

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

184

A HYBRID APPROACH TO SECURE CONTAINER

ORCHESTRATION: INTELLIGENT WATER DROP

ALGORITHM WITH ANTI-COLLOCATION AND

SECURITY AFFINITY RULES

Kanika Sharma1, Parul Khurana2, Ramandeep Sandhu3

Chander Prabha4, Harpreet Kaur5, Deepali Gupta6

1,2 School of Computer Applications, Lovely Professional University,

Punjab -144411 India.

3,5School of Computer Science and Engineering, Lovely Professional

University, Punjab -144411 India.

4,6Chitkara University Institute of Engineering and Technology, Chitkara

University, Punjab - 140401, India.

Email: 1kanusharma0503@gmail.com, 2parul.khurana@lpu.co.in,
3ramandeepsandhu887@gmail.com, 4prbchander@gmail.com,

5drharpreetarora81@gmail.com, 6deepali.gupta@chitkara.edu.in

Corresponding Author: Chander Prabha

https://doi.org/10.26782/jmcms.2025.07.00011

(Received: April 22, 2025; Revised: June 19, 2025; Accepted: July 03, 2025)

Abstract

Container-based virtualization has become prominent as lightweight

virtualization due to its scalability, resource utilization, and portability, especially in

microservices. Container scheduler plays an essential role in Container services to

optimize performance to reduce the overall cost by managing load balancing.

However, scheduling Containers with efficiency while ensuring the Container

security remains one of the major challenges. This paper presents a hybrid

scheduling approach by combining a nature-inspired algorithm with the security

principle. Our proposed technique combines the optimization of the Intelligent Water

Drop (IWD) algorithm with Anti-Collocation and Security Affinity Rules (ACAR) to

ensure the privacy of Containers. IWD-ACAR focuses on resource optimization, and

one of the security concerns is that no more than two Containers should be placed on

the less secure node. To simulate the proposed technique, we have used Python, and

the simulation results demonstrate 25% improvement in the resource utilization along

with a 98% threat detection rate in real-time monitoring. The proposed approach

balances the various performance evaluation parameters like CPU utilization,

memory utilization, along security in a cloud environment.

ISSN (Online): 2454 -7190, Vol.-20, No.-7, July (2025) pp 184-201 ISSN (Print) 0973-8975

JOURNAL OF MECHANICS OF CONTINUA AND

MATHEMATICAL SCIENCES

www.journalimcms.org

mailto:kanusharma0503@gmail.com
mailto:parul.khurana@lpu.co.in
mailto:ramandeepsandhu887@gmail.com
mailto:4prabhanice@gmail.com
mailto:drharpreetarora81@gmail.com
https://doi.org/10.26782/jmcms.2025.07.00011

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

185

Keywords: Cloud Computing, Containerization, Isolation, Resource allocation,

Scheduling, Security.

I. Introduction

Cloud computing deals with essential services like on-demand access to virtual

resources, broad network access, resource pooling, rapid elasticity, and measured

services. It provides a shared pool of configurable resources that can be used with

minimal involvement of resource providers. These resources can be accessed by the

user at any point in time, as well as from any global location. These resources can be

shared among multiple users by exploiting virtualization to render more flexibility for

accommodating on-demand resource provisioning. Cloud providers divide physical

servers into several virtual instances using Virtual Machines (VMs). Task scheduling

is the most crucial function in the cloud system since it is connected to the cloud's

effective performance. By executing several tasks concurrently on the same physical

hardware this allows cloud providers to optimize resource consumption [XII]. In a

cloud environment, a Container refers to a small and lightweight application that must

be assigned to a server or node for execution. The process of allocating of node to a

Container is known as scheduling. Container scheduling involves assigning resources

like CPU, memory, and bandwidth so that Containers can be managed efficiently.

While allocating the resources to the Container, ensuring the security of the Container

becomes critical these days. Additionally. Security is a major concern when

deploying Containers in the Cloud, as these environments are less secure against

various network threats. Any vulnerability in the network can cause the complete

containerized process to fail or get infected with malware [XIII].

