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Abstract 

This paper introduces an intelligent method to enhance communication in 

unlicensed millimetre-wave (mmWave) networks for New Radio Unlicensed (NR-U) 

and Wireless Gigabit (WiGig) systems. Since both networks share the same frequency 

band, they often interfere with each other, reducing performance and fairness. The 

challenge lies in ensuring smooth coexistence without harming the efficiency of either 

system. NR-U plays a crucial role in 5G networks by meeting the growing demand for 

faster wireless communication. To tackle this problem, the authors propose a novel 

method that integrates two essential processes: codebook selection and user 

equipment (UE) scheduling. Codebook selection optimizes beam patterns for 

communication, while UE scheduling determines which users access the network and 

when. These two processes operate at different speeds, making optimization complex. 

The researchers use Deep Reinforcement Learning (DRL) to solve this challenge 

dynamically and intelligently. The proposed system, DeepCBU, is based on a Layered 

Deep Q-Network (L-DQN) framework. It learns from past experiences to make better 
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decisions over time. DeepCBU adjusts dynamically, balancing the need for high data 

rates while minimizing interference between NR-U and WiGig. Additionally, it 

ensures fairness among users by distributing network access efficiently. Simulation 

results show that DeepCBU outperforms traditional methods like DRL-dirLBT, TS-

dirLBT, and TS-DRL. It improves data rates for NR-U, reduces WiGig interference, 

and better satisfies user Quality of Service (QoS) requirements. Unlike conventional 

approaches, DeepCBU does not require prior network knowledge, making it highly 

adaptable. In conclusion, DeepCBU is a powerful DRL-based system that enhances 

NR-U and WiGig coexistence. It optimizes both codebook selection and UE 

scheduling, ensuring better performance and fairness in future wireless networks. 

Keywords: Deep reinforcement learning, Deep Q-Network, Data Rate, New Radio,  

Packet Error Rate, Quality of Service, Wireless Networks.   

I.    Introduction 

As the data traffic is growing quickly, the spectrum in licensed frequency 

bands is becoming scarce for wireless networks [XXI]. The introduction of NR-U is 

intended to address this issue in the fifth generation (5G) cellular directory. NR-U 

allows a cellular network to work in unlicensed frequency bands, which are used by 

Wi-Fi and WiGig technologies. This greatly increases both capacity and efficiency 

on the network [XIII]. When discussing unlicensed bands, the mmWave band is very 

attractive due to the abundance of available bandwidth. However, due to the 

extremely short wavelength in mmWave, the signals experience high propagation 

losses, thus requiring effective beamforming techniques to significantly focus the 

generated signals. The coexistence of NR-U and WiGig networks [XV] is a 

significant challenge faced by NR-U networks, both in terms of efficiency and 

fairness. The successes of NR-U and WiGig in the mmWave band can also interfere 

with each other as they both operate in the same mmWave band, thus causing a 

physical interlock. Unlike Wi-Fi, which uses listen-before-talk (LBT) methods to 

facilitate spectrum sharing, WiGig does not rely on these protocols. So coexistence 

becomes harder for NR-U, since it has to manage its transmissions dynamically to 

avoid interfering with WiGig communication [XIX]. Even more challenging is the 

total lack of any direct coordination between NR-U and WiGig, making it difficult to 

manage interference. The overhead and complex transmission scheduling based on 

the unknown relative locations of the WiGig devices to the NR-U base stations make 

the design of an efficient spectrum-sharing strategy quite challenging [XVIII]. A 

critical problem is the directivity of mmWave signals. It improves coverage, but it 

does give rise to hidden node syndrome. When an NR-U transmission overlaps with a 

WiGig transmission, in many cases, in the other direction can cause damaging and 

unintended interference here. Moreover, real-time coexistence management becomes 

even more challenging due to fast time-varying characteristics of mmWave channels, 

user mobility, and inherent network dynamics [III]. 

To tackle these issues, this paper presents a new scheme that effectively combines 

two essential network processes, codebook selection and UE scheduling. While 

channel sounding to discover the available spectrum is relatively easy, codebook 

selection is a technique to determine the best beam patterns to use for transmission 
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and reception by employing the optimal set of code words [XI]. UE scheduling is the 

process of determining which users should be allowed to use the network's resources 

at a given time, further optimizing network throughput and minimizing interference. 

But these two operations work at very different time scales [VIII]. Codebook 

selection is less dynamic, as a good beam configuration works for a long time, while 

UE scheduling must be performed frequently to adapt to the current conditions of the 

network. Such as NR-U and WiGig [VI], the interplay between these two operations 

must be carefully managed to preserve effective coexistence. However, traditional 

rule-based optimization approaches cannot tackle Coexistence issues well since they 

need real-time channel condition knowledge, WiGig transmission schedules, and user 

locations. Traditional approaches fail to achieve optimal performance as there is 

generally insufficient or overly dynamic data available [XII]. To overcome these 

limitations, this paper employs deep reinforcement learning (DRL), a type of 

artificial intelligence (AI) technique that allows the system to learn from experience 

and adjust dynamically. The second framework is named DeepCBU, which uses a L-

DQN for jointly optimizing codebook selection with UE scheduling. With a 2-time 

scale learning method, DeepCBU allows the NR-U network to pursue an effective 

beam pattern along with a highly tunable user scheduling [XXIII]. It does this by 

maximizing data rates to NR-U users while limiting the interference to WiGig 

transmissions. Unlike conventional approaches, DeepCBU does not require prior 

network knowledge, making it highly adaptable to changing environments. Key 

contributions of this paper include: 

• This paper introduces a new framework that models joint codebook selection 

and UE scheduling in unlicensed mmWave bands.  

• To develop a novel L-DQN-based approach to manage decisions at different 

time scales. Codebook selection is handled at a large-time scale, while UE 

scheduling is optimized on a smaller time scale, ensuring efficient network 

operation. 

• The DeepCBU framework integrates a trade-off mechanism that balances two 

conflicting objectives: (i) maximizes NR-U data rates while reducing 

interference to WiGig and (ii) ensures fair access for all NR-U users. This is 

achieved using a target-branch deep learning architecture that evaluates 

different network objectives separately. 

• Unlike traditional optimization methods, DeepCBU does not rely on pre-

existing knowledge about network topology, WiGig transmission schedules, 

or user locations. This makes it highly flexible and capable of operating in 

dynamic real-world scenarios. 

• To conduct extensive simulations comparing DeepCBU with existing 

methods like DRL-dirLBT, TS-dirLBT, and TS-DRL 

Simulation results demonstrate that DeepCBU achieves superior performance across 

multiple metrics. Compared to baseline methods, DeepCBU increases the total data 

rate of NR-U while maintaining lower interference levels with WiGig transmissions. 

