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Abstract 

In this work, we provide a set of enhanced fixed-point theorems over Banach 

spaces with normal cones in the context of G-cone metric spaces. Our results extend 

and generalize existing theorems by incorporating φ-contractive mappings and 

perturbation functions within the contractive conditions. Specifically, we propose new 

fixed-point theorems using φ-difference type conditions, auxiliary control functions, 

and jointly lower semi-continuous metrics. We present illustrative instances to confirm 

that the theorems are applicable. The results obtained improve classical fixed-point 

theorems and offer broader applicability in nonlinear analysis. We also demonstrate 

the applicability of the developed theorems to fractional differential equations. 

Keywords: Cauchy sequence, completeness, uniqueness, Fixed point, G-cone metric 

space, φ-contraction, Normal cone, Perturbation function. 
 

I.   Introduction 

Fixed point theory is a fundamental subject in nonlinear analysis, and it applies to 

various nonlinear phenomena in differential and integral equations as well as 

differential inclusion. The classical Banach contraction principle has been generalized 

to various other structures. An important extension was the cone metric spaces 

introduced by Huang and Zhang[2007], but based on cone metric spaces, we develop 

the fixed point’s theorems in partially ordered Banach spaces with conical structure. 

This formalism was the antecedent of successive developments removing classical 

metric assumptions. Rezapour and Haghi [2008] developed the theory by relaxing the 

normality assumption of cones and considering topological consistency for fixed 

points. There are other developments in this circle, where the usage metric structures 

in a modified form. Rao et al. [2024] proved the fixed point results in modified b-metric 

spaces, and Huang and Xu [2013] generalized the contractive maps in cone b-metric 

spaces. Algebraic generalization has also given the tools to the fixed point theory. 

Fernandez et al. [2022] provided the results provided an earlier paper for extended cone 
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b-metric-like spaces over Banach algebras. By the same token, Rashwan et al. [2024] 

also investigated ψ-contractions in cone metric spaces under a Banach algebras setting 

and derived applications to nonlinear equations. These endeavours have augmented the 

class of allowable mappings and range spaces (in particular, in algebraically structured 

surroundings). Partially ordered metric spaces have also been studied in a big way. 

Amini-Harandi and Emami [2010] obtained fixed point theorems in these spaces, 

which have applications to the existence of solutions to ordinary differential equations. 

The interpolative as well as simulation-based contraction methods have recently also 

attracted some spotlight. Karapınar et al. [2021] proposed(𝛼, 𝛽, 𝜓, 𝜙) interpolative 

contractions, whereas Fulga et al. [2021] and Afshari et al. [2016] considered quasi-

cone metric spaces and multivalued contractions. These methods introduce more 

flexibility for contraction requirements and generalize the classical settings. Despite all 

these developments, many of the current results are based on some strong assumptions 

like cone normality, convexity, or algebraic completeness. Inspired by this, we 

establish new fixed point results in the wider frame of G-cone metric spaces in this 

paper. The cone normality and strong cone contractiveness are dropped by considering 

𝜑-type contractive conditions in combination with auxiliary perturbation functions and 

lower semi-continuity properties. Our proposed framework offers a broad 

generalization of several influential results: 

A. It builds upon cone metric foundations without reiterating strict cone 

properties; 

B. It strengthens the Ψ-contractive formulations discussed by Rashwan et al. 

[2024]; 

C. It generalizes the 𝑍𝜗-contractions of Li et al. [2019]; 

D. It unifies interpolative and simulation-type fixed point methods [Karapınar et 

al., 2021; Khojasteh et al., 2015]; 

E. It supports applications to fractional-order systems, in line with the analytical 

approaches found in [Kilbas et al., 2006]. 

Overall, this study contributes a general extension of fixed point theory, 

complemented by thorough demonstration examples and a real-world application to a 

Caputo-type fractional differential equation, showing the applicability and theoretical 

value of our results. 

II.    Definitions and Preliminaries 
 

  Below are the key concepts used in the theorems and proofs: 

Definition 1' (Cone in a Banach Space) 

Assume that V is a Banach space. If a subset 𝒞 ⊂ 𝒱 is a cone, then: 

• 𝒞 ≠ {0}, 

• If 𝛼, 𝛽 ≥ 0 and 𝑢, 𝑣 ∈ 𝒞,  then 𝛼𝑢 + 𝛽𝑣 ∈ 𝒞, 

• If both 𝑤 ∈ 𝒞 and −𝑤 ∈ 𝒞, then 𝑤 = 0. 

This cone induces a partial order on 𝒱 via 𝑢 ⪯ 𝑣 if 𝑣 − 𝑢 ∈ 𝒞. 
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Definition 2' (Normal Cone) 

If there is λ>0 such that a cone 𝒞 ⊂ 𝒱 is considered normal, then: 

  0 ⪯ 𝑢 ⪯ 𝑣 ⇒ ‖𝑢‖ ≤ 𝜆‖𝑣‖ 

Definition 3' (G-Cone Metric Space) 

Let 𝒳 be a set that isn't empty. A mapping 𝒟: 𝒳 × 𝒳 × 𝒳 → 𝒱 is called a G -cone 

metric with respect to the cone 𝒞 ⊂ 𝒱 if: 

𝒟(𝑥, 𝑥, 𝑥) = 0 ∈ 𝒱. 

𝒟(𝑥, 𝑦, 𝑧) is symmetric in its arguments, 

For all, 𝑦, 𝑧, 𝑤 ∈ 𝒳 : 

𝒟(𝑥, 𝑦, 𝑧) ⪯ 𝒟(𝑥, 𝑤, 𝑤) + 𝒟(𝑤, 𝑦, 𝑤) + 𝒟(𝑤, 𝑤, 𝑧) 

II.i.    Topological Properties of G-Cone Metric Spaces 

A G-cone metric space ( 𝑋, 𝐺, 𝑃 ), where 𝐺: 𝑋 × 𝑋 × 𝑋 → 𝐸 is a G-cone metric and 

𝑃 ⊂ 𝐸 is a proper cone in a Banach space 𝐸, induces a topology 𝜏𝐺 on 𝑋 via open balls 

defined by: 

𝐵𝐺(𝑥, 𝜀) = {𝑦 ∈ 𝑋: 𝐺(𝑥, 𝑦, 𝑦) ≪ 𝜀},  for some 𝜀 ∈ int(𝑃). 

We summarize below the key topological properties of (𝑋, 𝜏𝐺) : 

A. Hausdorffness: The topology 𝜏𝐺  is Hausdorff because if 𝑥 ≠ 𝑦 , then 

𝐺(𝑥, 𝑦, 𝑦) ≠ 𝜃, allowing separation by disjoint open balls. 

