens, the overall weight ( )akw C  of the cluster will 

significantly decrease. The cluster will have less influence in determining the final 

consensus clustering, as it is both less well-formed internally and less aligned with 

the ensemble’s overall structure. 
 

Clustering Weight Formula 

For each base clustering Ca, the clustering-level weight w(Ca) is based on its 
consistency with the ensemble. We compute the entropy of the clustering Ca, 
which measures its uncertainty or inconsistency relative to other clusterings in 
the ensemble. The entropy is calculated using: 

                 

2 

1 1 1

| |
)     

 
(

| |

a b

ak bl

k kM
C C ak bl

a n n
ak blk b l

C C
Ent C log

C C
= = =

  
 = −  
   

 
               (5) 

A  more consistent base clustering will have lower entropy and therefore 
should receive a higher weight. The clustering-level weight w(Ca) is defined as: 

(
( )

) 1
_

a
a

Max Entropy

Ent C
C = −

                                         (6) 

where Max Entropy represents the maximum possible entropy in the 

ensemble. 

In this formulation, a clustering-level weight closer to 1 indicates high consistency 

with the ensemble, while a weight closer to 0 signifies a lack of agreement with 

other clusterings. Thus, the weight reflects the reliability of the base clustering 

within the ensemble framework. 
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Constructing the Similarity Matrix 

The next step is to aggregate the information from all the weighted clusters and 

clusterings into a similarity matrix S. The similarity matrix 
{ }ijS s=

captures the 

weighted similarity between data points is  and js
. Each entry sij represents the 

combined effect of all base clusterings and their respective clusters. 

For each base clustering aC E , and each cluster ak aC C , the 

similarity between data points is  and js
 is updated as follows: 

  
( ) ( ) ( )· ·ij ij a ak ij aks s w C w C C= +

,      (7) 

where,   

  

1
(      

 
)

0

i ak j ak

ij ak

if s C and s C
C

otherwise


 
= 
  

This ensures that data points belonging to the same high-quality cluster from a 

reliable base clustering receive higher similarity scores. 

Consensus Clustering from the Similarity Matrix 

Once the similarity matrix S has been constructed, the final consensus clustering 

C∗ is obtained by applying a clustering algorithm to the matrix. In this work, we 

use agglomerative hierarchical clustering to produce the consensus clustering. 

Hierarchical clustering uses the similarity scores in S to iteratively group data points 

into clusters, ensuring that the final consensus reflects both the internal structure 

of the data and the reliability of the base clusterings. The proposed algorithm is 

summarised in Algorithm 1. 

VII.  Discussion 

The Dual-Weighted Consensus Clustering (DWCC) algorithm presents a 

robust approach to achieving high-quality consensus clustering by effectively 

integrating results from multiple base clusterings. By utilizing a dual weighting 

mechanism that incorporates both cluster-level and clustering-level weights, 

DWCC prioritizes high-quality clusters and those that consistently align with 

others in the ensemble. The use of entropy as a measure of external agreement 

allows the algorithm to capture the complexity of data structures, while the 

adaptive similarity matrix enhances accuracy in pairwise comparisons. This 

combination helps mitigate the effects of noise and outliers, leading to more stable 

and reliable clustering outcomes. 

Since we are using the Calinski-Harabasz internal measurement, which 

captures the data distribution, the algorithm does not solely rely on the quality 

of the input ensemble. Therefore, the algorithm’s performance is less dependent 

on the quality of 
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  Ent(Ca)  

max score 

 
Algorithm 1: Dual-Weighted Consensus Clustering (DWCC) 

Input: Dataset D = {s1, s2, . . . , sn},  
Ensemble of base clusterings E = {C1, C2, . . . , CM } 
Output: Consensus clustering C∗ 

1 Initialize similarity matrix S = {sij} of size n × n to zero; 

2 for each base clustering Ca ∈ E do 

3 Compute clustering-level weight w(Ca) = 1 − Max Entropy ; 

4 for each cluster Cak ∈ Ca do 

5 Compute cluster-level weight w(Cak) = e−Ent(Cak ) · Calinski-

Harabasz(Cak) ; 

6 for each pair of data points si, sj ∈ D do 
7 if si ∈ Cak and sj ∈ Cak then 

8 Update similarity matrix sij = sij + w(Ca) · w(Cak). δij(Cak); 

9 Perform agglomerative clustering on the similarity matrix S to 

obtain the consensus clustering C∗; 

10 return Consensus clustering C∗ 

the initial base clusterings. However, if the base clusterings are very poor or 

highly inconsistent, the consensus produced may still be suboptimal. 

The time complexity for computing cluster-level entropy and clustering-level 
entropy is Θ(n) and Θ(n2), respectively. Hence, computing the weight of a 
cluster is Θ(n2). Building the similarity matrix takes Θ(n2), and since the time 
complexity of Agglomerative Consensus Clustering is Θ(n2 log n), the overall time 
complexity of DWCC is Θ(n2 log n). Therefore, DWCC may lead to longer 
runtimes, particularly with larger datasets. 