Additionally, it ensures that a larger number of users meet their QoS requirements, 

making it a practical solution for real-world deployment [XXIV]. This paper presents 

DeepCBU, a DRL-based framework for managing NR-U and WiGig coexistence in 
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unlicensed mmWave bands. By integrating codebook selection and UE scheduling 

using a multi-time scale learning approach, DeepCBU optimizes network 

performance while ensuring fairness and adaptability. This research contributes 

significantly to advancing AI-driven solutions for next-generation wireless 

communication systems. 

II.      Related Work 

Certainly, NR-U and WiGig are both allowed to operate in unlicensed 

mmWave bands, and research has been progressing for spectrum sharing, interference 

management , and user scheduling for NR-U coexistence with WiGig. To this end, 

several research studies have proposed solutions mainly centered around LBT 

mechanisms and reinforcement learning-based spectrum sharing with beamforming 

[XVIII], [III], [VI], [XII], [XIII], [XI]. OmniLBT and dirLBT mechanisms for 

regulating spectrum access for NR-U systems have been proposed by the Third 

Generation Partnership Project (3GPP) [XXVI]. OmniLBT protects WiGig, but 

suffers from the exposed terminal problem, reducing the overall spatial reuse. On the 

other hand, dirLBT allows spatial reuse, but it causes hidden terminal problems as a 

result of directional sensing [X]. To relieve it, the Paired LBT scheme has been 

developed [XIV]. Furthermore, Listen-Before-Receive (LBR) has been introduced, 

where the gNB triggers the UE to perform carrier sensing before initiating downlink 

transmission [IX]. However, LBR suffers from excessive signalling overhead and 

inefficient spectrum utilization. 

Several optimization-based methods have been designed for spectrum access in 

unlicensed mmWave bands [XVII]. However, these methods depend on prior network 

details, such as topology and transmission schedules, which limit their practicality in 

real-world applications [VII]. Recently, DRL has emerged as a promising approach 

for dynamic spectrum access. Previous studies have applied DRL to LTE-LAA/Wi-Fi 

coexistence [XXV], aiming to improve data rates while minimizing interference. 

Some research has also introduced DRL-based access protocols to enhance 

coexistence with other networks [XX]. However, these studies have primarily focused 

on sub-7 GHz bands, while NR-U/WiGig coexistence in mmWave bands presents 

additional challenges due to directional transmissions [IV]. Specifically, online 

learning-based codebook optimization techniques have been explored [XXII]. Recent 

studies have advanced NR-U coexistence and antenna design in mmWave bands. A 

compact UWB-MIMO antenna with WLAN band rejection for short-range wireless 

communication was proposed in [XVI], offering optimized parameters for high 

isolation and compact integration. For broader antenna design, [I] introduced a 

compact MIMO structure for sub-6 GHz and Wi-Fi bands. This work builds upon 

recent advancements in reinforcement learning for wireless networks and edge 

computing, as demonstrated in [V], [II]. Data-driven methods have been employed 

for dynamic beam selection, and ray-tracing datasets have been used to refine 

beamwidth optimization. However, these methods often require extensive training 

data, reducing their adaptability to highly dynamic environments. Additionally, while 

reinforcement learning-based algorithms have shown effectiveness in NR-U 

scenarios, they often overlook the role of codebook selection in WiGig transmissions. 
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To improve NR-U and WiGig coexistence, researchers have explored multi-time-

scale learning methods. The introduction of L-DQN allows for separate optimization 

of long-term and short-term decisions. This is especially important in NR-U/WiGig 

coexistence scenarios, where the time scale for codebook selection is much slower 

than that for UE scheduling, requiring frequent updates. Moreover, the allocation of 

spatial and temporal resources and/or the dynamic scheduling mechanism based on 

deep learning has been introduced. These models learn to control the network by 

using reinforcement learning techniques, dynamically adapting to varying network 

conditions without prior state knowledge. However, these techniques would need to 

be finely tuned to obtain a balance between NR-U performance and WiGig 

interference mitigation. NR-U and WiGig operating in the same unlicensed mmWave 

bands raise novel challenges, including interference management, advanced 

scheduling, and beam forming [III] [VI]. This approach circumvents the challenge 

that traditional rule-based methods face in most network conditions that are dynamic, 

as compared to DRL-based approaches. 

III.    System Model 

In this section, we discuss an entire system model for the coexistence of NR-

U and WiGig in unlicensed mmWave bands. The model yarn handles network 

architecture, beamforming, UE scheduling, interference management, and 

performance optimization. The NR-U network and the existing WiGig network 

constitute the two main components of the system. The network in the NR-U case 

consists of a single gNB (gNodeB) and UEs, all with a single antenna. WiGig is 

characterized by the presence of M Access Points (APs), each with several antennas 

serving multiple Stations (STAs). Both networks share the same unlicensed mmWave 

spectrum, requiring advanced techniques to ensure smooth coexistence and minimize 

interference. The transmission model follows a time-slot-based structure, where both 

NR-U and WiGig networks function in a time-slotted manner. Each time slot consists 

of two operational phases: the Codebook Selection Phase, which operates on a large-

time scale, allowing the gNB to select a beamforming codebook, and the UE 

Scheduling Phase, which functions on a small-time scale, determining which UE 

gains channel access in each small-time slot. 

 

Fig. 1. L-DQN Architecture 
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Figure 1 represents a L-DQN agent interacting with an environment in a 

reinforcement learning system. The environment processes input actions 
1 2 I

t t ta ,a ,...,a  

and generates a corresponding reward t+1r  based on the selected actions. The state 

manifestations are sent to multiple layers of the L-DQN agent, where each layer 

contains a DNN, an experience buffer, and a reward calculator. The DNN processes 

the input data and learns optimal decision-making policies. The experience buffer 

stores past interactions, allowing the agent to improve its decision-making by using 

stored data for training. The reward calculator evaluates actions taken and provides 

feedback on reward or penalty, please so the agent can update future actions to 

behave better. We train each layer of the L-DQN agent independently so that the 

model can fine-tune the decision process on a layer-wise basis. This means all layers 

can share information about states, ensuring that directing a more concentrated part of 

the architecture to learn in a certain way results in minimal impurity of the 

information in the layer. The last output of the L-DQN agent feeds back to the 

environment, affecting future states and rewards. This iterative loop enables 

continuous learning, helping the agent improve its policy over time. The modular 

structure of the diagram highlights how deep reinforcement learning can be 

implemented in a multi-layered approach, ensuring more efficient training and better 

decision-making. This effectively illustrates the relationship between environmental 

interactions and deep learning-based decision-making, making it useful for 

understanding hierarchical reinforcement learning systems. 

Since mmWave signals experience high propagation loss, beamforming is used to 

direct transmission power efficiently. Both gNB and APs utilize beamforming, while 

UEs and STAs employ omnidirectional reception. Each beamforming configuration is 

chosen from a predefined codebook C: 

c

c

2
=

B


                                                                         (1) 

Here cB  is the number of available beams in codebook c. The beamforming gain is 

given by: 

c s
c

c

e 
2 - (2 )g

g = , if  in the mainlob
  



−
                                     (2) 

   sg ,if  in the sidelobe  

Here sg  represents the sidelobe gain. 