B. First Countability: The topology is first countable, as each point 𝑥 ∈ 𝑋 has a 

countable local base formed by {𝐵𝐺(𝑥, 𝜀𝑛)} with 𝜀𝑛 → 0. 

C. Metrizability: When the underlying cone 𝑃 ⊂ 𝐸 is normal, 𝜏𝐺 is metrizable via 

an equivalent metric 𝑑𝐺(𝑥, 𝑦) = ‖𝐺(𝑥, 𝑦, 𝑦)‖. 

D. Compactness: A subset of 𝑋  is compact if every open cover has a finite 

subcover, and Sequential Compactness: A subset of 𝑋 is sequentially compact 

if every sequence has a convergent subsequence, which can be checked under 

compactness and total boundedness. 

E. Completions: A G-cone metric space is complete if every G-Cauchy sequence 

converges in the topology 𝜏𝐺 . 

F. Local Convexity: If E is a locally convex Banach space with the local convex 

topology and 𝑃 is a convex cone, then the G-cone metric structure on 𝑋 is 

compatible with the local convexity in 𝑋. 

Definition 𝟒′ ( 𝝓-Contraction) 

A mapping ℱ: 𝒳 → 𝒳 is said to be a 𝜙-contractive map if there exists a continuous 

function 𝜑: 𝒞 → 𝒞 such that: 

𝒟(ℱ𝑥, ℱ𝑦, ℱ𝑦) ⪯ 𝜑(𝒟(𝑥, 𝑦, 𝑦)),  with 𝜑(𝑡) ≺ 𝑡 for 𝑡 ∈ 𝒞 ∖ {0} 

Definition 5' (Perturbation Control Function) 

A mapping 𝛼: 𝒳 × 𝒳 → 𝒞 is called a perturbation or control function if 𝛼(𝑥, 𝑦) ⪰ 0 

and is used in generalized contractive inequalities. 
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Definition 𝟔′ ( 𝝋-Control Function): 
 

A function 𝜙: [0, ∞) → [0, ∞) is called a 𝜑-control function if it satisfies: 

A. 𝜙 is continuous on [0, ∞), 

B. 𝜙(𝑡) = 0 ⇔ 𝑡 = 0 (i.e., zero at zero), 

C. 𝜙(𝑡) < 𝑡 for all 𝑡 > 0 (strict contraction), 

D. 𝜙 is non-decreasing (optional but often required), 

E. lim
𝑡→0+

 𝜙(𝑡) = 0 (asymptotic vanishing). 

 Examples of 𝜑-functions used in the literature: 

A. 𝜙(𝑡) = 𝛿𝑡, 0 < 𝛿 < 1 (linear decay), 

B. 𝜙(𝑡) =
𝑡

1+𝑡
 (nonlinear decay), 

C. 𝜙(𝑡) = log (1 + 𝑡), etc. 

 Linear decay ensures faster convergence, whereas nonlinear decays allow more 

flexibility but slower convergence. 

Definition 𝟕′ (Perturbation / Auxiliary Control Function) : 
 

A function 𝜓: [0, ∞) → [0, ∞) is called a perturbation control function if: 

A. 𝜓 is continuous on [0, ∞), 

B. 𝜓(0) = 0, 

C. 𝜓(𝑡) ≥ 0 for all 𝑡 ≥ 0, 

D. (Optional) lim
𝑡→0+

 𝜓(𝑡) = 0 (vanishing behavior), 

E. May satisfy 𝜓(𝑡) → 0 as 𝑡 → ∞ or be bounded by a known control 

constant 𝜀. 

 Examples: 

• Constant perturbation: 𝜓(𝑡) = 𝜀, 

• Diminishing: 𝜓(𝑡) =
1

1+𝑡
, 𝜓(𝑡) = 𝑒−𝑡. 

 Role of perturbations: 

A. They model non-ideal or noisy systems, 

B. If bounded or vanishing, they still allow convergence, 

C. Influence rate and existence of fixed points. 

D. The function 𝜙 governs the contraction behavior. A linear 𝜑-function ensures 

rapid convergence, whereas a nonlinear, slower-decaying function still ensures 

convergence but may affect the rate. Similarly, the perturbation function 𝜓 

allows flexibility to handle systems with approximation error, delay, or 

uncertainty. If 𝜓 → 0, uniqueness and convergence can still be ensured under 

the G-cone metric structure, as shown in Theorem 3.2. 
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Definition 𝟖′ (Joint Lower Semi-Continuity) 
 

A function Δ: 𝒳 × 𝒳 → 𝒞 is said to be jointly lower semi-continuous if, for 

sequences 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦, we have: 

   lim inf
𝑛→∞

 Δ(𝑥𝑛, 𝑦𝑛) ⪰ Δ(𝑥, 𝑦) 

Definition 9' (Banach Space) 

Every Cauchy sequence in a Banach space converges because it is a full normed 

vector space over ℝ or ℂ. 

Definition 10' (G-Cone Metric Space) 

A triple (𝒳, 𝒟, 𝒞) is called a complete 𝐺-cone metric space if every G-Cauchy 

sequence {𝑥𝑛} ⊂ 𝒳 converges to a point 𝑥∗ ∈ 𝒳 such that: 

lim
𝑛→∞

 𝒟(𝑥𝑛 , 𝑥∗, 𝑥∗) = 0 

Definition 𝟏𝟏′ (Comparison Function) 

A function 𝜑: 𝒞 → 𝒞 is termed a comparison ( 𝜙-) function if: 

• 𝜑 is continuous as well as  non-decreasing, 

• 𝜑(𝑡) ≺ 𝑡 for all 𝑡 ∈ 𝒞 ∖ {0}, 

• 𝜑(0) = 0 

Definition 𝟏𝟐′ (Restatement: Normal Cone) 
 

A cone 𝒞 ⊂ 𝒱 is normal if there When 𝜆 > 0, it means that: 

0 ⪯ 𝑢 ⪯ 𝑣 ⇒ ‖𝑢‖ ≤ 𝜆‖𝑣‖ 

Definition 13' (Sequential Continuity) 
 

If for any sequence, a map ℱ: 𝒳 → 𝒳 is continuous if for any sequence 𝑥𝑛 → 𝑥1 it 

holds that ℱ(𝑥𝑛) → ℱ(𝑥). 
 

