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Abstract 

The paper addresses the classical two-stage FSSP with a single machine in the 

second stage and equipotential machines in the first. The uniqueness of this problem 

arises from the fact that the machine at the second stage is rented, with the objective 

being to minimize the rental cost. Efficient scheduling of jobs is critical in such 

environments to optimize resource usage and reduce operational costs. A 

distinguishing feature of this study is the representation of processing times on both 

stages using trapezoidal fuzzy numbers, which better capture uncertainty and 

variability in processing times compared to deterministic values. This fuzzy 

representation aligns well with real-world scenarios where exact processing times are 

often unavailable or subject to fluctuations. This paper's primary contribution is the 

creation of an optimization algorithm that uses the branch and bound (B&B) approach 

to tackle the issue. By breaking the problem space down into smaller subproblems and 

utilizing bounds to exclude less likely solutions, the B&B technique methodically 

explores the solution space. This method minimizes the expense of renting the second-

stage machine while guaranteeing the identification of the ideal timetable. The fuzzy 

nature of the problem adds complexity to the scheduling task, as it requires handling 

the fuzziness in processing times while maintaining optimality. To ensure the robustness 

of the algorithm, it is implemented in MATLAB and tested against a variety of job 

sequences and machine configurations, along with the comparison of results with GA. 

Keywords: Idle time, Rental cost, Trapezoidal Fuzzy processing time, Utilization time. 

 I.    Introduction 

Scheduling theory is a branch of operations research and computer science that 

deals with the optimal allocation of resources over time to perform a collection of tasks. 

It entails making plans that specify when and how tasks should be completed to 

optimize specific parameters, including decreasing waiting times between jobs, 
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maximizing resource use, or minimizing the total completion time. Industry scheduling 

is essential since it reduces expenses and delays while optimizing productivity and 

resource use. Companies may guarantee seamless production processes, timely 

completion of tasks, and fulfillment of client requests by effectively allocating tasks 

and resources. By minimizing downtime and bottlenecks, efficient scheduling raises 

output and quality standards all around. Improved inventory control is also made 

possible, which lowers the risk of overproduction and stockouts and gives you the 

adaptability to deal with unforeseen disruptions or shifts in demand. Robust scheduling 

procedures ultimately result in higher operational effectiveness, lower costs, and a more 

competitive market position. In the industrial sector, scheduling is used extensively and 

is essential for resource management and operations optimization. To guarantee 

continuous and effective output, it is used in manufacturing to schedule worker shifts, 

assign machine time, and arrange production processes. To offer prompt and efficient 

patient care, scheduling is crucial in the healthcare industry for organizing staff shifts, 

assigning operating room times, and managing patient appointments. In the realm of 

transportation, it entails organizing public transportation routes and schedules, cargo 

logistics, and airline operations to guarantee punctual delivery and effective vehicle 

utilization. Scheduling is essential to project management to assign tasks, control 

resources, and guarantee that projects are finished on time and within budget. In IT, 

scheduling controls data center operations, optimizes the use of computational 

resources, and guarantees the smooth operation of cloud services. All things 

considered, scheduling lowers expenses, increases operational effectiveness, and raises 

service standards in several sectors. 

Flow shop scheduling theory is a subfield of scheduling that focuses on maximizing 

the order in which tasks are completed in a production setting where there is a required, 

one-way flow through several workstations or equipment. Every task in a flow shop 

goes through the same set of steps to achieve certain objectives, such as making the 

least amount of time possible overall (makespan), reducing overall lateness, or 

maximizing other performance indicators like throughput or machine utilization. 

Sequential processes, deterministic operations, single-route flow, and non-preemption 

are important features. Goals frequently center on throughput maximization, makespan 

minimization, total flow time, and total tardiness. Johnson’s rule (X) for two-machine 

flow shops, B&B method (XII), heuristics like the NEH heuristic (XV) for more 

complicated circumstances, and metaheuristics like genetic algorithms (XI), and tabu 

search (III) for big, complex issues are examples of common methods and 

methodologies. Flow shop scheduling is a popular technique used in manufacturing, 

automotive, electronics, and food processing industries. It improves production 

efficiency by lowering production times, guaranteeing efficient use of resources, and 

increasing total productivity. 