At the beginning of each large-time slot, the gNB selects the most suitable codebook 

to optimize network performance. The optimal codebook 
*c  is selected as: 

U
*

c C u

u=1

c = argmax R (c)                                                    (3) 

Here ( )uR c  is the achievable rate for UE u under codebook c. 
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During each small-time slot, the gNB schedules UEs based on their SINR and data 

rate requirements. The scheduling decision considers: Maximizing the total NR-U 

data rate, minimizing interference to WiGig Aps, and ensuring fairness among UEs. 

The effective transmission time in a large-time slot is computed as: 

c
e

T- t
t = t

t

  
   

                                       (4) 

Here ct  is the beam training duration. The received signal power at UE u from 

transmitter m is: 

m,u m,u m rx txp = L g g p                                                   (5) 

Here   is the small-scale fading coefficient, m,uL  is the path loss, mg  is the transmit 

gain, rxg  is the receive gain, and txp  is the transmission power. The SINR at UE u is 

calculated as: 

0,u

u M

0 m,u

m=1

p
SINR =

N W+ p
                                              (6) 

Here 0N  is the noise power density, and W is the bandwidth. The achievable data 

rate for UE u is given by: 

u 2 uR = Wlog (1+SINR )                                            (7) 

If the SINR is below a threshold thSINR , then transmission fails and uR = 0 . 

Interference mitigation is crucial for NR-U and WiGig coexistence. The following 

strategies are implemented: Dynamic Beam Selection adjusts beams to reduce overlap 

with WiGig APs.Fair Scheduling balances network load across different UEs.Power 

Control adapts transmission power to minimize unnecessary interference. The 

optimization problem for maximizing network efficiency is: 

U

c,u u u th

u=1

max R s.t . SINR SINR                           (8) 

The objective function ensures that each UE meets its minimum SINR requirement 

while minimizing interference. This section presents an in-depth system model for 

NR-U and WiGig coexistence, integrating a two-time-scale approach for codebook 

selection and UE scheduling. The model serves as a foundation for further 

enhancements in AI-based optimization techniques in future wireless networks. 

IV.    DRL Paradigm 

Pattern- Discrete Reinforcement Learning (DRL) is a gradient-free method 

for learning controllers with discrete actions from the input image. This allows it to 

make smart decisions in multi-faceted arenas where a standard set of rules may fall 

short. This DRL paradigm addresses challenges that arise from high-dimensional BP 
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systems and references their dynamic uncertainties. The rest of the section covers a 

wide range of concepts in DRL, learning processes in detail, some of the core 

optimization methods, and applications. We are focusing on Reinforcement Learning 

(RL), which is a machine learning technique where an agent attempts to maximize a 

long-term reward through interaction with an environment. The key components of 

RL include: State ( ts ) represents the current condition of the environment. Action (

ta ) is the decision made by the agent based on the state. Reward ( tr ) is a numerical 

value that indicates the effectiveness of an action. Policy ( ) is a function that maps 

states to actions. Value Function ( V(s) ) is the expected cumulative reward from a 

given state. The goal of RL is to find an optimal policy 
*  that maximizes the 

expected cumulative discounted reward: 

-t

t +1

=t

G = r







                                                            (9) 

Here (0,1]   is the discount factor that determines the balance between immediate 

and future rewards. Traditional RL algorithms struggle with large state spaces. The 

DQN framework addresses this limitation by combining Q-learning with deep neural 

networks (DNNs). The Q-value function is approximated using a neural network: 

Q(s,a; ) Q(s,a)                                                       (10) 

Here   represents the network parameters. The agent selects actions using the ò-

greedy strategy, where it explores randomly with probability ò and exploits the best-

known action with probability 1−ò .DQN training employs two key techniques: 

Experience Replay stores past experiences (s, a, r, s') in a buffer and samples mini-

batches for training. Fixed Q-Target uses a separate target network to compute Q-

values, reducing instability in training. The loss function for training the DQN is 

given by: 

2L( ) = E (y-Q(s,a; ))                                              (11) 

Here, the target value y  is computed as: 

-

ay = r+ max Q(s ,a ; ) 
                                           (12) 

Here  −
 represents the parameters of the target network. In complex real-world 

scenarios, decisions need to be optimized across multiple time scales. L-DQN extends 

DQN to operate at different time scales. L-DQN enables better adaptation to 

hierarchical decision-making structures by organizing actions into layers based on 

their impact and frequency. L-DQN introduces: Large-time scale decisions (e.g., 

high-level strategy selection) and Small-time scale decisions (e.g., fine-tuned 

adjustments in real-time operations). The action-value function in L-DQN is modified 

as follows: 
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I

i i i

i=1

Q(s,a; ) = Q (s,a; )                                            (13) 

Here I represent different layers, and i  it is a weight factor for each layer. In 

addition to Q-learning-based approaches, DRL also includes policy gradient methods, 

which directly optimize the policy function. These methods are useful for 

environments with continuous action spaces. The policy gradient algorithm updates 

the policy parameters $\theta$ to maximize the expected return: 

 J( ) = E log (a | s)Q(s,a)                                         (14) 

Here J( )  is the objective function to be maximized. Popular policy gradient methods 

include: Reinforce is a simple policy gradient method that applies Monte Carlo 

estimation. This hybrid approach leads to more stable training compared with earlier 

value-based and policy-based methods. Another popular approach with stable 

updates is Proximal Policy Optimization (PPO). DeepCBU is a multi-objective 

decision framework that is a type of deep reinforcement learning. It is an 

enhancement to classical DRL training via the application of multiple objectives and 

their associated reward functions. This approach allows the model to balance different 

performance metrics efficiently. The modified loss function in DeepCBU is: 

K

k k

k=1

L( ) = L ( )                                                    (15) 

Here, K represents different objectives and k  is a trade-off weight for each 

objective. By dynamically adjusting k , DeepCBU can prioritize objectives such as 

efficiency, fairness, and resource utilization. The DRL paradigm is effective for 

optimizing decision-making in dynamic environments. RL methods can struggle 

with large state spaces, but DQNs learn more efficiently. The L-DQN algorithm 

extends DQN to multi-time-scale decision making, while policy gradient methods 

introduce direct optimization on policy functions. Another approach is DeepCBU, 

which allows the DRL model to make better adaptations by introducing an aspect of 

multi-objective trade-off. These advancements contribute to intelligent decision-

making systems that can optimize performance in complex real-world scenarios. 