Vii. i.   Experimental Setup 

This section presents the experimental setup for evaluating the proposed Dual-

Weighted Consensus Clustering (DWCC) method. We detail the datasets used, 

the comparison methods, the evaluation metrics, and the results obtained from 

the experiments. 

Datasets 

The performance of the DWCC method is evaluated on several well-known 

benchmark datasets [XVII] commonly used in clustering research. The datasets 

chosen for this study include: 

ii. Iris: A classic dataset containing 150 samples of iris flowers, characterized 

by four features (sepal length, sepal width, petal length, petal width). The 

dataset includes three classes, with 50 samples each. 

iii. Wine: A dataset comprising 178 samples of wine, described by 13 

chemical properties. The dataset consists of three classes corresponding 

to different wine cultivars.   

iv. Breast Cancer: This dataset contains 569 samples with 30 features related to 

breast cancer diagnostic attributes. The samples are classified into two 

classes: malignant and benign. 
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v. Glass Identification: Comprising 214 instances, this dataset has nine 

attributes 

related to different types of glass. The samples are classified into six 

categories based on their chemical composition.  
vi. Ecoli: A dataset of 336 samples, characterized by seven features 

related to the structure of proteins. It includes eight classes based on 
protein localization. 

vii. Blob: A synthetic dataset created to assess clustering algorithms, 
containing three distinct clusters. Each cluster has a specific geometric 
shape and distribution. 

 

Experimental Methodology 
To evaluate the performance of DWCC, we compare it with several established 

consensus clustering methods: 

i. Evidence Accumulation Clustering (EAC): It is a foundational consensus 

clustering approach proposed by Fred et al. [I]. EAC converts base 

clusterings into a co-association matrix and generates the final consensus 

clustering through hierarchical agglomerative clustering using the single 

linkage method. 

ii. Locally Weighted Ensemble Accumulation (LWEA): It is proposed by 
Huang et al. [III] and it represents an early approach to using cluster weights 
for effective weighted consensus clustering. It applies an entropy-based 
measure to determine cluster weights and performs average linkage 
agglomerative clustering on the weighted co-association matrix at the 
cluster level to obtain the consensus. 

iii. Two-Level Weighted Ensemble Clustering (TWEC): Introduced by Gu 
et al. [VIII], employs the entropy measure from the LWEA method and 
integrates it with NMI similarity values of the base clusterings to determine 
the consensus. 

iv. Clustering Selected Weighted Clusters (CSWC): The method, introduced 
by Banerjee et al. [V], is a Cluster Selection approach that employs an 
entropy-based weighting system to assess cluster consistency in forming the 
final consensus. 

v. Clustering Ensemble Extraction (CEE): developed by Sedghi et al. [IX], 
utilizes the Jaccard similarity measure to identify new clusters and achieve 
consensus. 

Implementation Details 

The experiments are implemented using Python with popular libraries such as 

scikit-learn for clustering algorithms and NumPy for numerical computations. 

The ensemble of base clusterings is generated using the K-Means algorithm and its 

variants (Mini Batch K-Means and Bisecting K-Means) with different random 

initializations. For each dataset, we create 100 base clusterings to ensure 

sufficient diversity. 
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For the comparison methods, we adjust their parameters according to their 

respective requirements. The number of clusters for K-Means is set to the 

ground truth number of clusters in each dataset. 

Evaluation Metrics 

To evaluate the performance of the clustering algorithms, we utilize several 

metrics: 

i. Normalized Mutual Information (NMI) [II]: NMI measures the similarity 

between predicted clusters and ground truth clusters, with values ranging 

from 0 (no agreement) to 1 (perfect agreement). It is calculated based on 

mutual information and is normalized by the entropy of each clustering 

to ensure a consistent scale. 

ii. Adjusted Rand Index (ARI)[XXV]: ARI quantifies the similarity between 
two clustering results by considering the number of pairs of samples that 
are assigned to the same or different clusters in both the predicted and 
true clustering. The values range from -1 (no similarity) to 1 (perfect 
agreement). 

iii. Adjusted Mutual Information (AMI)[XXVI]: AMI adjusts the Mutual 
Information (MI) score between two clustering results for the chance of 
random agreement. It takes values between 0 and 1, with 0 indicating no 
correlation between the clusters and 1 representing perfect agreement. Unlike 
NMI, AMI accounts for the expected similarity between two random 
clusterings, making it a more reliable measure when the number of clusters 
varies. 

VIII.    Results and Discussion 

 The results of the experiments are presented in Tables 1, 2, 3, 4, 5, and 6. 