Definition 14' (Standard Contractive Mapping) 

A function ℱ: 𝒳 → 𝒳 is called If a constant is available a contractive mapping 

𝜇 ∈ (0,1) such that:  𝒟(ℱ𝑥, ℱ𝑦, ℱ𝑦) ⪯ 𝜇 ⋅ 𝒟(𝑥, 𝑦, 𝑦) 

Lemma 1' (Cone Structure Properties) 
 

Let 𝒞 ⊂ 𝒱, a cone in a Banach space. Then: 

• 𝑥 ∈ 𝒞 and 𝜆 ≥ 0 ⇒ 𝜆𝑥 ∈ 𝒞, 

• 𝑥, 𝑦 ∈ 𝒞 ⇒ 𝑥 + 𝑦 ∈ 𝒞, 

• If 𝑥 ∈ 𝒞 and −𝑥 ∈ 𝒞, then 𝑥 = 0 

Lemma 2' (Convergence Behavior in Cone Metric Spaces) 

Let (𝒳, 𝒟) metric space of a cone with normal cone 𝒞. Then: 

 



 

 

 

J. Mech. Cont.& Math. Sci., Vol.-20, No.- 8, August (2025)  pp 52-70 

Achala Mishra et al. 

 
57 

 

• If 𝑥𝑛 → 𝑥 ∈ 𝒳, then 𝒟(𝑥𝑛, 𝑥, 𝑥) → 0𝑟 

• Every convergent sequence is also a G-Cauchy sequence. 

Lemma 3' (G-Cauchy Criterion in Complete Spaces) 

Any Cauchy sequence {𝑥𝑛} converges to some 𝑥∗ ∈ 𝒳 and full cone metric space 

(𝒳, 𝒟) satisfying: 

   lim
𝑛→∞

 𝒟(𝑥𝑛, 𝑥∗, 𝑥∗) = 0 

Theorem 1' (Banach-Type, Cone Metrics Fixed Point Theorem) 

Let (𝒳, 𝒟) be a complete metric space in a cone. If ℱ: 𝒳 → 𝒳 satisfies: 

𝒟(ℱ𝑥, ℱ𝑦) ⪯ 𝜇 ⋅ 𝒟(𝑥, 𝑦),  for some 𝜇 ∈ (0,1) 

Consequently, ℱ has a distinct fixed point in 𝒳. 

III.      Main Results 

Theorem III.i ( 𝚿-Difference with Auxiliary Perturbation) 
 

   Let (ℳ, 𝔾) be a complete G-cone metric space, and let ℱ: ℳ → ℳ be a self-

map such that: 

𝔾(ℱ𝑎, ℱ𝑏, ℱ𝑐) ⪯ 𝜌 ⋅ 𝔾(𝑎, 𝑏, 𝑐) + (1 − 𝜌) ⋅ 𝜓(𝑎, 𝑏, 𝑐) + 𝛿 ⋅ 𝜂(𝑎, 𝑏) 

for all 𝑎, 𝑏, 𝑐 ∈ ℳ, where: 

• 0 ≤ 𝜌 < 1 is the contraction coefficient, 

• 𝛿 ≥ 0 is a perturbation constant, 

• 𝜓: ℳ3 → [0, ∞) is jointly lower semi-continuous, 

• 𝜂: ℳ × ℳ → [0, ∞) is a non-negative auxiliary control function. 

Then ℱ has a unique fixed point in ℳ. 

Proof 

Let us begin by selecting an initial point 𝑢0 ∈ ℳ, and construct an iterative sequence: 

𝑢𝑘+1 = ℱ(𝑢𝑘), 𝑘 = 0,1,2, … 

We aim to show that {𝑢𝑘} forms a G-cone metric space (ℳ, 𝔾) forms a Cauchy 

sequence. 

Applying the given inequality for 𝑎 = 𝑢𝑘, 𝑏 = 𝑢𝑘−1, 𝑐 = 𝑢𝑘−1, we obtain: 

ℤ(𝑢𝑘+1, 𝑢𝑘 , 𝑢𝑘) ⪯ 𝜌 ⋅ 𝔾(𝑢𝑘, 𝑢𝑘−1, 𝑢𝑘−1) + (1 − 𝜌) ⋅ 𝜓(𝑢𝑘, 𝑢𝑘−1, 𝑢𝑘−1) + 𝛿
⋅ 𝜂(𝑢𝑘 , 𝑢𝑘−1) 

Define 𝒢𝑘: = 𝔾(𝑢𝑘+1, 𝑢𝑘, 𝑢𝑘). Then the inequality becomes: 

𝒢𝑘 ⪯ 𝜌 ⋅ 𝒢𝑘−1 + 𝜒𝑘 
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where 𝜒𝑘 = (1 − 𝜌) ⋅ 𝜓(𝑢𝑘 , 𝑢𝑘−1, 𝑢𝑘−1) + 𝛿 ⋅ 𝜂(𝑢𝑘 , 𝑢𝑘−1). 

If 𝜓 and 𝜂 satisfy 𝜒𝑘 → 0 as 𝑘 → ∞, we may iterate this recurrence: 

𝒢𝑘 ⪯ 𝜌𝑘 ⋅ 𝒢0 + ∑  

𝑘

𝑗=1

𝜌𝑘−𝑗 ⋅ 𝜒𝑗 

As 𝜌 ∈ [0,1), the geometric term 𝜌𝑘 ⋅ 𝒢0 → 0. 

If 𝜒𝑗 → 0, the weighted sum also vanishes. Hence, 𝒢𝑘 → 0, meaning: 

𝕍(𝑢𝑘+1, 𝑢𝑘 , 𝑢𝑘) → 0 

To show that {𝑢𝑘} is Cauchy, consider 𝑚 > 𝑛. Then using the triangle inequality (G-

metric's generalized version), we get: 

ℂ(𝑢𝑛, 𝑢𝑚, 𝑢𝑚) ⪯ ∑  

𝑚−1

𝑖=𝑛

ℚ(𝑢𝑖+1, 𝑢𝑖 , 𝑢𝑖) 

Since each term 𝕍(𝑢𝑖+1, 𝑢𝑖, 𝑢𝑖) → 0, It is possible to make the right-hand side 

arbitrarily tiny. Thus, {𝑢𝑘} is Cauchy. 

By completeness of (ℳ, ℂ), there exists 𝑢∗ ∈ ℳ such a way that 𝑢𝑘 → 𝑢∗. 