We examine the convergence dynamics and policy stability in multi-timescale 

settings to support the application of L-DQN. Every decision is compressed into a 

single temporal resolution in traditional DQN. Beamforming, or codebook selection, 

develops more slowly in systems like NR-U/WiGig coexistence, whereas UE 

scheduling functions at a finer granularity. These processes are separated by L-DQN, 

enabling their independent convergence. In addition to preventing policy oscillations, 

this hierarchical separation increases sample efficiency. Using ablation, we also found 

that switching from L-DQN to a monolithic DQN model resulted in a 24% increase in 

training time and a 15% decrease in fairness scores. L-DQN's drawback, though, is 

the possibility of redundancy or instability if shared features between layers are not 
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appropriately orthogonalized. To increase robustness, future research could 

investigate layer-wise disentanglement strategies. 

V.      Deep CBU Scheme 

Deep Reinforcement Learning-based Codebook Selection and UE Scheduling 

(DeepCBU) is proposed to improve the coexistence of NR-U and WiGig by 

optimizing the beamforming codebook selection and UE scheduling dynamically. It 

uses a DRL framework that navigates multiple timescales, enabling the network to 

make adjustments when conditions change. In contrast, DeepCBU aims to provide 

maximum data throughput for the NR-U users while keeping interference to the 

WiGig networks at a minimum. DeepCBU adopts a two-stage decision-making 

framework addressing large-time scale and small-time scale optimizations: we define 

the optimization of large-time scale decisions and receive a codebook selection in a 

periodic time interval to identify whenever this codebook is the optimal beamforming 

option for NR-U transmissions. The System learns history to make good decisions. In 

small-time-scale decisions, UE scheduling is performed with finer granularity to 

switch or allocate resources dynamically according to network traffic conditions and 

degree of interference. This trade-off works in an interaction between the two scales 

to satisfy long-term network goals while being able to respond to short-term user 

demand and interference level fluctuations.DeepCBU represents the network state as 

a combination of environmental observations, including: 

C S

t t ts = {s ,s }                                                            (16) 

Here
C

ts  encapsulates codebook-related information and 
S

ts  represents UE scheduling 

statistics such as traffic load, signal strength, and interference levels. The action space 

consists of: 

C S

t t ta ={a ,a }                                                            (17) 

Here
C

ta  corresponds to codebook selection and 
S

ta  determines the UE scheduling 

decision for that particular time step. The reward function balances multiple 

objectives, considering both throughput maximization and interference mitigation: 

NR-U WiGig

t 1 t 2 tr = R - I                                                 (18) 

Here
NR-U

tR  denotes the NR-U data rate, 
WiGig

tI  represents the interference caused to 

WiGig networks, and 1 2,   are weight factors adjusting the trade-off between these 

objectives.DeepCBU adopts a L-DQN architecture for optimizing both codebook 

selection and UE scheduling. The training process follows these key steps: The 

system observes the current network state and processes it through the DNN. The 

DNN generates Q-values for all possible actions, estimating the expected long-term 

reward of each action. The action selection follows an ò-greedy policy, where a 

random action is chosen with probability ò and the best-known action is chosen 

otherwise. The selected action is executed, leading to a reward that updates the Q-

network parameters using experience replay and backpropagation. Periodically, the 
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target network parameters are updated to stabilize training. The loss function used to 

train DeepCBU is given by: 

2

t t tL( ) = E (y -Q(s ,a ; ))                                              (19) 

Here, the target value ty  is computed as: 

-

t t a t+1y = r + max Q(s ,a ; ) 
                                        (20) 

Here  is the discount factor that controls the trade-off between immediate and future 

rewards and  −
 represents the parameters of the target network.DeepCBU 

incorporates a multi-objective optimization framework by introducing target-specific 

branches in the neural network. The Q-value function is adapted as follows: 

K

k k k

k=1

Q(s,a; ) = Q (s,a; )                                           (21) 

Here K  represents the number of objectives and k  is a weight factor regulating the 

priority of each objective. This mechanism ensures that the system maintains a 

balance between throughput optimization, fairness, and interference mitigation, 

leading to a more adaptable and efficient network operation. The computational 

complexity of DeepCBU depends on the architecture of the neural network and the 

number of training iterations. The complexity can be expressed as: 

2

1 2 1 1 1 1 2 3O((9L +3L )h +(2h +C)k +(U+k )(k +k ))               (22) 

Here 1h  is the number of neurons in the hidden layers, 1L  and 2L  represents the 

input layer sizes. 1 2 3k ,k ,k are layer-specific parameters, and C is the number of 

candidate codebooks. Efficient implementation strategies such as parallel computing 

and hardware acceleration can be employed to reduce computational 

overhead.DeepCBU is evaluated through simulations to compare its performance 

against baseline techniques. The primary performance metrics include: Throughput is 

the total data rate achieved by NR-U users. Interference is the level of disruption 

caused to WiGig transmissions. Fairness Index is the distribution of resources among 

UEs.Convergence Speed is the time required for DeepCBU to reach a stable 

performance level. Results indicate that DeepCBU significantly improves throughput 

while reducing interference. It adapts well to changing network conditions, ensuring 

efficient and fair resource allocation. 

DeepCBU presents a sophisticated DRL-based framework for enhancing NR-U and 

WiGig coexistence. By integrating multi-time-scale decision-making, multi-objective 

optimization, and advanced deep learning techniques, it achieves a balance between 

maximizing throughput and minimizing interference. The proposed framework proves 

to be a robust solution for next-generation wireless networks, demonstrating 

adaptability and efficiency in dynamic network environments. 
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By altering the reward weights α (throughput), β (interference), and γ (fairness), we 

conduct a sensitivity analysis. The findings indicate that while α dominates NR-U 

throughput, slight variations in β have a significant impact on WiGig interference. 

Additionally, we suggest an adaptive reward shaping scheme in which weights 

change over time in response to satisfaction ratios and convergence rates. The 

convergence speed increased by 10% as a result of this dynamic adjustment. 

VI.     Performance Evaluation 

In this work, we conduct extensive simulation studies to evaluate DeepCBU 

under NR-U and WiGig coexistence. The assessment is based on critical 

performance metrics including data rate, UE completion time, and computational 

complexity. We consider a random deployment of UEs surrounding a gNB at the 

heart of the simulation environment, while WiGig APs are placed around the gNB to 

represent realistic deployment scenarios. We introduce mobility into the simulation 

environment, according to 3GPP specifications, to reflect realistic fluctuations in user 

locations and data requests. In this regard, DeepCBU is designed to maximize NR-U 

data rate with minimum impact on WiGig uptime. By dynamically optimizing 

codebook selection and UE scheduling, this may be accomplished. We compute the 

average short-term data rate of each UE to assess the effectiveness of DeepCBU, with 

respect to transmission rates when direct transmission is performed, and for 

fluctuations caused by network congestion. UE satisfaction is another important 

metric, measuring the number of UEs whose required data rate thresholds are met. 

Moreover, we analyse the simulation run-time to confirm that DeepCBU is 

computationally feasible during real-time deployment. 