Equipotential machines, which are identical and interchangeable, simplify the initial 

stages of production by ensuring consistent performance and streamlining the 

scheduling process. This standardization helps reduce downtime and operational 

complexities, allowing for a more efficient production flow and ensuring that the 

resources used in the initial stages of production are fully optimized, as these machines 

perform identical functions and can be utilized to maintain a steady workflow. This 

prevents bottlenecks and inefficiencies in the production process. Meanwhile, the use 
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of rented equipment for subsequent stages provides the necessary flexibility to scale 

production capabilities without the need for permanent investments. This model 

enables companies to respond to market changes and seasonal variations in demand 

more effectively, without the burden of long-term equipment commitments. This 

balanced approach ensures that production lines operate efficiently. Incorporation of 

rented equipment into the production process, businesses can minimize these capital 

costs, accessing advanced or specialized machinery without the associated upfront 

investment. Renting allows companies to allocate their financial resources more 

strategically, potentially directing funds towards other critical areas. During periods of 

high demand, additional rented machines can be brought in to increase production 

capacity. Conversely, during slower periods, the reliance on rented equipment can be 

reduced, allowing companies to focus on their core set of equipotential machines. 

Processing times in manufacturing or service industries often depend on factors like 

operator skill, machine condition, raw material quality, or environmental conditions. 

These factors introduce variability. So, the processing times can be modeled using 

TFNs since they are expressed as a range instead of a single fixed value. This range 

gives uncertain data a more flexible and realistic depiction.  

To contextualize the effectiveness of our methodology, a comparative analysis with 

genetic algorithms (GAs), a prominent heuristic technique known for its robustness in 

solving complex optimization problems, is also presented. GAs have been widely used 

in scheduling due to their ability to explore large solution spaces and adapt to various 

constraints. However, while GAs offer flexibility and can provide near-optimal 

solutions, they may not guarantee the optimality required for specific scheduling 

scenarios. 

II.   Literature Review 

There are numerous methods given by many authors to solve FSSPs. The initial 

solution was given by Johnsons (X) in 1954, named as Johnson’s algorithm. Another 

milestone was set by Lomniciki (XII)  in 1965 by introducing the classical B&B 

method, which is the exact method used to find the solution to the problems. Ignall and 

Schrage (IX) also worked on the B&B method. The concept of GA was introduced by 

Holland (VIII) in 1992. This foundational work has led to the widespread application 

of GAs across various disciplines. These methods of solutions were further used with 

modifications according to the situations and requirements by the researchers. A hybrid 

GA combined with PSO was introduced by Tang et al. (XX). Umam et al. (XXII) 

devised an algorithm that is based on GA and tabu search for the makespan 

minimization. This approach effectively addressed the complexities inherent in 

scheduling by leveraging the strengths of both genetic algorithms and tabu search, 

leading to improved optimization outcomes. The paper by Tomazella and Nagano 

(XXI) provided a thorough examination of Branch-and-Bound algorithms specifically 

applied to flow shop scheduling problems. It traced the evolution of these algorithms 

from foundational works to contemporary advancements, offering insights into their 

application and effectiveness. Many comparative studies by different authors show how 

GA is very easy to handle and gives reliable results for the fssp. Shahsavari et al. 

(XVIII) demonstrated that a proposed multi-objective genetic algorithm, DIPGA, 

significantly enhances decision-making and achieves faster convergence and greater 
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efficiency in solving complex flow shop scheduling problems. Compared to other 

popular metaheuristics such as Particle Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO), DIPGA shows superior performance, reinforcing the 

effectiveness of GA-based approaches in multi-objective scheduling environments. 