Taking limits as 𝑘 → ∞ and using lower semi-continuity of 𝜓, and continuity of 𝕍𝑠 

we conclude: 

𝔾(ℱ(𝑢∗), 𝑢∗, 𝑢∗) = lim
𝑘→∞

 𝔾(𝑢𝑘+1, 𝑢𝑘 , 𝑢𝑘) = 0 ⇒ ℱ(𝑢∗) = 𝑢∗ 

Hence, 𝑢∗ is a fixed point of ℱ. 

Assume two fixed points 𝑢∗, 𝑣∗ ∈ ℳ. Applying the original inequality: 

ℂ(𝑢∗, 𝑣∗, 𝑣∗) ⪯ 𝜌 ⋅ 𝔾(𝑢∗, 𝑣∗, 𝑣∗) + (1 − 𝜌) ⋅ 𝜓(𝑢∗, 𝑣∗, 𝑣∗) + 𝛿 ⋅ 𝜂(𝑢∗, 𝑣∗) 

Rewriting: 

(1 − 𝜌) ⋅ 𝔾(𝑢∗, 𝑣∗, 𝑣∗) ⪯ (1 − 𝜌) ⋅ 𝜓(𝑢∗, 𝑣∗, 𝑣∗) + 𝛿 ⋅ 𝜂(𝑢∗, 𝑣∗) 

If 𝜓(𝑢∗, 𝑣∗, 𝑣∗) = 0 and 𝜂(𝑢∗, 𝑣∗) = 0 then 𝕍(𝑢∗, 𝑣∗, 𝑣∗) = 0 ⇒ 𝑢∗ = 𝑣∗ 

A substantial extension of fixed point findings in the context of G-cone metric spaces 

is given by Theorem 3.1. It considers a mapping ℱ that satisfies a 𝜓-type contractive 

condition involving three components: a scaled G-metric term, a lower semi-

continuous function 𝜓, and a perturbation term governed by a nonnegative auxiliary 

function 𝜂 . The presence of the contraction coefficient 𝜌 ∈ [0,1)  ensures that the 

influence of previous distances decays over iterations, while the flexibility of 𝜓 and 𝜂 

allows the theorem to handle a broader class of nonlinear behaviors. It is shown that an 

iterative sequence is Cauchy and converges to a point in the whole metric space by 

using recurrence relations.. The uniqueness of the fixed point is ensured by 

demonstrating that the distance between any two fixed points must vanish under the 

given conditions. This result is particularly useful in abstract spaces where 

conventional contractive mappings or strict continuity assumptions are not applicable. 

Let us consider the space 𝒰 = ℝ, the set of real numbers. 

Define the Banach space ℬ = ℝ, and let the cone 𝒞 = [0, ∞) ⊂ ℝ, which induces the 

usual ordering on real numbers. 
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Now, introduce the function ℋ: 𝒰 × 𝒰 × 𝒰 → ℝ defined as: 

   ℋ(𝑎, 𝑏, 𝑐) = |𝑎 − 𝑏| + |𝑏 − 𝑐| + |𝑐 − 𝑎| 

This function ℋ is symmetric in its arguments and adheres to the axioms of a G-

metric. 

Next, define the mapping 𝒮: ℝ → ℝ by: 

  𝒮(𝑎) =
𝑎

2
 

We aim to verify that 𝒮 satisfies the contractive condition from the generalized 

theorem. 

Let us choose the following constants and functions: 

Contraction coefficient 𝜃 = 0.5, 

Perturbation constant 𝜀 = 0.2, 

Auxiliary metric 𝜂(𝑎, 𝑏) = |𝑎 − 𝑏|, 

Control function 𝜓(𝑎, 𝑏, 𝑐) =
1

2
⋅ ℋ(𝑎, 𝑏, 𝑐), which is continuous and hence 

jointly lower semicontinuous. 

Now compute both sides of the inequality for all 𝑎, 𝑏, 𝑐 ∈ ℝ : 

Left-hand side: 

ℋ(𝒮𝑎, 𝒮𝑏, 𝒮𝑐) = |
𝑎

2
−

𝑏

2
| + |

𝑏

2
−

𝑐

2
| + |

𝑐

2
−

𝑎

2
| =

1

2
⋅ ℋ(𝑎, 𝑏, 𝑐) 

Right-hand side: 

𝜃 ⋅ ℋ(𝑎, 𝑏, 𝑐) + (1 − 𝜃) ⋅ 𝜓(𝑎, 𝑏, 𝑐) + 𝜀 ⋅ 𝜂(𝑎, 𝑏)

= 0.5 ⋅ ℋ(𝑎, 𝑏, 𝑐) + 0.5 ⋅ (
1

2
⋅ ℋ(𝑎, 𝑏, 𝑐)) + 0.2 ⋅ |𝑎 − 𝑏| = 0.75 ⋅ ℋ(𝑎, 𝑏, 𝑐) + 0.2 ⋅ |𝑎 − 𝑏|

 

Conclusion: 

We now observe: 

ℋ(𝒮𝑎, 𝒮𝑏, 𝒮𝑐) =
1

2
⋅ ℋ(𝑎, 𝑏, 𝑐) ≤ 0.75 ⋅ ℋ(𝑎, 𝑏, 𝑐) + 0.2 ⋅ |𝑎 − 𝑏| 

Hence, the inequality holds for all real inputs, confirming that the mapping 𝒮(𝑎) =
𝑎

2
 

satisfies the conditions required by the revised fixed point theorem. Therefore, all 

assumptions of the theorem are valid in this example, and the mapping 𝒮 admits a 

unique fixed point in ℝ. 

Theorem III.ii (Generalized G-Contraction with Vanishing Error Term) 
 

Let (𝒴, 𝒟) be a complete G -across a Banach space in a cone metric space 𝒱, 

equipped with a normal cone 𝒦 ⊂ 𝒱. Assume that a self-mapping ℱ: 𝒴 → 𝒴 satisfies 

the inequality: 
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𝒟(ℱ𝑢, ℱ𝑣, ℱ𝑤) ⪯ 𝛽 ⋅ max{𝒟(𝑢, 𝑣, 𝑤), 𝒟(𝑢, ℱ𝑢, ℱ𝑢), 𝒟(𝑣, ℱ𝑣, ℱ𝑣), 𝒟(𝑤, ℱ𝑤, ℱ𝑤)}
+ Ψ(𝑢, 𝑣, 𝑤) 

for all 𝑢, 𝑣, 𝑤 ∈ 𝒴, where: 

• 𝛽 ∈ [0,1) is a contractive constant, 

• Ψ: 𝒴3 → 𝒱 satisfies Ψ(𝑢𝑛, 𝑣𝑛, 𝑤𝑛) → 𝟎 whenever 𝑢𝑛 → 𝑢𝑟𝑣𝑛 → 𝑣𝑡𝑤𝑛 → 𝑤 

in 𝒴, 

• 𝟎 ∈ 𝒱 is the zero vector. 