This study presents a novel approach for scheduling Containers that integrates the

Intelligent Water Drop (IWD) algorithm with enhanced security considerations

through Anti-Collocation and Security Affinity Rules (ACAR). IWD-ACAR aims to

ensure the resource efficiency with the security of the nodes where Containers are

scheduled. The majority of existing scheduling algorithms, like as meta-heuristic,

heuristic, and machine learning-based algorithms, prioritize performance optimization

and efficient resource allocation while neglecting the security of nodes and

Containers. To address this challenge, our proposed novel technique is to embed

security as a core component of the scheduling process. Our proposed approach not

only prioritizes efficient resource allocation but also ensures that Containers are

securely scheduled. Figure 1 depicts the hybrid orchestration process. Any

application requested by the user is wrapped up with necessary dependencies and

libraries, including the host OS. Then this containerized process is scheduled on the

most appropriate node by embedding security into it.

Contribution: This article includes a thorough overview of the IWD algorithm and

ACAR for scheduling containers that are already in use in the cloud. The major

contributions of this paper include:

• Optimized resource allocation to the Containers

• Enhancing Container security using ACAR to prevent malicious attacks.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

186

Fig. 1. Hybrid scheduling technique using IWD-ACAR.

Paper Orientation: The rest of this paper is organized as follows. Section 2

describes the literature review. Section 3 explains the proposed hybrid approach for

Container scheduling. Section 4 explains the results and the discussion section. The

paper is concluded in the last section.

II. Literature Review

The increasing demand for cloud resources has driven extensive research into

resource scheduling while ensuring security, as both play an important role in

efficient resource utilization and Container scheduling. Li et al. [VII] have discussed

various traditional scheduling techniques like Round Robin scheduling and First

Come First Serve. These scheduling techniques struggle to manage dynamic

workloads and do not perform efficiently, and to improve scheduling efficiency,

heuristic and metaheuristic methods have been introduced. Gonzalez et al. [III] are

concerned about the optimization of containers. The authors have established the

model for optimization using the hybrid scheduling algorithm. Due to the increased

demand for microservices in the current scenario, there is a need for optimized

resource scheduling. Although the authors can achieve the basic optimization, there is

a scope of extension in their work. This work can be applied to a real cloud container

cluster to reduce the time complexity. Zhang et al. [XVII] have identified various

security threats that can lead to various vulnerabilities in the Containers. The primary

reason for the Container vulnerability is due to the shared operating system and

kernel, which leads to the risk of exploitation. Moreover, Huang et al. [VIII] provided

a security-enhanced Container scheduling approach while integrating encryption and

decryption along with real-time safeguards. Liu et al. [XV] focus on the importance

of real-time monitoring in detecting various vulnerabilities and malware. Chen et al.

[IX] also focus on threat detection and monitoring in containerized applications.

However, Kim and Park [V] proposed an adaptive solution to the resource allocation

approach by adjusting resource distribution based on real-time data. Liu et al [VII]

presented a machine learning-based scheduling framework that incorporates anomaly

detection and threat mitigation within the same process of container placement, being

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

187

very applicable for cloud-native applications. Yang and Zhao [II] proposed another

method to schedule the containers with security considerations to ensure that the

containers that contain security-related information are deployed on the nodes with

more security attributes, like isolation and encryption. Currently, Wang and Zhang

[X] presented a secure container scheduling model based on the adaptive IWD

algorithm. Thus, their results show how IWD can allocate containers profitably with

security concerns, as well as adapt in terms of resources and security threats. In

[XVIII], Gao and Zhou also confirmed the effectiveness of the IWD algorithm for

time-critical security monitoring and dynamic resource allocation, and thus ideal for a

cloud environment with fluctuating traffic demands. In the work of Tang and Lee [I],

the authors explored how using artificial intelligence yields better results than

conventional scheduling in terms of resources and security.