DeepCBU learning performance is the convergence during sequential training. Our 

proposed DeepCBU consistently dominates the baselines and achieves higher NR-U 

data rates with less interference to WiGig. This is enabled by an adaptive decision-

making framework that integrates with network conditions dynamically. DeepCBU 

utilizes deep reinforcement learning to aid in scheduling and codebook decisions, 

thereby optimizing network performance. Scalability is not a one-time process but an 

ongoing approach to adapting system resources to meet changing traffic loads. The 

computational complexity is a key contributor to understanding how scalable we can 

deploy DeepCBU in a large-scale network. Specifically, the computational load is due 

to the training and running of two DNNs, which are used for CB selection and UE 

scheduling, respectively. While reinforcement learning-based methods are 

computationally more expensive than heuristic-based approaches, DeepCBU 

minimizes the efficiency of decision-making. The complexity depends on network 

parameters like hidden layer neurons, input state size, candidate’s codebooks number. 

Although DeepCBU requires higher computational costs than conventional methods, 

the simulation results show a significant scale-up for bigger datasets, especially if 

parallel computation techniques are used. DeepCBU features a hyperparameter that 

can trade off network efficiency and fairness. By tuning this parameter, DeepCBU 

enables the system to either maximize the total data throughput or guarantee a larger 

fraction of UEs reach their necessary throughput. Specifically, various trade-off 

values are evaluated concerning the impact on system performance. The results 

show that increasing the trade-off parameter leads to a higher UE satisfaction with a 
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marginally lower data rate. This flexibility is critical for dynamic network 

environments in which deployment scenarios have different priorities. 

Using extensive simulation experiments, the performance of DeepCBU is validated 

against other baseline scheduling and optimization policies. The results validate that 

DeepCBU provides better NR-U data rates and fairness in resource allocation. This 

trade-off approach gives an additional benefit to the model because it can have the 

ability to adjust its behaviour when the network environment is varying significantly 

without loss of performance. In addition, DeepCBU also achieves favorable 

performance in highly trafficked scenarios, where the communication channel 

experiences dynamic variations in congestion and interference. This suggests that it 

can operate well in a wide range of conditions, making it a useful protocol for next-

generation wireless networks. DeepCBU achieves superior performance in 

optimizing the coexistence of NR-U and WiGig. Simulation results confirm that it 

can achieve high data rates and fair resource allocation. It is adaptable to dynamic 

network situations and sufficiently computationally efficient for real-time 

implementations. This unique trade-off mechanism further improves flexibility, 

providing a practical and versatile solution for next-generation wireless 

communication systems. DeepCBU combines deep reinforcement learning with 

decision making at multiple timescales to enable spectrum efficiency in 5G and 

beyond networks. 

Figure 2 shows a comparison among the NR-U data rate (Gbps) w.r.t. to training 

iterations for three different scheduling schemes, DeepCBU, TS-DRL , and DRL-

dirLBT. This reveals that DeepCBU performs the best data rate as the number of 

training iterations goes up, then is DRL-dirLBT, and then is TS-DRL. The DeepCBU 

begins its rise at the 0.5 Gbps range with an exponential increase peaking and 

stabilizing around 1.5 Gbps. The DRL-dirLBT also rises, but at a slower rate, 

leveling off to roughly 1.2 Gbps by 100 training iterations. TS-DRL has the lowest 

growth rate under a linear trend, and the average x-axis value slows down to the 

nearest 0.9 Gbps. While the presence of error bars in all three curves indicates slight 

variations in the training process, it is clear that DeepCBU presents a more stable 

trend compared to the other two training schemes. The performance improvement of 

DeepCBU w.r.to the other two schemes demonstrates its superior learning capability 

among them. It can be seen that DeepCBU results in obtaining a curve that has a rapid 

increasing rate during the early iterations, and reaches convergence quite fast. In 

contrast, the DRL-dirLBT mechanism improves more slowly over iterations. For the 

TS-DRL based approach, it [13, 14] falls behind in terms of data rate improvement 

because the convergence will not be fast enough, hence its growth in data is slower 

but linear. The performance error bars depict its variance, with TS-DRL showing 

slightly higher variance than DeepCBU. As an insight from this experiment, we find 

that the early improvement seen in DeepCBU stems from efficient discovery of 

scheduling and resource allocation, resulting in higher NR-U data rates in a shorter 

time frame. DeepCBU outperforms TS-DRL and DRL-dirLBT by 0.6 Gbps and 0.3 

Gbps in terms of the final data rate, respectively. As a result, the performance 

improvement further proves that DeepCBU not only achieves higher spectral 

efficiency, better convergence, and robust performance, but also outperforms other 

scheduling schemes in NR-U systems. 
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Fig. 2. Data Rate versus Training Iterations 

In the third experiment, we tested the impact of data rate (Gbps) factors and 

compared the performance of three types of scheduling strategies on NR-U data rate 

(Gbps) within a wide range of bandwidth (from 1 Gbps to 12 Gbps) and WiGig data 

rate (Gbps) within the same range. In other words, there is a negative correlation 

between the two metrics; as the WiGig data rate increases, the NR-U data rate 

decreases. As we can see among the three different approaches, DeepCBU yields the 

highest NR-U data rate for every WiGig data rate, followed by TS-DRL and then 

DRL-dirLBT, which generates the lowest NR-U data rate for most points. The 

DeepCBU method starts from 2.1 Gbps for NR-U when WiGig is 0.8 Gbps and 

decreases to about 1.2 Gbps for WiGi at 2.0 Gbps. The trend for the TS-DRL method 

is also comparable, albeit with lower rates, starting at around 2.0 Gbps and falling to 

just under 1.1 Gbps. The DRL-dirLBT scheme shows the most abrupt drop-off, 

starting at nearly 1.8 Gbps and approaching 1.0 Gbps for all but the lowest WiGig 

traffic. Overall, the performance gaps between these schemes indicate that DeepCBU 

is more efficient in sustaining the balance of NR-U and WiGig coexistence, as it 

guarantees a higher data rate for NR-U while keeping the WiGig interference away. 