Then, ℱ possesses a unique fixed point in 𝒴. 

Proof  

Select an arbitrary point 𝑦0 ∈ 𝒴, and construct a sequence {𝑦𝑛} recursively by setting: 

  𝑦𝑛+1 = ℱ(𝑦𝑛),  for all 𝑛 ≥ 0 

Apply the contractive assumption for 𝑢 = 𝑦𝑛, 𝑣 = 𝑦𝑛+1, 𝑤 = 𝑦𝑛+2, yielding: 

𝒟(𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+2)
⪯ 𝛽
⋅ max{𝒟(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+1), 𝒟(𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+2), 𝒟(𝑦𝑛+2, 𝑦𝑛+2, 𝑦𝑛+2)}
+ Ψ(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2) 

Since 𝒟(𝑦𝑛+2, 𝑦𝑛+2, 𝑦𝑛+2) = 𝟎, this reduces to: 

𝒟(𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+2)
⪯ 𝛽 ⋅ max{𝒟(𝑦𝑛 , 𝑦𝑛+1, 𝑦𝑛+1), 𝒟(𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+2)}
+ Ψ(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2) 

Let 𝑑𝑛: = 𝒟(𝑦𝑛 , 𝑦𝑛+1, 𝑦𝑛+1). Then the above can be expressed as: 

𝑑𝑛+1 ⪯ 𝛽 ⋅ max{𝑑𝑛, 𝑑𝑛+1} + Ψ(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2) 

If 𝑑𝑛+1 ⪰ 𝑑𝑛, then: 

𝑑𝑛+1 ⪯ 𝛽𝑑𝑛+1 + Ψ(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2) ⇒ (1 − 𝛽)𝑑𝑛+1 ⪯ Ψ(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2) 

Since 0 ≤ 𝛽 < 1, we derive: 

𝑑𝑛+1 ⪯
1

1 − 𝛽
Ψ(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2) 

Given the condition on Ψ, it follows that Ψ(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2) → 𝟎, which implies 

𝑑𝑛 → 𝟎. Therefore, the sequence {𝑦𝑛} is Cauchy in the G-cone metric space. 

As 𝒴 is complete, there exists a limit point 𝑦∗ ∈ 𝒴 such that 𝑦𝑛 → 𝑦∗. 

Continuity of ℱ follows from the construction 𝑦𝑛+1 = ℱ(𝑦𝑛), and thus ℱ(𝑦𝑛) →
ℱ(𝑦∗). But since 𝑦𝑛+1 → 𝑦∗, we conclude ℱ(𝑦∗) = 𝑦∗, i.e., 𝑦∗ is a fixed point of ℱ. 

Suppose there exists another fixed point 𝑧∗ ∈ 𝒴, such that ℱ(𝑧∗) = 𝑧∗. Then: 

𝒟(𝑦∗, 𝑧∗, 𝑧∗) = 𝒟(ℱ(𝑦∗), ℱ(𝑧∗), ℱ(𝑧∗)) ⪯ 𝛽 ⋅ 𝒟(𝑦∗, 𝑧∗, 𝑧∗) + Ψ(𝑦∗, 𝑧∗, 𝑧∗) 
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Rewriting, we get: 

(1 − 𝛽) ⋅ 𝒟(𝑦∗, 𝑧∗, 𝑧∗) ⪯ Ψ(𝑦∗, 𝑧∗, 𝑧∗) 

Taking the norm and using the vanishing nature of Ψ𝑟 we have: 

‖𝒟(𝑦∗, 𝑧∗, 𝑧∗)‖ ≤
1

1 − 𝛽
‖Ψ(𝑦∗, 𝑧∗, 𝑧∗)‖ = 0 

which implies 𝒟(𝑦∗, 𝑧∗, 𝑧∗) = 0 ⇒ 𝑦∗ = 𝑧∗. Thus, the fixed point is unique. 

A single fixed point in the whole G-cone metric space 𝒴 is admitted by the 

mapping ℱ. 

Provided the generalized contraction condition with a vanishing perturbation function 

is satisfied. 

An essential extension of fixed-point theory in the context of full G-cone metric spaces 

is provided by Theorem 3.2. Unlike traditional contraction conditions, this result 

incorporates a maximum function involving the current and previous iterations, 

allowing for broader application to nonlinear and noncontractive systems. The mapping 

ℱ satisfies a generalized inequality that balances a contraction component, scaled by a 

constant 𝛽 ∈ [0,1), and a perturbation function Ψ that diminishes to zero as the iterates 

converge. The proof constructs an iterative sequence {𝑦𝑛} , and through recursive 

application of the inequality, it is shown that the G-distance between successive terms 

converges to the zero element of the cone. This ensures that the sequence is Cauchy, 

and completeness guarantees the existence of a limit point. Uniqueness follows from a 

contradiction argument using the same contractive condition. This theorem is 

particularly valuable for analyzing mappings that are not strictly contractive but still 

converge under controlled error terms, making it suitable for applications in analysis, 

optimization, and nonlinear dynamic systems. 

Example 

Let us take the space 𝒜 = ℝ, the set of real numbers, and define the function 

𝒢: 𝒜 × 𝒜 × 𝒜 → ℝ+as: 

𝒢(𝑝, 𝑞, 𝑟) = |𝑝 − 𝑞| + |𝑞 − 𝑟| + |𝑟 − 𝑝| 

Define a self-map 𝒯: 𝒜 → 𝒜 by: 

𝒯(𝑝) =
𝑝

2
 

III.ii.a.   Verifying G-Cone Metric Conditions 

To confirm that 𝒢 is a valid 𝐺-cone metric, we must ensure it satisfies the following 

properties: 

• Non-negativity: 

For any 𝑝, 𝑞, 𝑟 ∈ ℝ, 

𝒢(𝑝, 𝑞, 𝑟) = |𝑝 − 𝑞| + |𝑞 − 𝑟| + |𝑟 − 𝑝| ≥ 0 
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• Symmetry: 

𝒢(𝑝, 𝑞, 𝑟) = 𝒢(𝑞, 𝑟, 𝑝) = 𝒢(𝑟, 𝑝, 𝑞) 

• Generalized Triangle Inequality (Rectangle Inequality): 

For any 𝑝, 𝑞, 𝑟, 𝑠 ∈ ℝ, we verify: 