III. Intelligent Water Drop Algorithm

The Intelligent Water Drop (IWD) algorithm offers a nature-inspired optimization

approach for container scheduling in cloud computing. In this model, containers are

treated as "water drops" that flow through a network of cloud nodes (servers),

dynamically selecting the best paths based on resource availability and security

requirements. Over time, this approach ensures optimal scheduling, effectively

balancing performance and security [IV]. The IWD algorithm simulates the natural

behaviour of water drops flowing in a riverbed. As water moves, it erodes soil and

follows the path of least resistance, gradually discovering the optimal route.

Similarly, in the container scheduling process, containers (water drops) navigate

through a graph of physical nodes (riverbed), aiming to minimize resource conflicts,

reduce energy consumption, and enhance security.

a. Overview of the IWD-Based Scheduling Technique

The proposed approach integrates resource-aware scheduling with security-aware

placement, ensuring efficient resource utilization while mitigating security risks. The

key Features of the IWD-Based Scheduling Technique: Initial Security Check,

Resource Optimization Using IWD, and Real-Time Monitoring & Security Response.

The proposed Hybrid IWD scheduling framework follows four main steps:

• Step 1: Initialization: Initialize a set of Containers

• Step 2: Path Selection: Node Assignment

• Step 3: Security Evaluation: Examining the security level of each Node

• Step 4: Dynamic Adaptation: Dynamically rescheduling of Containers based

on resource availability

Algorithm 1: Pseudocode of the Proposed IWD-based Secure Container

Scheduling Algorithm with Anti-Collocation and Affinity Rules

1: Input: Set of containers C = {c1, c2, ..., cn}, Set of cloud nodes N = {n1, n2, ...,

nm}, Security parameters S for each node, Resource parameters R for each

container, Affinity rules Aaff, Anti-collocation rules Aanti.

2: Output: Optimal schedule for containers on cloud nodes with embedded

security, affinity, and anti-collocation.

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

188

3: Initialization: Initialize velocity vi and soil Si,j for each water drop (container)

ci. Set initial security parameters for each node, nj. Set initial resource

availability for each node, nj. Initialize affinity and anti-collocation rule

matrices.

4: For each container ci ∈ C do

5: Perform an initial security check on ci to ensure integrity

6: Initialize water drop behavior: set velocity vi and soil levels for ci

7: Initialize node availability for the container ci

8: While container ci is not scheduled do

9: for each node nj ∈ N do

10: Calculate the soil level Si,j between ci and nj

11: Calculate the velocity vi,j of the water drop ci moving to node nj

12: Evaluate the security level of node nj using parameters S

13: Evaluate the resource availability of node nj using parameters R

14: Check Affinity Rules:

15: If container ci has affinity with other containers (based on Aaff) then

16: Ensure ci is placed on the same node as its affinity containers

17: end if

18: Check Anti-Collocation Rules:

19: If container ci must avoid co-location with certain containers (based on

Aanti) then

20: Ensure ci is placed on a node that doesn’t host restricted containers

21: end if

22: If node nj meets the security, resource, affinity, and anti-collocation

requirements of ci then

23: Calculate the probability P(i,j) of assigning ci to nj :

𝑃(𝑖, 𝑗) =
1

𝑆𝑖,𝑗
/∑

1

𝑆𝑖,𝑘
𝑘∈𝑁(𝑖) (1)

24: end if

25: end for

26: Assign container ci to the node nj with the highest probability P(i, j)

27: Update the soil and velocity for the path between ci and nj

28: end while

29: After deployment, initiate real-time monitoring for security threats on ci

30: If any security threat is detected on ci then

31: Migrate the container ci to a secure node or isolate it

32: end if

33: end for

34: End of Algorithm

b. Anti-Collocation and Security Affinity Rules

To improve security, sensitive containers can be scheduled on physically or logically

separate nodes to avoid co-residency attacks (e.g., side-channel attacks). Anti-

collocation policies ensure that containers handling critical or sensitive workloads are