Wang et al. (XXIII)addressed the wide usage of GA and integrated a hypothesis-testing 

method into a GA to reduce premature convergence and enhance population diversity. 

The proposed approach maintained GA's global search ability while filtering 

statistically similar solutions. An Improved Genetic Algorithm (IGA) using multi-

crossover, multi-mutation, and hypermutation strategies has been proposed by 

Rajkumar and Shahabudeen (XVI) for the permutation fssp. Results on OR-Library 

benchmarks show that the IGA yields better makespan performance compared to earlier 

approaches. 

Many authors have given different heuristics to minimize rental cost under different 

environments. Narain (XIV) gave an algorithm to optimize the renting time for a 3-

machine problem. Gupta et al.(V) also worked with the problems related to rental cost. 

An algorithm for a three-stage problem with fuzzy processing times to minimize the 

makespan and rental cost was given by Alburaikan et al. (I) using fuzzy arithmetic. 

Sathish and Ganesan (XVII) also devised a heuristic for minimizing rental cost under 

a fuzzy environment without converting the fuzzy processing time to classical numbers. 

Another method to solve the problems related to rental cost was given by Alharbi and 

EL-Wahed Khalifa (II), which makes use of pentagonal fuzzy processing times. Singla 

et al. (XIX) also worked with the problems related to rental cost. El-Morsy et al. (IV) 

used the Pythagorean fuzzy numbers as the processing times and minimized the rental 

cost.  

The issues related to equipotential machines were addressed by many researchers. Goel 

et al. (VI) (VII)worked on the two-stage and three-stage problems with equipotential 

machines using the classical B&B method. Three-stage problem was also discussed by 

Malhotra and Goel (XIII). In the present paper, the work by Goel et al. and Malhotra et 

al. is extended using the concept of rental cost. 

III.   Practical situations 

The present model of equipotential machines at the first stage and a single 

rented machine at the second stage with TFN processing times is applicable at many 

sites. The model that integrates equipotential machines with rented resources plays a 

crucial role in modern industrial operations by providing significant benefits in 

flexibility, cost management, and efficiency. This approach is essential for businesses 

that face fluctuating production demands and need to adapt quickly to changing market 

conditions.  Some of the instances where the present model can be applicable can be a 

pharmaceutical industry with equipotential machines to handle the capsule filling or 

the tablet pressing at first stage and rented high-precision coating or sterilization 

machine for second stage or in the agriculture equipotential machines for the cleaning 

and sorting of grains and the rented milling or packaging machine to process the final 

product or in the metal fabrication case the equipotential machine for the bending or 

cutting of sheets and the rented machine for polishing the final product. 
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• Integration with SAP ERP and SAP ME : 

The proposed scheduling algorithm demonstrates strong potential for integration within 

industrial systems powered by SAP ERP and SAP ME—platforms widely used for 

enterprise resource planning and manufacturing operations control. In this architecture, 

SAP ERP is responsible for higher-level functions such as material planning, order 

creation, procurement, and capacity analysis, while SAP ME handles real-time shop 

floor execution, including work order dispatching, machine utilization, and production 

tracking. 

By integrating the algorithm into this ecosystem, production schedules generated in 

ERP can be dynamically optimized and transferred to MES for execution. The 

algorithm can process real-time data—such as job priorities, machine availability, and 

rental cost variations—to make immediate decisions. For example, if a bottleneck 

arises or a delay is detected, the algorithm can suggest the rental of additional machines 

at Stage II and reschedule jobs accordingly, minimizing cost and delay. These decisions 

can then be fed back into ERP for financial and logistical updates, creating a closed-

loop feedback system. 

In real-time scheduling environments, especially in high-mix low-volume industries, 

machine rentals may need to be initiated or extended on the fly to meet deadlines or 

respond to disruptions. The algorithm supports such scenarios by continuously 

evaluating job progress, machine utilization, and cost trade-offs to recommend the most 

cost-effective rental strategy—thus supporting adaptive scheduling and on-demand 

resource allocation within an intelligent, responsive ERP-MES framework. 

