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Abstract 

        This article presents a state of the art of the author's works on problems of 

energy in structures with thermal and chemical potentials. The theoretical 

considerations are conducted to present the energy equations in such a structure. The 

thermodynamics state equations are given. 
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I.   Introduction 

       The analysis of the effects of thermal diffusion in solids is important because of 

its significance for material properties [I]. A thermomechanical model for the equation 

of energy in a structure with thermal and chemical potentials is presented. This model 

is based on the author's theoretical investigations of this problem [II-IV]. A general 

form of the energy balance law incorporating chemical diffusion and present 

associated dissipation conditions and state equations is derived. The 

explanation of the issue that inspired this theoretical investigation is that 

chemical potentials influence materials properties as well as the energy 

equation. 

In the author's model, the analysis is conducted to determine the effects considering 

gradients in chemical concentration, in composition, in stress, and temperature. There 

is no specific experimental verification of the model presented, but numerical results 

from one of the author’s previous works (e.g., [II] ) show how the framework was 

applied to welding and diffusion problems. The potential future applications of the 

theory can be, for instance, in additive manufacturing, thermal barrier coatings, or 

reactive transport in porous media.  Some diagrams showing how the state variables, 

i.e., temperature, composition, and strain, relate to material parameters can be found in 

[II].  
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II.   Energy equation  
 

The physical interpretations and derivations for each introduced here, the 

quantity can be found in textbook (see [V] for instance). We use the standard 

notations in the paper for the variables considered. 

From the first law of thermodynamics  and the  kinetic  energy theorem, we obtain the  

relation  as to the internal energy variation de during the time interval dt  as 

    ( ) q
ε

uv divr
dt

d
edivediv

dt

de
c −++−=+                                                 (1) 

where  is the domain considered,   is the stress tensor,  is the strain tensor, q is the 

heat flow vector, and r represents the volume rate density of the heat provided to the 

domain , ec is the internal chemical potential energy, v is the material velocity, and u 

is the diffusion velocity. The total entropy s reads   
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Where sc is the entropy of the diffusing material. 

Since the volume integral must be non-negative for any subsystem . 

  ( ) 0
T

r

T
divsdivsdiv
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c −+++

q
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where T is the absolute temperature. 

The above equality, throughout the  multiplication it by d,  becomes  

  ( ) ( ) 0d
T

r
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What gives the second law for the elementary material system  

Let c be the free enthalpy of the chemical potential defined by 

  ccc Tse −=                                                     (5) 

where sc is the entropy of chemical potential. 

Let  be the free volume energy defined by  

  Tse −=                                                             (6)  

By (4), we have 
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  ( ) 0gradT
T

ψdivgradTsψdiv
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dψ
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dT
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ε
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and using the identity 

  ( ) uuu divgraddiv ccc +=                                                       (8) 

we get 

   0gradT
T

gradTsgradψψdiv
dt

dψ

dt

dT
sdivψ
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d
ccc −+−−−−−

q
uvu

ε
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Eq. (9) is the fundamental inequality extended to thermal and chemical phenomena. 

    We denote by  the left-hand side of inequality (9), which is the dissipation per 

unit initial volume d. 

The second law requires the dissipation  and the associated internal entropy 

production /T to be non-negative 

  0321 ++=                               (10) 

where  

  vu div
dt

d

dt

dT
sdiv

dt

d
c1 −


−−−=


                (11) 

is the intrinsic volume dissipation described in small deformation theory  

  gradT
T

2 −=
q

       (12) 

   gradTsgrad cc3 +−= u       (13) 

where 2 is the thermal dissipation associated with heat conduction and dissipation 

associated with mass transfer.  

If we define m = 1 + 3, then the energy equation (1) can be rewritten as 

 ( ) mc divrusdivsdiv
dt

ds
T +−=








++ qv                 (14) 

Assume that free energy is a function of variables T, ij, C,, where T denotes 

temperature, C  concentration, and ij strain components. Assume that the hardening 

state is characterized by an internal variable   These variables are a set of state 

variables which characterize the state of the system. If grad T = u = 0, the non-

negativeness of intrinsic dissipation 1 is derived independently of the non-

negativeness of total dissipation  
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The above results from the second law. 

From the intrinsic dissipation (15), we obtain 
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where 
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Then the non-negativeness of the intrinsic dissipation gives 
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The above equations yield the symmetry relations 
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The thermodynamic states of a material are characterized by external variables T, ij, 

C, and internal variables 
p

ij   plastic strain and . 

We have 

 ( ),,,, p

iji j = CT                               (20)  

on account of the local state postulate. The variables appearing in the bracket are a set 

of state variables that characterize the state of an open system. 

The state equations read  
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The above equations are based on the normality of external variables T, ij and C with 

regard to the whole set of state variables. 

The expression of free energy   with respect to variables T, ij, C, and 
p

ij  can be 

presented as  
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where  = T – To and U() is the frozen energy due to hardening, c is the volume heat 

capacity, A, B, C and M are material parameters. The thermomechanical state 

equations  are 
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              (21) 

III.    Conclusion 

  This paper shows the state of the art for thermal and chemical problems in 

structure determining the combined effects of gradients in interstitial concentration, in 

solvent composition, in stress, and temperature. These results are based on the author's 

works. There is no specific experimental verification of the model carried out by the 

author, but numerical results are provided from one of the author’s previous works 

(e.g., [II] ) showing how the framework was applied to welding and diffusion problems. 

The potential future applications of the theory presented here can be applied in the 

analysis of additive manufacturing, thermal barrier coatings, and reactive transport in 

porous media, for instance. 
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