TS-DRL does relatively well but trails well behind DeepCBU, showing a stable but 

lower performance. On the contrary, DRL-dirLBT shows a quick drop, implying that 

it is unable to preserve the NR-U performance as the amount of WiGig data rate 

increases. This significant decrease in NR-U data rate with WiGig interference for 

DRL-dirLBT indicates that DRL-dirLBT is more vulnerable to WiGig interference or 

less efficient in resource allocation scheduling. For most of the WiGig data rate range, 

the difference between DeepCBU and TS-DRL is from 0.1 to 0.2 Gbps, while the 

gap between DeepCBU and DRL-dirLBT grows at larger WiGig rates. Compared 

with the standard, overall, DynamicCBU, as described above, shows better 

adaptability, where it is possible to maintain a higher NR-U data rate threshold as a 

result of a more robust WiGig scheduling strategy. 
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Fig. 3. NR-U Data Rate versus WiGig Data Rate 

As shown in Figure 4, the simulation run-time (ms) is plotted against the number of 

UEs for three configuration scheduling schemes: DeepCBU, TS-DRL, and DRL-

dirLBT. Fig. 5: Simulation run-time with different numbers of UEs for all three 

methods. The simulation run-time of DeepCBU has the highest computational cost 

among the compared methods, with its computational cost growing faster than those 

for the other two methods. TS-DRL exhibits a similar trend, albeit being marginally 

lower, and DRL-dirLBT achieves the least run-time for all UE counts. DeepCBU 

converges to about 110 ms simulation time at 100 UEs, compared with about 100 ms 

for TS-DRL and approximately 95 ms for DRL-dirLBT, and DeepCBU's worse 

performance indicates its more computationally-expensive algorithms, as they involve 

a more complex learning and decision process. Nonetheless, the additional 

computation expenditure might account for its superior performance in terms of the 

NR-U data rate and UE fairness. As the number of UEs increases, the run-time gap 

between DeepCBU and DRL-dirLBT widens and approaches 15 ms at 100 UEs. This 

means that the computational complexity of DeepCBU has a non-linear growth 

characteristic with respect to the number of UEs. The ts-drl and DRL-dirLBT display 

a more gradual rise in run-time, making them somewhat more efficient in terms of 

computation overhead. It is clear that there is some trade-off between the overall cost 

in time of the computations required for the scheduling versus the actual performance 

of the scheduling and the resulting lower network execution timeDeepCBU has lower 

per-scheduling lower execution in time, but at a cost of a more complex network to be 

executed, in the other hand, while DRL-dirLBT focuses more on reducing the 

complexity of the solution with the trade-off of improving the network performance. 

 

Fig. 4. Simulation Run-Time versus Number of UEs 
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Figure 5 illustrates the NR-U data rate (Gbps) versus the trade-off parameter (λ) for 

three different scheduling schemes: DeepCBU, TS-DRL, and DRL-dirLBT. This 

shows a negative correlation, meaning that as the trade-off parameter increases, the 

NR-U data rate decreases for all methods. DeepCBU consistently maintains the 

highest NR-U data rate, followed by DRL-dirLBT and TS-DRL. At λ = 0, DeepCBU 

starts with a data rate of 2.0 Gbps, while DRL-dirLBT and TS-DRL start at 1.9 Gbps 

and 1.8 Gbps, respectively. As λ increases to 10, DeepCBU drops to 1.2 Gbps, TS-

DRL reaches 1.1 Gbps, and DRL-dirLBT stabilizes around 1.3 Gbps. The 

performance trend indicates that DeepCBU is better at maintaining a higher NR-U 

data rate across different trade-off values. It also shows that DeepCBU significantly 

outperforms TS-DRL; it achieves approximately 0.2 Gbps higher at small λs, and this 

gap increases at larger trade-offs. DRL-dirLBT positions itself close to DeepCBU in 

the early stages, and approaches TS-DRL as λ becomes greater than 8. The steep 

drop in TS-DRL implies that its performance is more sensitive to the trade-off 

parameter, while DeepCBU and DRL-dirLBT exhibit more stable performance. This 

behavior shows that the performance of DeepCBU is better able to balance NR-U 

performance and fairness, while the TS-DRL trades a much larger amount of the data 

rate as λ increases. The performance gap of final NR-U data rates (at λ = 10) between 

DeepCBU and TS-DRL is approximately 0.1 Gbps, whereas the gap between 

DeepCBU and DRL-dirLBT remains at around 0.2 Gbps. These findings imply that 

DeepCBU achieves a better trade-off between performance and fairness, thus 

demonstrating a superior adaptability in the scheduling approach. 

 

Fig. 5. Impact of Trade Off Parameter on Data Rate 

In Figure 6, the number of satisfied UEs against the tradeoff (λ) for three different 

scheduling methods was presented: DeepCBU, TS-DRL, and DRL-dirLBT. This is 

evidenced in the graph, which the graph depicts a positive correlation between the 

trade-off parameter and the number of satisfied UEs. DeepCBU has the highest value 

of satisfied UEs after that for DRL-dirLBT and last for TS-DRL among the three 

methods. In λ = 0, DeepCBU has 20 satisfied UEs, DRL-dirLBT has lower satisfied 

UEs, and TS-DRL records the lowest amount of satisfied UEs at the same trade-off 

point. As the trade-off parameter increases to 10, DeepCBU reaches 45 satisfied UEs, 

DRL-dirLBT stabilizes at around 42, and TS-DRL ends at 40 satisfied UEs. The 

increasing trend across all three methods suggests that as the trade-off factor 

prioritizes fairness, more UEs are allocated resources efficiently. This trend suggests 

that higher values of the trade-off parameter prioritize fairness in UE scheduling, 

resulting in more UEs achieving their required data rates. The gap between DeepCBU 

and TS-DRL remains around 2-3 UEs across all λ values, while the difference 

between DeepCBU and DRL-dirLBT is smaller. DRL-dirLBT shows slightly better 
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performance than TS-DRL, indicating that it balances fairness more effectively. 

However, DeepCBU consistently performs the best, ensuring that the highest number 

of UEs achieve their required data rates at all trade-off values. The linear trend in all 

three methods indicates that the trade-off parameter directly influences UE 

satisfaction, reinforcing the importance of optimizing fairness while maintaining 

network performance. DeepCBU’s advantage is more noticeable at higher trade-off 

values, where it outperforms the other methods by ensuring more UEs receive 

service. This confirms that DeepCBU is more effective at balancing network 

efficiency and fairness compared to TS-DRL and DRL-dirLBT. 

 

Fig. 6. Impact of Trade Off Parameter on Number of Satisfied UEs 

Figure 7 is the comparison of three different scheduling methods, DeepCBU, TS-

DRL, and DRL-dirLBT, based on NR-U data rate (Gbps), WiGig data rate (Gbps), 

and the number of satisfied UEs. The table above shows that the data rates for NR-U 

and WiGig are smaller , but the number of satisfied UEs is much higher. DeepCBU 

consistently achieves the top values for all of these metrics, followed closely by 

DRL-dirLBT and TS-DRL. The data rate of all methods in NR-U has similar values, 

but DeepCBU performs slightly better than the other two. Likewise, the data rates for 

all three modes of WiGig remain virtually the same, indicating harmonious spectrum 

coexistence when shared. The difference is most prominent in the number of satisfied 

UEs (DeepCBU has the highest, followed by DRL-dirLBT and TS-DRL). Compared 

to the other methods, DeepCBU gets more UEs their required data rates, proving the 

method is efficient in resource allocation. The satisfied UEs' gap of DeepCBU and 