IV.    Problem Formulation 

In this research, we present an advanced methodology for solving flow shop 

scheduling problems that incorporates equipotential machines at the initial stage and a 

rented machine at the second stage. This approach extends the classical B&B method 

by integrating rental policies, which adds a layer of flexibility and adaptability to the 

scheduling process. The primary objective of our proposed methodology is to enhance 

solution efficiency and quality compared to the standard BB approach, particularly in 

scenarios where resource allocation involves rented equipment. The use of trapezoidal 

fuzzy numbers (TFN) to represent the processing time makes the model more robust to 

variations. This robustness is beneficial in industrial applications, where minor 

fluctuations in processing times can impact the total elapsed time and costs. 

Additionally, some presumptions must be taken into account. 

Assumptions 
• All first-stage equipotential devices have varying usage costs and are available at 

time zero. 

• All tasks must be completed on the stage one machine first, followed by the stage 

two machine. 

• It is not necessary to process jobs on every possible machine in stage one. 

• Machines should be rented when needed and returned as soon as the task is finished. 
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The data is represented mathematically in Table 1. 

Notations  

ƒij=Operational Cost on j th machine for i th job {(i = 1, 2, ..., s); (j = 1, 2, ..., r)}  

(κi1,κi2,κi3,κi4)= Processing time on machine P for job i  

(ζi1,ζi2,ζi3,ζi4)= Processing time on machine Q for job i  

V.   Proposed Methodology 

• Step 1: Defuzzify trapezoidal fuzzy numbers using the COG method as 

  𝑝𝑖 =
𝜿𝒊𝟏+𝟐𝜿𝒊𝟐+𝟐𝜿𝒊𝟑+𝜿𝒊𝟒

6
,𝑞𝑖 =

𝜻𝒊𝟏+𝟐𝜻𝒊𝟐+𝟐𝜻𝒊𝟑+𝜻𝒊𝟒

6
            (1) 

• Step 2: Determining the machine Pj's optimal processing time using the Modified 

Distribution approach to save costs. The requirement must be met to use the MODI 

technique is: 

∑ 𝑝𝑖 = ∑ ƞ𝑗
𝑟
𝑗=1

𝑠
𝑖=1                                                                             (2) 

Table 1: Mathematical representation of Data 

Job/Machine P P.T. on P P.T. on Q 

P1 P2 . . . Pr 

1 ƒ11 ƒ12 . . . ƒ1r (κ11,κ12,κ13,κ14) (ζ11,ζ12,ζ13,ζ14) 

2 ƒ21 ƒ22 . . . ƒ2r (κ21,κ22,κ23,κ24) (ζ21,ζ22,ζ23,ζ24) 

3 ƒ31 ƒ32 . . . ƒ3r (κ31,κ32,κ33,κ34) (ζ31,ζ32,ζ33,ζ34) 

. . .    . . . 

. . .    . . . 

. . .    . . . 

S ƒs1 ƒs2 . . . ƒsr (κs1,κs2,κs3,κs4) (ζs1,ζs2,ζs3,ζs4) 

 ƞ1 ƞ2 . . . ƞr   

• Step 3: Calculate 

  𝑙𝑡 = 𝑚𝑎𝑥 {∑ 𝑞𝑖
𝑠
𝑖=1 + 𝑚𝑎𝑥

1≤𝑗≤𝑟
𝑓𝑡𝑗 , 𝑚𝑎𝑥

1≤𝑗≤𝑟
{∑ 𝑓𝑖𝑗

𝑠
𝑖=1 } + 𝑚𝑖𝑛

𝑟≠𝑡
𝑞𝑟 }        (3) 

for all the jobs t = 1, 2, ..., s. Then find the job t for which lt is minimum. This job is 

to be processed first. 