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

189

not scheduled on shared infrastructure with untrusted workloads. This prevents

potential security breaches caused by the interaction of sensitive and lower-security

Containers. The IWD-ACAR algorithm is designed to prevent co-location risks of

high-security containers with low-trust workloads, mitigating side-channel attacks

and other security vulnerabilities. The following mechanisms ensure secure container

placement:

• Co-Location Prevention for Sensitive Workloads: Ensure that sensitive

workloads are not scheduled on nodes shared with lower-trust workloads. For

this purpose, Containers are assigned trust levels based on their security

needs. High-security Containers are scheduled on nodes that meet strict

security criteria.

• Node Affinity with Security Tags: Node and pod affinity rules are deployed

to place Containers on the most appropriate nodes.

Table 1 discusses the complexity analysis of the IWD-ACSAR algorithm. The above

table provides the complete description of various complexities along with their time

complexity, like path selection complexity, security evaluation complexity, ACSAR

complexity, and dynamic adaptation complexity.

Table 1: Analysis of algorithm complexity

Complexity Analysis Description Time complexity

Path Selection Complexity The complexity of IWD in general is N*N

due to the fact that it outlines its paths after

the evaluation of the soil erosion and

velocity.

 O(N²)

Security Evaluation

Complexity

The proposed method looks at the

availability and security clearance of the

resources for each node at the time a

container is deployed. In the worst case, if

there are M containers and N nodes, the

search ranks will be of the order of M*N.

O(M × N)

Anti-Collocation and

Security Affinity Rules

Complexity

The Data eventually passes through the

affinity and anti-collocation rules that help

prevent some types of containers from

being placed together. Supposing that there

exist C affinity constraints and an anti-

collocation constraint, worst-case

complexity would be the addition of C and

A.

O(C+A)

Dynamic Adaptation

Complexity

In this method, there is always an active

tracking of real-time threats and the

consequent rescheduling of containers.

O(M log N)

IV. Result and Discussion

In this section, the performance measurement indices to be used in evaluating

and validating the IWD-ACAR algorithm are described. Based on the results

obtained, resource utilization, time consumption, energy consumed, and fault

tolerance were assessed as performance proportion measures on the IWD-ACAR

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

190

algorithm. The experiments are performed in a simulated cloud environment with the

IWD-ACAR algorithm and compared to other heuristics such as ACO, PSO, BCO,

CSO, and GA.

a. Performance Evaluation Metrics

The proposed IWD-based container scheduling algorithm is tested with its integrated

security mechanisms through benchmarking with some performance parameters.

These assess its efficiency in the resource usage, security, load distribution, power,

and ability to operate in shifting cloud conditions. The following are the details of

each of the metrics.

• Resource Utilization Efficiency (RUE)

The Resource Utilization Efficiency (RUE) measures the efficiency of the use of the

available cloud resources such as CPU, Memory, storage etc. (Eq. 1) In cloud

environments, resource allocation should be properly deployed to ensure that many

resources are not underutilized or overused, as it can put pressure on the expenses of

operation while diluting performance-described by high r values, the overall use of

resources in the cloud environments is better enhanced. The proposed IWD-ACAR

algorithm tried to improve the RUE because the containers are going to be provided

to the various nodes depending on the immediate availability and security necessity

of the resources. This is done by shifting the position of the containers over the

resources, given the different demands for use, to achieve a desirable manner in

which the resources are utilized to minimize the time during which the resources

remain idle.

RUE =
∑ Resources utilized by container 𝑐𝑖
𝑛
𝑖=1

∑ Total available resources in cloud node 𝑛𝑗
𝑛
𝑖=1

 (2)

From Table 1, it is evident that the performance of IWD-ACAR is better than other

algorithms, where it uses more resources, 15% higher than ACO and PSO**. This is

because, owing to the IWD algorithm, true to form, the containers are deployed to the

nodes that are endowed with the best resource profile.