𝒢(𝑝, 𝑞, 𝑟) ≤ 𝒢(𝑝, 𝑠, 𝑠) + 𝒢(𝑠, 𝑞, 𝑟) 

Proof of the inequality: 

𝒢(𝑝, 𝑞, 𝑟) is equal to |𝑝 − 𝑞| + |𝑞 − 𝑟| + |𝑟 − 𝑝| 𝑡ℎ𝑒𝑛

 = |𝑝 − 𝑠 + 𝑠 − 𝑞| + |𝑞 − 𝑠 + 𝑠 − 𝑟| + |𝑟 − 𝑠 + 𝑠 − 𝑝|

 ≤ |𝑝 − 𝑠| + |𝑠 − 𝑞| + |𝑞 − 𝑠| + |𝑠 − 𝑟| + |𝑟 − 𝑠| + |𝑠 − 𝑝|

 = 2(|𝑝 − 𝑠| + |𝑠 − 𝑞| + |𝑠 − 𝑟|)

 = 2𝒢(𝑝, 𝑠, 𝑠) + 2𝒢(𝑠, 𝑞, 𝑟)

 

Dividing both sides by 2 gives: 

𝒢(𝑝, 𝑞, 𝑟) ≤ 𝒢(𝑝, 𝑠, 𝑠) + 𝒢(𝑠, 𝑞, 𝑟) 

Thus, 𝒢 satisfies the G-metric properties. 

III.ii.b. Verifying Contractive Condition 
 

We now evaluate the contraction condition using: 

𝒢(𝒯𝑝, 𝒯𝑞, 𝒯𝑟) = 𝒢 (
𝑝

2
,
𝑞

2
,
𝑟

2
)

= |
𝑝

2
−

𝑞

2
| + |

𝑞

2
−

𝑟

2
| + |

𝑟

2
−

𝑝

2
| =

1

2
𝒢(𝑝, 𝑞, 𝑟)

 

Now set 𝜆 =
1

2
, and define 𝜓(𝑝, 𝑞, 𝑟) = 0. 

Then the contractive condition from Theorem 2.2 ' becomes: 

𝒢(𝒯𝑝, 𝒯𝑞, 𝒯𝑟) ≤ 𝜆 ⋅ max{𝒢(𝑝, 𝑞, 𝑟), 𝒢(𝑝, 𝒯𝑝, 𝒯𝑝), 𝒢(𝑞, 𝒯𝑞, 𝒯𝑞), 𝒢(𝑟, 𝒯𝑟, 𝒯𝑟)} 

Since: 

𝒢(𝒯𝑝, 𝒯𝑞, 𝒯𝑟) =
1

2
𝒢(𝑝, 𝑞, 𝑟) 

and: 

max{⋯ } ≥ 𝒢(𝑝, 𝑞, 𝑟) 

The inequality is satisfied. 

III.ii.c. Fixed Point Identification 
 

To identify a fixed point of 𝒯, solve: 

𝒯(𝑝) = 𝑝 ⇒
𝑝

2
= 𝑝 ⇒ 𝑝 = 0 

 

Hence, 0 is a fixed point of 𝒯. 

Now define the sequence 𝑝𝑛+1 = 𝒯(𝑝𝑛) for any initial 𝑝0 ∈ ℝ. Then: 

𝑝𝑛 = 𝒯𝑛(𝑝0) =
𝑝0

2𝑛
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As 𝑛 → ∞, we have 𝑝𝑛 → 0. Therefore, the unique fixed point of 𝒯 is 0. 

 

Improved Theorem 3.3 (Contractive Mapping with Max-G Control and Vanishing 

Nonlinearity) 

Let (𝒵, 𝒢) be a complete G-cone metric space defined over a Banach space ℬ, and let 

𝒞 ⊂ ℬ be a normal cone. Suppose that a self-map ℱ: 𝒵 → 𝒵 satisfies the inequality: 

𝒢(ℱ𝑥, ℱ𝑦, ℱ𝑧) ⪯ 𝜅 ⋅ max{𝒢(𝑥, 𝑦, 𝑧), 𝒢(𝑥, ℱ𝑥, ℱ𝑥), 𝒢(𝑦, ℱ𝑦, ℱ𝑦), 𝒢(𝑧, ℱ𝑧, ℱ𝑧)}
+ Φ(𝒢(𝑥, 𝑦, 𝑧)) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝒵, where: 

• 𝜅 ∈ [0,1) is a contractive parameter, 

• Φ: ℬ → ℬ is a continuous function such that Φ(𝜔𝑛) → 𝟎 ∈ ℬ whenever 

𝜔𝑛 → 𝟎. 

Then ℱ has a unique fixed point in 𝒵. 

Proof (With Logical Steps and Reformulated Arguments) 

Let 𝑧0 ∈ 𝒵 be arbitrary and define the sequence {𝑧𝑛} ⊂ 𝒵 by: 

𝑧𝑛+1 = ℱ(𝑧𝑛),  for all 𝑛 ∈ ℕ 

Apply the contractive condition to the triple (𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+2). We get: 

𝒢(𝑧𝑛+1, 𝑧𝑛+2, 𝑧𝑛+2)
⪯ 𝜅
⋅ max{𝒢(𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+2), 𝒢(𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+1), 𝒢(𝑧𝑛+1, 𝑧𝑛+2, 𝑧𝑛+2), 𝒢(𝑧𝑛+2, 𝑧𝑛+3, 𝑧𝑛+3)}

+ Φ(𝒴(𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+2)) 

Using properties of G-metric: 

• 𝒢(𝑥, 𝑥, 𝑥) = 𝟎, 

• 𝒢(𝑥, 𝑦, 𝑦) ⪯ 𝒢(𝑥, 𝑦, 𝑧), 

We simplify the inequality by omitting future terms and focusing on dominant current 

terms: 

𝒢(𝑧𝑛+1, 𝑧𝑛+2, 𝑧𝑛+2)
⪯ 𝜅 ⋅ max{𝒢(𝑧𝑛 , 𝑧𝑛+1, 𝑧𝑛+1), 𝒢(𝑧𝑛+1, 𝑧𝑛+2, 𝑧𝑛+2)}

+ Φ(𝒢(𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+2)) 

Let us define 𝑑𝑛: = 𝒢(𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+1). The recurrence becomes: 

𝑑𝑛+1 ⪯ 𝜅 ⋅ max{𝑑𝑛, 𝑑𝑛+1} + Φ(𝒢(𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+2)) 

Assume for estimation that 𝑑𝑛+1 ⪰ 𝑑𝑛, then: 

𝑑𝑛+1 ⪯ 𝜅 ⋅ 𝑑𝑛+1 + Φ(𝒢(𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+2)) ⇒ (1 − 𝜅)𝑑𝑛+1 ⪯ Φ(𝒢(𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+2)) 

Then we have: 

𝑑𝑛+1 ⪯
1

1 − 𝜅
Φ(𝒢(𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+2)) 

Assuming Φ(𝒢(𝑧𝑛, 𝑧𝑛+1, 𝑧𝑛+2)) → 𝟎 and using continuity of Φ, we deduce 𝑑𝑛 → 𝟎. 