• Step 4: Considering that the work t has been processed, repeat step 2. Continue the 

procedure until the ideal order is obtained. 

• Step 5: Prepare the table that represents the in-out times of jobs on the machines P1, 

P2, …, Pr and Q. 

• Step 6: For job i on machine Pj, the in time is represented as  𝑓𝑖𝑗
̅̅ ̅, while the out time 

is denoted as 𝑓𝑖𝑗
̿̿ ̿. On machine Q, the in time is represented as 𝑞𝑖̅, and the out time is 

denoted as 𝑞𝑖̿. 
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  𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑄 = 𝑞𝑠̿ − 𝑞1̅̅̅                                          (4) 

  𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑇𝑖𝑚𝑒 =  Ĕ = 𝑞𝑠̿ − ∑ 𝑞𝑖
𝑠
𝑖=1                                                         (5) 

• Step 7: Now set 𝑞1̅̅̅= Ĕ and modify the in-out table accordingly. 

• Step 8: From this modified in-out table, machine Q’s utilization time can be 

determined and will undoubtedly be lower than the previous utilization time 

discovered in step 5.   

   Rental Cost = Utilization Time ∗ Rent                                       (6) 

V.i.   Numerical Example: 

  An exemplary example is presented to give a good grasp of the stages involved 

in the suggested algorithm. This example shows how to apply the algorithm to a 

particular case by methodically illustrating each step of the algorithm. The problem in 

the depicted example consists of six parallel machines and ten jobs. Data is given in 

Table 2 in the format of Table 1. 

Step 1: After defuzzification using the Center of Gravity (COG) method, the resulting 

data is summarized and presented in Table 3 

Step 2: The condition for the MODI method is satisfied, and the table after using the 

MODI method is represented in Table 4. 

Table 2: Numerical Illustration 

Job/Machine 
P P.T. on P P.T. on Q 

P1 P2 P3 P4 P5 P6 

1 12 18 11 15 11 16 (25, 25, 42, 49) (3, 6, 6, 9) 

2 15 15 9 11 16 17 (24, 25, 42, 42) (6, 7, 7, 9) 

3 16 17 20 16 12 15 

(16, 25, 31, 39) 

(5, 5, 8, 

8) 

4 18 16 12 13 19 13 (25, 25, 33, 40) (5, 5, 7, 9) 

5 20 19 15 19 20 17 (16, 21, 28, 37) (4, 5, 8, 8) 

6 17 21 19 14 22 10 (22, 32, 40, 54) (5, 7, 8, 8) 

7 13 24 14 10 18 19 (21, 26, 37, 51) (5, 7, 7, 9) 

8 10 14 13 12 16 13 (18, 30, 30, 41) (5, 6, 6, 7) 

9 17 16 10 18 17 11 (19, 31, 34, 46) (1, 2, 8, 9) 

10 19 11 8 14 9 15 (19, 34, 36, 47) (4, 6, 6, 9) 

 49.5 60.3 37.2 50.4 66.7 53.4   

Table 3: Table after using step 1 

Job/Machine 
P P.T. on P P.T. on Q 

P1 P2 P3 P4 P5 P6 

1 12 18 11 15 11 16 34.67 6.00 

2 15 15 9 11 16 17 33.33 7.17 

3 16 17 20 16 12 15 27.83 6.50 
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4 18 16 12 13 19 13 30.17 6.33 

5 20 19 15 19 20 17 25.17 6.33 

6 17 21 19 14 22 10 36.67 7.17 

7 13 24 14 10 18 19 33.00 7.00 

8 10 14 13 12 16 13 29.83 6.00 

9 17 16 10 18 17 11 32.50 5.00 

10 19 11 8 14 9 15 34.33 6.17 

 49.5 60.3 37.2 50.4 66.7 53.4   

 