Table 1: Performance on Iris Dataset 
 

Method ARI NMI AMI 
DWCC 0.75619 0.75713 0.75409 
EAC 0.71634 0.74191 0.73865 
LWEA 0.72822 0.73873 0.73545 
TWEC 0.72822 0.73873 0.73545 
CSWC 0.74240 0.75182 0.74870 
CEE 0.72822 0.73873 0.73545 

 

Table 2: Performance on Wine Dataset 
 

Method ARI NMI AMI 
DWCC 0.39434 0.44239 0.43639 
EAC 0.39135 0.39559 0.38920 
LWEA 0.39135 0.39559 0.38920 
TWEC 0.39459 0.39680 0.39042 
CSWC 0.39135 0.39559 0.38920 
CEE 0.39135 0.39559 0.38920 

The experimental results across multiple datasets, detailed in Tables 1-6, 

demonstrate the efficacy of the proposed DWCC (Dual-Weighted Consensus 
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Clustering) method compared to established clustering ensemble techniques, 

namely EAC, LWEA, TWEC, CSWC, and CEE. For the Iris dataset, DWCC achieves 

an ARI of 0.756 and an NMI of 0.757, outperforming all other methods. In the Wine 

dataset, DWC. 

Table 3: Performance on Breast Cancer Dataset 
 

Method ARI NMI AMI 
DWCC 0.49142 0.46479 0.46401 
EAC 0.28724 0.31908 0.31797 
LWEA 0.41060 0.41597 0.41508 
TWEC 0.48623 0.46074 0.45994 
CSWC 0.41060 0.41597 0.41508 
CEE 0.41060 0.41597 0.41508 

 

Table 4: Performance on Ecoli Dataset 
 

Method ARI NMI AMI 
DWCC 0.41899 0.59699 0.57951 
EAC 0.36958 0.58778 0.57002 
LWEA 0.37796 0.57881 0.56067 
TWEC 0.31533 0.53243 0.51219 
CSWC 0.37878 0.57901 0.56275 
CEE 0.40714 0.59245 0.57485 

 

Table 5: Performance on Glass Identification Dataset 
 

Method ARI NMI AMI 
DWCC 0.27066 0.40938 0.38098 
EAC 0.26585 0.39053 0.36119 
LWEA 0.26585 0.39053 0.36119 
TWEC 0.26033 0.38569 0.35681 
CSWC 0.26706 0.39680 0.36782 
CEE 0.26772 0.39909 0.37016 

 

shows strong performance, although TWEC marginally surpasses it in ARI. 

However, DWCC still achieves notable scores in NMI and AMI. The Breast 

Cancer dataset results further validate DWCC’s strengths, with DWCC 

achieving an ARI of 0.491 and an NMI of 0.464, outperforming other methods 

by a substantial margin. For the Ecoli dataset, DWCC’s performance is similarly 

impressive, with an ARI of 0.419 and an NMI of 0.597. On the Glass Identification 

dataset, DWCC maintains competitive performance with an ARI of 0.271 and an 

NMI of 0.409, slightly outperforming other methods. Finally, on the Blob dataset, 

DWCC outperforms other techniques with an ARI of 0.177 and an NMI of 0.180. 

In summary, the experiments conducted demonstrate the effectiveness of the 

DWCC method in improving consensus clustering outcomes. The combination of 

cluster-level and clustering-level weighting strategies results in a robust clustering 

solution that consistently outperforms existing consensus methods, validating the 

proposed approach’s capability to address the research gaps identified in 

previous works.
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Table 6: Performance on Blob Dataset 
 

Method ARI NMI AMI 
DWCC 0.17665 0.18045 0.17892 
EAC 0.11393 0.15672 0.15506 
LWEA 0.09552 0.11090 0.10920 
TWEC 0.13242 0.14890 0.14733 
CSWC 0.12032 0.13385 0.13225 
CEE 0.09552 0.11090 0.10920 

Fig. 1 Adjusted Rand Index (ARI) scores across different datasets for each clustering method. 

Fig. 2 Normalized Mutual Information (NMI) scores across different datasets for each 

clustering method. 
 

VIII.     Conclusion and Future Work 

  This paper presents a novel consensus clustering approach, Dual-Weighted 

Consen- sus Clustering (DWCC), which combines cluster-level and clustering-

level weighting strategies to improve the robustness and accuracy of consensus 

clustering. By weight- ing clusters based on internal quality of corresponding base 

clustering and consistency with other clusters in the ensemble, and assigning 

weights to base clusterings based on
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their reliability, the DWCC method enhances the final clustering outcome. 

Experimental results on benchmark datasets demonstrate the effectiveness of 

DWCC over other consensus clustering methods, showing that DWCC 

better captures the underlying structure of data, even in complex and varied 

datasets. 

Future work will address: (1) conducting an analytical comparison of DWCC 

with LWEA, TWEC, and CEE through contrasting tables of objective 

functions/aggregation steps, convergence analysis, and synthetic examples 

demonstrating behavioral differences; (2) performing sensitivity analyses on 

weighting parameters (including entropy computation variants, CH 

normalization bounds, and linear vs. multiplicative combinations) to identify 

component dominance scenarios; and (3) expanding validation to larger/noisy 

datasets (e.g., MNIST, 20-Newsgroups) with runtime statistics and additional 

metrics like homogeneity and silhouette. Additionally, we will explore 

extending DWCC to dynamic/online clustering scenarios to further assess its 

utility across diverse applications. 
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