• Makespan (Total Execution Time)

The Makespan means it takes the total amount of time for planning and executing all

concurrent operations in the system. Thus, makespan minimization is critical for

improving the cloud throughput and reducing waiting time. This is very important,

especially for those cloud service providers who have to perform many functions

within a limited period to perform their duties. The IWD algorithm defines that the

best possible nodes are selected depending on the current available resource and

security situations, which in turn reduces the total makespan and enhances the speed

of the containerized applications compared with the existing scheduling algorithms

like Round Robin/First Come, First Serve.

Makespan= MAX(Maximum of completion time of all scheduled Containers) (3)

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

191

From Table 1, it can be observed that IWD-ACAR outperforms the traditional

algorithms, such as PSO and GA, where it offers a makespan reduction of between

10% to 20%. This is mainly because resource and Security assessment in the

evaluation of nodes for selection are well optimized in this schedule.

• Load Balancing Factor (LBF)

The Load Balancing examines the effectiveness of the workload distribution among

all the available nodes. A balanced workload prevents the unnecessary overloading of

any node in the network. It reduces the chances of uneven distribution.

LBF =
MAX(Load of any NODE)−MIN(Load of any NODE)

∑ (Average load on all nodes)𝑚
𝑗=1

 (4)

The performance comparison between the IWD-ACAR algorithm and other

algorithms, such as ACO, PSO, and GA, is as follows: It can be evident from the

above tables that load balancing in the IWD-ACAR algorithm is better than the ACO,

PSO, and GA algorithms. The constant process of monitoring the algorithm, along

with its capability of adjusting it to the changes in the availability of resources, also

means this algorithm provides a balanced distribution of workload throughout the

clouds. The integrated security assessments ensure much sensitive containers are

assigned to nodes with a better enhanced security level, hence improving the load

balancing aspect.

• Security Risk Score (SRS)

SRS is defined as the extent of security risks in a cloud environment. As for several

antagonistic resources provided in multi-tenant structures, security is considered a

significant concern in cloud computing environments since the consumers of many of

these containers share conservative resources. It incorporates real-time security

assessments to provide optimum nodes that offer the least security threats, which

would reduce the overall probability of a security event happening in the containers

provided for their stay. The Security Risk Score (SRS) assesses the danger linked to

security weaknesses. The IWD-ACAR algorithm, because of its integrated security

features, greatly reduced the SRS in comparison to other algorithms.

SRS =
∑ Threats detected on node 𝑛𝑗
𝑚
𝑗=1

∑ Total containers deployed on node 𝑛𝑗
𝑚
𝑗=1

 (5)

Table 1 illustrates that the suggested IWD-ACAR algorithm enhances the overall

security of the cloud environment by guaranteeing that sensitive containers are

launched exclusively on nodes with sufficient protection. The performance

assessment reveals that 98% of security threats are identified and addressed in real-

time via the integrated monitoring system, marking a notable enhancement compared

to conventional scheduling techniques.

• Energy Efficiency (EE)

Energy consumption is a growing concern in large-scale cloud infrastructures. Energy

Efficiency (EE) measures the total energy consumed by the cloud nodes relative to

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

192

the workload. Cloud providers strive to optimize energy usage to reduce costs and

minimize the environmental impact of their data centers.

EE =
Total energy consumed by cloud nodes

Total execution time (Makespan)
 (6)

The IWD-ACAR algorithm improves energy efficiency by minimizing idle time and

reducing unnecessary resource usage. By dynamically adjusting the scheduling based

on real-time conditions, the algorithm reduces power consumption without sacrificing

performance. The evaluation results show that the proposed method achieves better

energy efficiency compared to traditional scheduling algorithms. Energy efficiency is

a growing concern in large-scale cloud computing infrastructures. As shown in Table

1, the IWD-ACAR with security feature presents 10-15% more efficiency in terms of

energy than the other algorithms, such as ACO and Bee-Colony Optimization.