Table 4: Result After MODI Method 

Job/Machine 
P.T. on P P.T. on Q 

P1 P2 P3 P4 P5 P6 

1 19.67 0 0 0 15 0 6.00 

2 0 0 21.43 11.9 0 0 7.17 

3 0 0 0 0 27.83 0 6.50 

4 0 24.67 0 5.5 0 0 6.33 

5 0 25.17 0 0 0 0 6.33 

6 0 0 0 0 0 36.67 7.17 

7 0 0 0 33 0 0 7.00 

8 29.83 0 0 0 0 0 6.00 

9 0 0 15.77 0 0 16.73 5.00 

10 0 10.46 0 0 23.87 0 6.17 

 
• Step 3 and Step 4: The results of Step 3 and 4 are represented using the tree 

in Fig. 1 and Fig. 2. The numbers given in the brackets show the weights of the 

respective sequence. ƫ is used to represent the job 10. 

• Step 5: The in-out table using the sequence obtained in step 4 is represented in 

Table 5Table 5. 

• Step 6: Utilization Time using B&B= 66.81 

•               Earliest time = 19.87 

• Step 7: The Modified in-out table is given in Table 6.  

• Step 8: It is evident from Table 5 and Table 6 that the utilization of the time of 

machine Q is decreased by 3.14 hours using the present methodology. If we 

take the rent to be Rs. 100 per hour, then the total difference in rent comes out 

to be Rs. 314, as the rent using B&B becomes Rs. 6681, and using the present 

methodology, it becomes 6367. 
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Fig. 1. Flow Chart of B&B Method 
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Fig. 2. Flow chart of B&B Method (Cont.) 

Table 5:  In-Out Table using step 4 

Job/ 

Machine 
P1 P2 P3 P4 P5 P6 

Q 

9 - - 0-15.77 - - 0-16.73 
16.73-21.73 

1 0-19.67 - - - 0-15 - 
21.73-27.73 

4 - 0-24.67 - 0-5.5 - - 
27.73-34.06 

2 - - 
15.77-

37.20 
5.5-17.4 - - 

37.20-44.37 

10 - 
24.67-

35.13 
- - 15-38.87 - 

44.37-50.54 

8 19.67-49.50 - - - - - 
50.54-56.54 

9142(100.87)

91423(10
6.5)

91425(11
3.51)

91426(11
7.07)

91427(11
4.07)

91428(11
3.17)

9142ƫ(102
.54)

9142ƫ3(13
0.37)

9142ƫ5(12
3.97)

9142ƫ6(11
7.07)

9142ƫ7(11
4.07)

9142ƫ8(11
3.17)

9142ƫ83(130.3
7)

9142ƫ85(123.9
7)

9142ƫ86(117.0
7)

9142ƫ87(114.0
7)

9142ƫ873(1
30.37)

9142ƫ875(1
23.97)

9142ƫ876(1
17.07)

9142ƫ8763(130
.37)

9142ƫ8765(12
3.97)
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7 - - - 17.4-50.4 - - 
56.54-63.54 

6 - - - - - 
16.73-

53.40 

63.54-70.71 

5 - 
35.13-

60.30 
- - - - 

70.71-77.04 

3 - - - - 
38.87-

66.70 
- 

77.04-83.54 

 

Table 6: Modified in-out Table 

Job/ 

Machine 
P1 P2 P3 P4 P5 P6 

Q 

9 - - 
0-

15.77 
- - 0-16.73 

19.87-24-87 

1 
0-

19.67 
- - - 0-15 - 

24.87-30.87 

4 - 0-24.67 - 0-5.5 - - 
30.87-37.20 

2 - - 
15.77-

37.20 
5.5-17.4 - - 

37.20-44.37 

10 - 
24.67-

35.13 
- - 

15-

38.87 
- 

44.37-50.54 

8 
19.67-

49.50 
- - - - - 

50.54-56.54 

7 - - - 
17.4-

50.4 
- - 

56.54-63.54 

6 - - - - - 
16.73-

53.40 

63.54-70.71 

5 - 
35.13-

60.30 
- - - - 

70.71-77.04 

3 - - - - 
38.87-

66.70 
- 

77.04-83.54 

V.ii.   Evaluation of the problem using GA 

 Based on the ideas of genetics and natural selection, the Genetic Algorithm (GA) is an 

optimization method inspired by nature. It is used to find solutions to complicated 

problems by simulating biological evolution. Both linear and non-linear problems can 

be solved with GA because of its versatility and capacity to traverse wide search 

regions. Steps involved in GA are Selection, Crossover, and Mutation. 
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The pseudocode for GA is given below 