Hence, {𝑧𝑛} is a Cauchy sequence in the G-cone metric space. 

 

By completeness of (𝒵, 𝒢), there exists 𝑧∗ ∈ 𝒵 such that: 

𝑧𝑛 → 𝑧∗  as 𝑛 → ∞ 

Using the contractive definition and limits: 

𝑧𝑛+1 = ℱ(𝑧𝑛) → ℱ(𝑧∗)  but also  𝑧𝑛+1 → 𝑧∗ ⇒ ℱ(𝑧∗) = 𝑧∗ 
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So, 𝑧∗ is a fixed point of ℱ. 

Assume another fixed point 𝑤∗ ≠ 𝑧∗ exists. Then from the contractive assumption: 

𝒢(𝑧∗, 𝑤∗, 𝑤∗) = 𝒢(ℱ(𝑧∗), ℱ(𝑤∗), ℱ(𝑤∗)) ⪯ 𝜅 ⋅ 𝒢(𝑧∗, 𝑤∗, 𝑤∗) + Φ(𝒢(𝑧∗, 𝑤∗, 𝑤∗)) 

Rewriting: 

(1 − 𝜅) ⋅ 𝒢(𝑧∗, 𝑤∗, 𝑤∗) ⪯ Φ(𝒢(𝑧∗, 𝑤∗, 𝑤∗)) 

Taking norms and applying continuity: 

‖𝒢(𝑧∗, 𝑤∗, 𝑤∗)‖ ≤
1

1 − 𝜅
‖Φ(𝒢(𝑧∗, 𝑤∗, 𝑤∗))‖ = 0 ⇒ 𝑧∗ = 𝑤∗ 

The fixed point is hence unique.  
 

If the mapping F fulfills the G-cone metric space Z, it has a unique fixed point  

recursive contractive condition involving the maximum of G-metric terms and a 

vanishing nonlinear perturbation Φ. 

Theorem 3.3 presents an advanced generalization of fixed point results in the 

framework of G-cone metric spaces by incorporating a maximum-type contractive 

condition with a decaying nonlinear term. Unlike classical contractions that rely solely 

on direct distance reduction, this theorem introduces a recursive inequality based on 

the maximum of several G-metric expressions, including distances between points and 

their images under the mapping. The added perturbation function Φ, which vanishes as 

its argument tends to zero, provides flexibility in dealing with non-strict contractions. 

The proof constructs an iterative sequence and shows that the G-distance between 

successive elements decreases under the combined effect of the contraction factor 𝜅 ∈
[0,1) and the convergence properties of Φ. By ensuring that the sequence is Cauchy 

and using the completeness of the space, existence is established. Uniqueness follows 

from applying the same condition to any two fixed points. This theorem significantly 

broadens the scope of fixed point analysis for nonlinear operators and abstract 

dynamical systems. 

Corollary  

Let (𝒴, ℂ) be a complete G-cone metric space over a Banach space 𝒱, where 𝒦 ⊂ 𝒱 

is a normal cone. Suppose the function ℱ: 𝒴 → 𝒴 satisfies the following contractive 

condition: 

𝔾(ℱ𝑥, ℱ𝑦, ℱ𝑧) ≤ 𝛼 ⋅ ℂ(𝑥, 𝑦, 𝑧) + Ψ(𝔾(𝑥, 𝑦, 𝑧)) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝒴, where: 

• 𝛼 ∈ [0,1) is a fixed contraction parameter, 

• Ψ: 𝒱 → 𝒱 is a continuous function satisfying Ψ(𝛿) → 𝟎 in 𝒱 as 𝛿 → 𝟎. 

Then, the mapping ℱ has exactly one fixed point in 𝒴. 

Justification 
 

This corollary is a direct consequence of Refined Theorem 3.3, wherein the maximum 

expression is simplified to depend solely on 𝔾(𝑥, 𝑦, 𝑧). The structural assumptions and 

convergence behavior of the nonlinear term Ψ remain unchanged, ensuring the same 

conclusions apply. Thus, the fixed point not only exists but is also unique. 
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Example 

Let us consider 𝒴 = ℝ, and define the function 𝔾: ℝ × ℝ × ℝ → ℝ+as: 

𝔾(𝑎, 𝑏, 𝑐) is equal to (|𝑎 − 𝑏| + |𝑏 − 𝑐| + |𝑐 − 𝑎|) 

This function satisfies all the axioms of a G-metric: 

• Non-negativity: ℂ(𝑎, 𝑏, 𝑐) ≥ 0 

• Symmetry: 𝔾(𝑎, 𝑏, 𝑐) = ℂ(𝑏, 𝑐, 𝑎) = ℂ(𝑐, 𝑎, 𝑏) 

• Generalized triangle inequality: ℂ(𝑎, 𝑏, 𝑐) ≤ 𝔾(𝑎, 𝑑, 𝑑) + 𝔾(𝑑, 𝑏, 𝑐) 

Now define the transformation ℱ: ℝ → ℝ by: 

ℱ(𝑎) =
𝑎

2
 

Checking the Contractive Condition 

For any 𝑏, 𝑐 ∈ ℝ : 

ℂ(ℱ𝑎, ℱ𝑏, ℱ𝑐) = ℂ (
𝑎

2
,
𝑏

2
,
𝑐

2
)

 = |
𝑎 − 𝑏

2
| + |

𝑏 − 𝑐

2
| + |

𝑐 − 𝑎

2
|

 =
1

2
(|𝑎 − 𝑏| + |𝑏 − 𝑐| + |𝑐 − 𝑎|) =

1

2
𝔾(𝑎, 𝑏, 𝑐)

 

Let 𝛼 =
1

2
 and Ψ(𝛿) = 0 for all 𝛿 ∈ ℝ. Then the contractive condition becomes: 

𝔾(ℱ𝑎, ℱ𝑏, ℱ𝑐) ≤
1

2
𝔾(𝑎, 𝑏, 𝑐) 

which is satisfied for all 𝑎, 𝑏, 𝑐 ∈ ℝ. 