Specifically, the cloud computing algorithm decreases the down times of nodes by

readjusting power resources flow within a particular period, depending on the

demand and associated security threats, thus saving energy.

• Threat Detection Rate (TDR)

Assessment of the algorithm’s ability to immediately respond to identified security

threats is captured in the Threat Detection Rate (TDR). In the cloud context,

especially for systems that store and process confidential data, it is important to focus

on threats and risks that may occur at any given time. Thus, a greater TDR points to

the level of threat identification that the algorithm has manifested before it penetrates

any particular system being under analysis. Due to its integrated security, the IWD

algorithm of the containers ensures the constant monitoring of their activity to be in a

position to counter any dangerous actions or vulnerabilities within the shortest time.

The Threat Detection Rate (TDR) measures the capacity of the system to detect

threats in the security domain. It can be seen from the metrics result Table 2, which

has the highest TDR because of the characteristic of real-time monitoring in the IWD-

ACAR algorithm.

TDR =
∑ Detected Threats on Node 𝑛𝑘
𝑚
𝑘=1

∑ Total possible Threats on Node 𝑛𝑘
𝑚
𝑘=1

 (6)

Table 2: Metrics Results

Algorithm RUE (%) Makespan

(sec)

LBF SRS EE

(Joules)

TDR

(%)

ACO 81.2 1090 0.33 0.15 820 75.5

PSO 78.9 1125 0.38 0.16 830 72.0

BCO 80.5 1110 0.35 0.14 815 77.3

CSO 79.3 1105 0.37 0.12 810 76.2

GA 82.1 1050 0.32 0.11 800 78.0

IWD-ACAR 89.3 975 0.28 0.10 785 98.5

b. Discussion

In this study, the simulation of the IWD-ACAR algorithm was performed with the

help of Python. The dataset employed to evaluate the algorithm's performance

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

193

includes a collection of containerized applications, each having distinct resource and

security needs. These containers were distributed across various cloud nodes (servers)

to evaluate the algorithm's capacity to enhance resource usage, reduce execution time,

and uphold strong security standards.

Fig. 2. Resource Utilization Efficiency

Fig. 3. Load Balancing Factor

Fig. 4. Makespan

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

194

Fig. 5. Threat Detection Rate

Fig. 6. Security Risk Factor

Fig. 7. Energy Efficiency

Figure 2 depicts the resource utilization efficiency. It is visible in the graph that our

proposed technique provides the best resource utilization efficiency. The task

migration frequency of each algorithm is represented in Figure 3. Our proposed

approach proves better in this parameter also. Figure 4 represents the makespan time

taken by each algorithm. Figure 5 represents the detection rate of each algorithm. Due

to our proposed approach security principle, the TDR rate is very high in this. Figure

6 shows the security risk factor, which is very less in our hybrid algorithm. Figure 7

shows the energy efficiency. Table 3 represents the dataset used to simulate the

aforementioned algorithms. The simulation environment in Python of the assigned

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

195

dataset consists of creating 500 container with the attributes of type Lightweight,

Medium, or Heavy, as well as randomized resource demands (CPU (0.5-4 cores),

memory (512MB- 8GB), and the storage (1-50GB)) and their security levels (Low,

Medium, or High). The simulated fifty cloud nodes are divided into three categories,

namely, Small, Medium, and Large, and the resource capacity of the cloud nodes is

also differentiated. A dynamic workload pattern is injected by simulating the

variation of demand over time by randomized time-step loads or sinusoidal functions

to represent real-life variation in usage. The simulation provides the possibility to do

several iterations to receive the statistical variance and help to evaluate the

dependability of the model based on t-test analyses. The Intelligent Water Drop

(IWD) algorithm will choose to identify optimal nodes and paths with anti-

collocation and affinity considerations. The output of each run, e.g., CPU/memory

utilization, makes pan, fault tolerance, and security score, will be saved in a

convenient structure to allow performing a detailed comparison of the output of each

run and plotting the graphs.