Step 1: Initialize the population according to the size of the problem 

Step 2: Evaluate the value of the fitness function  

Step 3:Set the number of iterations as n 

Repeat for n times 

Step 4: Select the parent based on the fitness values of the population 

Step 5:  Apply the crossover operator to generate offsprings. 

Step 6: Apply the mutation operator to the offspring. 

Step 7: Check the fitness value of the sequence after mutation. 

Step 8:  If the fitness value after mutation is less than the fitness value of the parents, 

then set this sequence as new parent. 

For the problem given in Table 2, suppose the population size is 5 and the number of 

iterations is 100. 

Population 1: 1-4-5-2-3-8-7-10-6-9  

Population 2: 2-6-5-3-1-8-10-9-7-4 

Population 3: 3-5-7-1-4-10-6-2-9-8 

Population 4: 7-9-10-1-4-2-6-3-8-5 

Population 5: 9-6-7-4-2-5-1-3-8-10 

The value of the fitness function for population 1 can be checked from Table 7, which 

is 101.18. 

In the same way, the value of the fitness function for all the populations is listed in Table 8. 

It is evident from Table 8 that the populations with the minimum fitness value are 

Population 2 and Population 4. 

So, Population 2 and 4 are selected as parents, and the two-point crossover is applied 

on them to generate offsprings. The process is depicted in Fig. 3. The offsprings are  

O1 : 2-6-5-1-3-8-10-9-7-4                           O2 :  7-9-10-2-1-4-6-3-8-5 

Next, the mutation is to be applied to O1 and O2. Here inversion mutation operator is 

used, and after the mutation, the new offspring are 

O1 : 2-6-7-1-8-3-10-9-5-4                          O2 :  7-9-8-2-4-1-6-3-10-5  

The fitness value of O1 is 94.23, and that of O2 is 96.67. So, for the next generation, 

the parents selected are Parent 1 and Offspring 1. This way, after 100 iterations, the 

fitness value comes out to be 93.17, and the utilization time of machine Q comes out 
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to be 71.74 hours, and thus the rental cost of machine Q becomes 7174, which is much 

higher than the rent using the present method. 

Table 7: Fitness value for Population 1 

Job/ 

Machine 
P1 P2 P3 P4 P5 P6 

Q 

1 0-19.67 - - - 0-15 - 
19.67-25.67 

4 - 0-24.67 - 0-5.5 - - 
25.67-32 

5 - 
24.67-

49.84 
- - - - 

49.84-56.17 

2 - - 0-21.43 5.5-17.4 - - 
56.17-63.34 

3 - - - - 
15-

42.83 
- 

63.34-69.84 

8 
19.67-

49.5 
- - - - - 

69.84-75.84 

7 - - - 
17.4-

50.4 
- - 

75.84-82.84 

10 - 
49.84-

60.3 
- - 

42.83-

66.7 
- 

82.84-89.01 

6 - - - - - 0-36.67 
89.01-96.18 

9 - - 
21.43-

37.2 
- - 

36.67-

53.40 

96.18-

101.18 

Table 8: Fitness Value 

Population Value of Fitness Function 

Population 1 101.18 

Population 2 93.17 

Population 3 98.21 

Population 4 96.97 

Population 5 112.07 

 
Fig. 3. Crossover Operator 
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VI.   Computational results 

The present method is tested with different combinations of the number of 

machines and the number of jobs, and the outcomes are listed in Table 9. The result 

using the GA is also compared with the results. For these experiments, MATLAB 

2014(a) is used. Also, the comparative results are shown graphically in Fig. 4 and Fig. 