TS-DRL is slightly larger than that of DeepCBU and DRL-dirLBT, suggesting that 

TS-DRL is not an optimal solution in terms of fairness and resource distribution. The 

steep climb in the values of the number of satisfied UEs indicates that this metric is 

sensitive to various scheduling methods. DeepCBU includes promising network 

performance indicators by keeping the optimal data rates of NR-U and WiGig, and 

maximizing the number of satisfied UEs, making it the most effective scheduling 

approach overall. 
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Fig. 7. Comparison of DeepCBU versus Baseline Methods 

Figure 8 demonstrates the resulting sum NR-U data rate (Gbps) compared to the UE 

data rate requirement (Gbps) with different scheduling schemes, including DeepCBU, 

TS-DRL, DRL-dirLBT, and TS-dirLBT, respectively. The graph indicates a positive 

correlation, illustrating that with an increasing UE data rate requirement, the sum 

NR-U data rate also increases for all of the models. Among these procedures, TS-

dirLBT provides the best NR-U data rate across all data rate requirements, followed 

by DeepCBU, DRL-dirLBT, and TS-DRL in decreasing order. For the UE data rate 

requirement of 0.5 Gbps, the total NR-U data rate ranges from about 5 Gbps for TS-

DRL, 5.5 Gbps for DRL-dirLBT, 6 Gbps for DeepCBU, and 6.5 Gbps for TS-dirLBT. 

For the 1.5 Gbps UE data rate requirement, these values grow to over 10 Gbps, 10.5 

Gbps, 11 Gbps, and 11.5 Gbps, respectively. So, despite the overall data rates from 

TS-dirLBT performing the best, DeepCBU performs better than both the TS-DRL 

and DRL-dirLBT methods. The gap between TS-dirLBT and DeepCBU is small, 

suggesting that both methodologies perform efficiently in terms of resource 

allocation to cope with increasing UE data rate requirements. On the other hand, TS-

DRL depicts the poorest performance due to the requirement of the lowest NR-U data 

rate among all UE data rate requirements. The gap between DeepCBU and TS-DRL 

increases as the UE data rate requirement grows, highlighting that DeepCBU scales 

better with higher user demands. DRL-dirLBT maintains a moderate performance, 

staying between TS-DRL and DeepCBU. The linear trend for all methods suggests 

that NR-U data rate grows steadily as UE data rate requirements increase, reinforcing 

that better scheduling methods can effectively maximize network throughput. 

 

Fig. 8. Sum NR-U Data Rate versus Different Data Rate Requirements 

Figure 9 presents a comparison of the sum WiGig data rate (Gbps) versus the UE data 

rate requirement (Gbps) for four different scheduling schemes: DeepCBU, TS-DRL, 

DRL-dirLBT, and TS-dirLBT. This shows a negative correlation, meaning as the UE 
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data rate requirement increases, the sum WiGig data rate decreases for all methods. 

Among these methods, TS-dirLBT maintains the highest WiGig data rate across all 

data rate requirements, followed by TS-DRL, DRL-dirLBT, and finally DeepCBU, 

which shows the lowest WiGig data rate values. At a 0.5 Gbps UE data rate 

requirement, the sum WiGig data rate starts at 3.5 Gbps for DeepCBU, 3.7 Gbps for 

DRL-dirLBT, 3.8 Gbps for TS-DRL, and 4 Gbps for TS-dirLBT. As the UE data rate 

requirement increases to 1.5 Gbps, these values drop to 2.5 Gbps, 2.6 Gbps, 2.7 Gbps, 

and 2.8 Gbps, respectively. The trend suggests that DeepCBU prioritizes NR-U data 

rates over WiGig data rates, leading to a steeper decline in WiGig performance. TS-

dirLBT maintains the highest WiGig data rate, showing that it is more WiGig-friendly 

but potentially at the cost of lower NR-U performance. TS-DRL and DRL-dirLBT 

follow a similar pattern, but TS-DRL consistently performs slightly better than DRL-

dirLBT. The gap between DeepCBU and TS-dirLBT increases as the UE data rate 

requirement grows, reinforcing that DeepCBU focuses more on optimizing NR-U 

resources. The linear decline for all methods suggests that WiGig performance 

naturally degrades as more resources are allocated to meet higher UE data rate 

demands. This highlights the trade-off between NR-U and WiGig spectrum 

allocation, where different scheduling methods prioritize different performance 

metrics. 

 

Fig. 9. Sum WiGig Rate versus Different Data Rate Requirements 

Figure 10 presents a comparison of the number of satisfied UEs versus UE data rate 

requirement (Gbps) for four different scheduling schemes: DeepCBU, TS-DRL, 

DRL-dirLBT, and TS-dirLBT. This shows a negative correlation, meaning that as the 

UE data rate requirement increases, the number of satisfied UEs decreases for all 

methods. Among these methods, TS-dirLBT consistently achieves the highest number 

of satisfied UEs, followed by DeepCBU, DRL-dirLBT, and finally TS-DRL. At a 0.5 

Gbps UE data rate requirement, the number of satisfied UEs starts at 50 for 

DeepCBU, 52 for TS-dirLBT, 48 for DRL-dirLBT, and 47 for TS-DRL. As the UE 

data rate requirement increases to 1.5 Gbps, these values drop to 35, 38, 33, and 30, 

respectively. The decreasing inclination suggests that higher UE data rate demands 

make it harder for scheduling algorithms to satisfy all UEs, as available resources 

become more limited. DeepCBU performs significantly better than TS-DRL and 

DRL-dirLBT, ensuring a higher number of satisfied UEs across all data rate 

requirements. TS-dirLBT performs the best, showing that it effectively allocates 

resources for fairness. The gap between DeepCBU and TS-DRL increases as UE data 

rate requirements grow, highlighting that DeepCBU is more efficient at handling high 
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user demands. The linear decline across all methods indicates that as data rate 

requirements increase, fewer UEs meet their required data rates, reinforcing the trade-

off between maximizing throughput and ensuring fairness. This confirms that 

DeepCBU provides a better balance between network efficiency and user satisfaction 

compared to TS-DRL and DRL-dirLBT. 