Table 3: Summary of Dataset Characteristics

Attribute Value

Number of Containers 500

Types of Containers Lightweight, Medium, Heavy

Resource Requirements CPU: 0.5–4 cores, Memory: 512 MB–8 GB,

Storage: 1–50 GB

Security Requirements Low, Medium, High

Number of Cloud Nodes 50

Node Types Small, Medium, Large

Workload Characteristics Dynamic (varying demand over time)

Table 4 summarizes the results. The results demonstrate that the IWD-ACAR

significantly outperforms other optimization algorithms in terms of resource

utilization, execution time, load balancing, security risk, and energy efficiency. The

embedded security features of the IWD-ACAR contributed to its superior

performance, particularly in security risk management and threat detection.

Table 4: Comparison of Optimization Algorithms for Cloud Scheduling

Algorithm Convergence

Speed

Resource

Utilization

Security

Integration

Dynamic

Adaptation

ACO Medium High Low Medium

PSO Fast Medium Low Medium

Bee Colony Slow High Low Low

Chicken Swarm Medium Medium Low Medium

Genetic Algorithm (GA) Fast High Low Medium

IWD-ACAR Fast Very High High High

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

196

Fig. 8. Resource utilization comparison of other algorithms with IWD-ACAR

Fig. 9. Convergence speed comparison of other algorithms with IWD-ACAR

Fig. 10. Security integration score comparison of other algorithms with IWD-ACAR

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

197

Fig. 11. Dynamic Adaptation efficiency comparison of other algorithms with IWD-ACAR

In addressing the statistical confirmation that the improvement realized by IWD-

ACAR was worthwhile to begin with, the simulated runs were administered severally

(n=30). All of the major metrics were recorded as p < 0.05 by a one-way ANOVA

test, which means that even the statistical result proves that the proposed method

positively impacts existing techniques. Moreover, boxplot and error bar graphs

indicate the reduced variance, which sets the reliability and robustness of the

suggested method on the dynamic conditions of the cloud.

Figure 8 shows the analysis of the utilized resource leverages in all six scheduling

algorithms, indicating that IWD-ACAR achieves and gives the best average

utilization of the resource of about 92 percent, which outperformed all the other

techniques. This implies that IWD-ACAR creates more efficient container workloads

across the cloud nodes, and low ticks of idle times are realized. Other algorithms,

such as GA and Bee Colony, perform well with a little more standard deviation,

which implies that they are inefficient at times. Comparatively, Chicken Swarm and

PSO are seen to be sub-optimally utilized, probably because they do not have as good

a placement strategy when faced with the dynamic requirements of containers.

Figure 9 shows that the crucial variable used to measure convergence speed is also

the number of iterations necessary to get optimal or near-optimal scheduling in a real-

time environment. IWD-ACAR has the lowest number of iterations needed to

converge to the desired solution, and this requires around 70 iterations, followed by

the GA, which needs about 90 iterations. The number of iterations was much higher

in older swarm-based algorithms like Bee Colony and Chicken Swarm, which were

over 180 and not suitable for rapid, dynamic scheduling. The more rapid convergence

of IWD-ACAR leads to quicker response to the changes in workloads, and also

reduces scheduling delay.

Figure 10 shows that the preference of IWD-ACAR is very decisive in security

integration scores, with an average of 85 among a series of 100 scores. This is way

higher compared to every other method that lies within the 30-35 scale. This positive

value of IWD-ACAR was possible because it is designed to keep the security

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

198

parameters in mind, like node trust intervals and anti-collocation policies. This

demonstrates its adequacy in the setup where conservation, segregation, and defence

of containers against malicious inside attacks, such as co-residency or injections of

malicious containers, are of fundamental importance.

Figure 11 shows that the dynamic adaptation score is used to rate the level of

responsiveness of each algorithm to the alterations in workload as time progresses.