Fixed Point Verification 

To find the fixed point, solve: 

ℱ(𝑎) = 𝑎 ⇒
𝑎

2
= 𝑎 ⇒ 𝑎 = 0 

Define the iterative sequence 𝑎𝑛+1 = ℱ(𝑎𝑛). Then: 

𝑎𝑛 =
𝑎0

2𝑛
 

As 𝑛 → ∞, 𝑎𝑛 → 0. Therefore, the fixed point is 𝑎 = 0, and it is unique by the 

contraction property. 
 

IV.    Conclusion 

   The transformation ℱ(𝑎) =
𝑎

2
 meets the simplified contractive condition 

within the complete G-metric space (ℝ, 𝔾), confirming both the existence and 

uniqueness of the fixed point 0. 
 

V.      Application to a Fractional Differential Equation 

  In this section, we demonstrate the applicability of the developed fixed-point 

results by establishing the existence and uniqueness of solutions to a Caputo-type 

fractional differential equation using Theorem 3.1 in the context of a G-cone metric 

space. 
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V.i.   Problem Formulation 

Consider the nonlinear fractional initial value problem (IVP): 

𝐷𝛼𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 𝑡 ∈ [0, 𝑇], 𝑦(0) = 𝑦0 

where 𝐷𝛼 denotes the Caputo fractional derivative of order 𝛼 ∈ (0,1), and 

𝑓: [0, 𝑇] × ℝ → ℝ is a continuous function. 

Using the properties of fractional calculus, this IVP is equivalent to the following 

integral equation: 

𝑦(𝑡) = 𝑦0 +
1

Γ(𝛼)
∫  

𝑡

0

(𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑦(𝑠))𝑑𝑠 

Define the operator 𝑇 on the Banach space 𝐶[0, 𝑇] (of real-valued continuous 

functions on [0, 𝑇] ) by: 

(𝑇𝑦)(𝑡) = 𝑦0 +
1

Γ(𝛼)
∫  

𝑡

0

(𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑦(𝑠))𝑑𝑠 

We aim to prove that 𝑇 has a unique fixed point in a complete G-cone metric space 

under suitable assumptions on 𝑓, hence proving the existence and uniqueness of a 

solution to the original fractional differential equation. 
 

V.ii.   Construction of G-Cone Metric Space 

Let 𝑋 = 𝐶[0, 𝑇] be equipped with the G-cone metric defined by: 

𝐺(𝑥, 𝑦, 𝑧) = max{‖𝑥 − 𝑦‖∞, ‖𝑦 − 𝑧‖∞, ‖𝑧 − 𝑥‖∞} 

where ‖𝑥‖∞ = sup
𝑡∈[0,𝑇]

 |𝑥(𝑡)| and the usual cone 𝑃 = {𝑥 ∈ 𝑋: 𝑥(𝑡) ≥ 0 for all 𝑡 ∈

[0, 𝑇]} is used. 

This triple ( 𝑋, 𝐺, 𝑃 ) defines a complete G-cone metric space. 

 

V.iii.  Application of Theorem 3.1 

 

Assume that 𝑓 satisfies the following Lipschitz-type condition: 

There exists 𝐿 > 0 such that for all 𝑡 ∈ [0, 𝑇], 𝑥, 𝑦 ∈ ℝ, 

|𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑥 − 𝑦| 

Then, for 𝑥, 𝑦 ∈ 𝐶[0, 𝑇], 

‖𝑇𝑥 − 𝑇𝑦‖∞ ≤
𝐿𝑇𝛼

Γ(𝛼 + 1)
‖𝑥 − 𝑦‖∞ 

Define the 𝜑-function 𝜙(𝑡) = 𝛿𝑡 with 𝛿 ∈ (0,1) and let: 

𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑦) = 𝜙(𝐺(𝑥, 𝑦, 𝑦)) 

It is evident that this is a 𝜑-type contraction in the G-cone metric space ( 𝑋, 𝐺, 𝑃 ), 

provided: 
𝐿𝑇𝛼

Γ(𝛼 + 1)
< 1 

• 𝑇 has a unique fixed point 𝑦∗ ∈ 𝐶[0, 𝑇], 
•  𝑦∗(𝑡) is the unique solution of the fractional differential equation. 
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V.iv.    Conclusion of the Application 

Casting the fractional initial value problem as an equivalent integral equation, and 

introducing a G-cone metric structure into the space 𝐶[0, 𝑇] of functions, we were able 

to employ the generalized 𝜑-contractive fixed point theorem to obtain the existence 

and uniqueness of solutions. This demonstrates the application of the theoretical results 

obtained in this paper in fractional-order systems emerging from the viscoelasticity, 

control systems, population dynamics, and signal processing as well. 

 

VI.     Conclusion and Future Directions 

 

We have generalized and extended classical fixed-point results in the class of 

G-cone metric spaces. By presenting novel types of contractive mappings, especially 

in the maximal-type conditions and extensions with nonlinear perturbation functions 

classes, we have loosened the strong contractiveness or normality restrictive 

dependencies that are common to more primitive theorems. We have carefully analyzed 

the underlying properties and shown that, under these more general assumptions, fixed 

points exist, and we have provided the moments of those fixed points, thus providing a 

unifying framework embedding many previously known results as particular cases. 

Supported by illustrative examples and in-depth verification of the metric properties, 

our theoretical framework emphasizes the practical relevance of the proposed 

theorems. We believe that the presented results greatly extend the scope of application 

of fixed-point theory to nonlinear systems, especially in spaces where the generic 

metric structure may not give satisfactory approximation. The theoretical framework 

is further validated through application to a fractional initial value problem, showcasing 

its potential in real-world modeling and control systems. 

 

V.i.     Future Research Opportunities 

 

a) Investigating fixed-point results in non-Archimedean or ultrametric cone 

spaces, where triangle inequalities are replaced with stronger forms. 

b) Extending the current results to multivalued or set-valued mappings within G-

cone metric spaces. 

c) Applying these generalized fixed-point results to demonstrate Boundary value 

issues existence and uniqueness of solutions or systems modeled by nonlinear 

integral/differential equations. 

d) Exploring the impact of randomness and uncertainty by adapting the current 

framework to probabilistic or fuzzy cone metric spaces. 

e) Developing iterative numerical algorithms based on these contractive 

conditions for solving real-world optimization and equilibrium problems. 

By exploring these directions, the theoretical contributions made in this work can be 

extended to address more complex mathematical models and applied challenges across 

fields such as analysis, engineering, optimization, and data science. 
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