5. The results demonstrate that the present method outperforms the GA in terms of 

minimizing rental costs. 

Table 9: Comparison Table 

No. of Jobs No. of 

Machines 

Rent using 

B&B 

Rent using the 

present 

methodology 

Rent using GA 

20 20 316 292 354 

20 60 366 285 406 

20 100 385 291 450 

20 40 430 311 499 

20 80 484 316 554 

40 80 746 623 786 

40 40 674 585 757 

40 60 1059 634 1055 

40 20 1396 637 1424 

40 100 1563 602 1633 

60 60 954 848 1158 

60 80 1236 853 1337 

60 100 1395 877 1437 

60 20 1593 892 1598 

60 40 1662 901 1663 

80 80 1219 1211 1229 

80 60 1345 1167 1448 

80 40 1886 1218 1893 

80 100 1809 1163 1858 

80 20 2392 1194 2417 

100 40 1497 1480 1523 

100 20 1543 1469 1546 

100 60 2132 1444 2139 

100 80 2305 1459 2308 

100 100 2453 1490 2864 
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Fig. 4. Comparison of rent according to the number of Jobs 

 

Fig. 5. Comparison of rent according to the number of machines 

VII.  Computational Complexity and Quality of Solution(Worst-Case Time 

Complexity Analysis) 

The proposed methodology is designed to improve scheduling efficiency in a two-

stage flow shop environment with equipotential machines at the first stage and a rented 

machine at the second stage. Let: 

• n = number of jobs 

• m = number of machines in the first stage 

In the worst case, the algorithm must evaluate multiple sequences and allocate jobs 

across machines while optimizing rental cost and total elapsed time. Assuming the 

approach considers job sequencing followed by load balancing across machines, the 

time complexity can be estimated as: 
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• Job sequencing complexity: For a full enumeration of sequences, the number 

of permutations is O(n!). 

• Machine allocation complexity: For each sequence, assigning jobs to m 

equipotential machines takes approximately O(n × m) time. 

• Cost evaluation: Each evaluation is O(n). 

Thus, the worst-case time complexity becomes approximately: O(n! × n × m) 

However, since the proposed method uses a heuristic-guided branch and bound 

strategy, it prunes the search space significantly, reducing the actual runtime to 

polynomial time in practice for medium-sized instances. This is supported by the 

execution times reported in Table X, where even with 100 jobs and machines, the 

computational time remains within acceptable bounds. 

While the proposed methodology consistently yields better rental cost outcomes 

compared to traditional methods like B&B and GA (as shown in Table 9), it is 

acknowledged that heuristic methods may not always guarantee optimality. 

To assess the quality of the heuristic solution, the following approaches can be 

considered: 

• RPD = 
𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝐵𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐵𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 𝑋 100% 

This metric can be computed for each test instance to quantify how close the heuristic 

comes to optimal.  

• In all 25 cases, the proposed methodology has achieved the lowest rental cost, 

hence the RPD = 0% throughout. 

• This indicates that the present method is consistently optimal or best-known 

among compared approaches, at least empirically. 

• This strengthens the practical superiority and reliability of the proposed 

approach. 

VIII.   Conclusion 

The study's conclusions demonstrate the effectiveness of the present 

methodology in minimizing rental costs for two-stage flow shop scheduling issues over 

the results of GA. The proposed algorithm offers a viable solution for applications 

where rental costs are a critical factor, and its implementation in MATLAB provides a 

flexible and accessible framework for further research and industrial applications.  

IX.   Future Work 

The present study can be further extended by taking different performance measures 

like transportation time, weightage of jobs, setup times, job block or break down 

interval, etc., into consideration. The concept of equipotential machines can also be 

considered for both stages, and the number of stages can also be extended. 
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