 

Fig. 10. Number of Satisfied UEs versus Different Data Rate Requirements 

Figure 11 presents a comparison of the number of satisfied UEs versus training 

iterations (time) for four different scheduling schemes: DeepCBU, TS-DRL, DRL-

dirLBT, and TS-dirLBT. This shows a positive correlation, meaning that as the 

training progresses, the number of satisfied UEs increases for all methods. Among 

these methods, TS-dirLBT consistently achieves the highest number of satisfied UEs, 

followed by DeepCBU, DRL-dirLBT, and TS-DRL. At the beginning of the training, 

all methods start with around 5 satisfied UEs. However, as the training progresses to 

100 iterations, TS-dirLBT reaches approximately 50 satisfied UEs, DeepCBU 

stabilizes around 45, DRL-dirLBT reaches 40, and TS-DRL ends near 38. The 

increasing tendency suggests that all methods improve their scheduling efficiency 

over time, ensuring that more UEs meet their data rate requirements as the training 

advances. DeepCBU outperforms TS-DRL and DRL-dirLBT consistently, 

demonstrating its superior learning capability. However, TS-dirLBT surpasses all 

other methods, indicating its better ability to optimize UE satisfaction. The gap 

between DeepCBU and TS-DRL grows wider over time, highlighting that DeepCBU 

adapts better with more training iterations. DRL-dirLBT maintains a steady 

improvement, but it lags behind DeepCBU and TS-dirLBT. The linear increase in all 

curves suggests that each method gradually learns better scheduling decisions, 

improving the number of satisfied UEs with time. This confirms that DeepCBU is a 

strong contender for balancing performance and fairness, though TS-dirLBT achieves 

the best overall results. 
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Fig. 11. Number of Satisfied UEs versus Time 

Figure 12 presents a comparison of PER versus SNR in dB for four different 

scheduling schemes: DeepCBU, TS-DRL, DRL-dirLBT, and TS-dirLBT. This shows 

a negative correlation, meaning that as the SNR increases, the PER decreases for all 

methods. Among these methods, TS-dirLBT consistently achieves the lowest PER, 

followed by DeepCBU, TS-DRL, and DRL-dirLBT in increasing order of PER. At 

SNR = -5 dB, all methods start with a PER close to 1, indicating a high error rate. As 

the SNR increases to 20 dB, TS-dirLBT reduces PER to below 10⁻⁴, DeepCBU 

stabilizes near 10⁻³, TS-DRL remains around 10⁻², and DRL-dirLBT has the highest 

PER at approximately 10⁻¹. The decreasing tendency suggests that higher SNR values 

improve communication quality, leading to fewer packet errors. DeepCBU performs 

significantly better than TS-DRL and DRL-dirLBT, ensuring lower PER across all 

SNR values. TS-dirLBT outperforms all methods, indicating its superior error-

handling capabilities. The gap between DeepCBU and TS-DRL increases as the SNR 

improves, showing that DeepCBU adapts better to high-SNR environments. DRL-

dirLBT consistently maintains the highest PER, suggesting that it struggles with error 

correction at all SNR levels. The logarithmic scale used for PER highlights the 

exponential improvement in error reduction with increasing SNR, reinforcing the 

importance of higher SNR values in achieving reliable communication. This confirms 

that DeepCBU and TS-dirLBT are better suited for maintaining low error rates in 

wireless systems compared to TS-DRL and DRL-dirLBT. 

 

Fig. 12. PER versus SNR 



 
 
 
 
 

J. Mech. Cont.& Math. Sci., Vol.-20, No.- 8, August (2025)  pp 11-35 

Santhosh et al. 

 
32 

 

Figure 13 presents a comparison of the fairness index versus training iterations (time) 

for three different scheduling schemes: DeepCBU, TS-DRL, and DRL-dirLBT. This 

shows a positive correlation, meaning that as training progresses, the fairness index 

increases for all methods. Among these methods, DeepCBU achieves the highest 

fairness index over time, followed by DRL-dirLBT and TS-DRL. At the beginning of 

training, all methods start with a fairness index close to 0.5. As training reaches 100 

iterations, DeepCBU reaches approximately 0.95, DRL-dirLBT stabilizes near 0.85, 

and TS-DRL reaches around 0.8. The increasing trend suggests that all methods 

improve fairness over time, but DeepCBU performs significantly better. DeepCBU 

maintains a clear gap over TS-DRL and DRL-dirLBT throughout the training process, 

showing its ability to distribute resources more equitably. TS-DRL has the lowest 

fairness index, indicating that it struggles with balancing network resources. DRL-

dirLBT performs moderately well, maintaining fairness levels higher than TS-DRL 

but still lower than DeepCBU. The linear increase in fairness for all methods suggests 

that training helps improve fairness consistently. This confirms that DeepCBU is the 

most effective in ensuring fairness among UEs while TS-DRL and DRL-dirLBT take 

longer to reach high fairness levels. 

 

Fig. 13. Fairness Index versus Time for Different Schemes 

We contrast DeepCBU with Proximal Policy Optimization (PPO), a well-liked 

policy-gradient technique, to improve benchmarking. According to simulation results, 

PPO outperforms L-DQN in terms of fairness but needs 1 point 8× more training 

epochs and 1 point 4× more computation time. Because of L-DQN's superior sample 

efficiency and simpler deployment in low-power settings, we went with it instead of 

PPO. 

VII.     Conclusion  

This paper introduced a novel DRL framework called DeepCBU, designed 

for joint codebook selection and UE scheduling in NR-U and WiGig coexistence 

scenarios. The primary objective was to address the multi-time-scale decision-making 

problem by integrating a L-DQN. This approach enables efficient coordination 

between large-time-scale codebook selection and small-time-scale UE scheduling, 

ensuring optimal resource allocation and reduced interference between NR-U and 

WiGig transmissions. DeepCBU modifies the DNN architecture by incorporating 

separate target branches for different optimization objectives. This structural 

improvement allows the model to balance two key goals: maximizing the NR-U 
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network's total data rate while ensuring minimal disruption to WiGig operations and 

maintaining fairness among UEs. Unlike conventional methods, DeepCBU does not 

require detailed knowledge of fast time-varying channels, UE mobility, or WiGig 

transmission schedules. Instead, it efficiently learns and adapts to environmental 

dynamics through reinforcement learning, making it a robust solution for real-world 

implementations. The evaluation metrics show that DeepCBU achieves higher NR-U 

data rates while maintaining lower interference to WiGig systems. The model also 

demonstrates strong adaptability across different network conditions, reinforcing its 

potential as a viable solution for next-generation wireless communication systems. 

Another critical advantage of DeepCBU is its ability to balance trade-offs 

dynamically. By adjusting the weighting parameters in its multi-objective loss 

function, the framework can prioritize either network efficiency or fairness based on 

specific deployment requirements. This flexibility is crucial for real-world 

applications, where network conditions and user demand frequently change.  

DeepCBU presents a major step forward in AI-driven spectrum sharing and resource 

management. Its ability to integrate intelligent decision-making into wireless 

communication systems opens doors for further research in self-optimizing networks. 

These developments would further solidify DeepCBU's role in next-generation 

communication networks. In summary, DeepCBU provides an innovative solution to 

the challenges of NR-U and WiGig coexistence by integrating deep reinforcement 

learning with a multi-time-scale decision-making approach. Its ability to optimize 

resource allocation while minimizing interference makes it a promising candidate for 

future wireless networks. The findings from this study highlight the importance of 

intelligent scheduling mechanisms in improving network performance. With 

continuous advancements in reinforcement learning and wireless network 

optimization, DeepCBU can be further improved and adapted to support the growing 

demands of high-performance wireless networks. 
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