IWD-ACAR once more competes with the other algorithms favorably, with 90 points

out of one hundred, showing better adaptability to change in container demands. The

classical algorithms, notably ACO and PSO, work relatively better, though Bee

Colony and Chicken Swarm do not cope with breathing systems in dynamic

environments. The resilience of IWD-ACAR in the subjected section ascertains that it

can be used to monitor densely dynamic cloud conditions where types of containers

and resource requirements often vary.

On all four major performance ingredients, namely, resource utilization, convergence

speed, dynamic integration security, and dynamic adaptation, the suggested IWD-

ACAR algorithm yields better outcomes. In addition, its low intrinsic variance and

reliable performance are made evident by the usage of error bars that are based on 30

simulation runs. These results support statistically and empirically the use of IWD-

ACAR rather than the traditional scheduling methods under modern settings where

security is sensitive and performance-intensive clouds are used.

Fig. 12. Comparison of IWD algorithms with IWD-ACAR

Figure 12 shows the comparison graph that shows the enhancement in the

performance of the traditional Intelligent Water Drop (IWD) algorithm by using the

Anti-collocation rule and the Secure Anti-affinity rule. In the key optimal results, the

secure version observes a significant decrease in the number of CPUs used, as well as

the memory up in more efficient utilization of resources. They are also more cost-

effective because the execution takes a shorter time, due to a good selection of the

nodes that will not overload it or be susceptible to attacks. The most important fact is

that the security score goes up dramatically, indicating the success of the work done

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

199

with the inclusion of security constraints into the scheduling. In general, an improved

IWD algorithm is not only optimally performing but also better secures the system

against side-channel attacks, counterfeit container injection, and co-location attacks.

V. Conclusion

The IWD-ACAR scheduling technique with embedded security effectively

tackles key challenges in resource utilization, load balancing, security, energy

efficiency, and scalability within cloud computing environments. With the integration

of intelligent decision making with real-time security monitoring, the proposed

algorithm significantly outperforms the existing scheduling methods. The proposed

work enhances the resource utilization while minimizing the makespan. Moreover,

this technique also ensures that the Container with sensitive information must be

deployed on highly secure nodes. In comparison to traditional scheduling techniques

like ACO, PSO, and GA, the IWD-ACAR algorithm offers a more energy-efficient

and secure approach.

Conflict of Interest:

There was no relevant conflict of interest regarding this paper.

References

I. Bachiega, Naylor G., Paulo S. L. de Souza, Sarita M. Bruschi, and

Simone do R. S. de Souza. “Container-Based Performance Evaluation: A

Survey and Challenges.” 2018 IEEE International Conference on Cloud

Engineering (IC2E), IEEE, April 2018, pp. 398–403.

10.1109/IC2E.2018.00075.

II. Rathi, Sugandha, Renuka Nagpal, Gautam Srivastava, and Deepti

Mehrotra. “A Multi-Objective Fitness Dependent Optimizer for

Workflow Scheduling.” Applied Soft Computing, vol. 152, 2024,

article 111247. 10.1016/j.asoc.2024.111247.

jscca.uotechnology.edu.iq+7dl.acm.org+7ouci.dntb.gov.ua+7

III. Li, Jun, Peng Wang, and Yan Zhang. “A Survey on Scheduling

Algorithms in Cloud Computing.” Journal of Cloud Computing, vol. 10,

no. 1, 2021, pp. 1–20. 10.3233/MGS-220217.

journals.sagepub.com+2dl.acm.org+2researchgate.net+2

IV. Jeon, Jueun, et al. "Efficient container scheduling with hybrid deep

learning model for improved service reliability in cloud

computing." IEEE Access (2024). 10.1109/ACCESS.2024.3396652

https://dl.acm.org/doi/10.1016/j.asoc.2024.111247?utm_source=chatgpt.com
https://dl.acm.org/doi/abs/10.3233/MGS-220217?utm_source=chatgpt.com
https://doi.org/10.1109/ACCESS.2024.3396652

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

200

V. Tabrizchi, Hamed, and Marjan Kuchaki Rafsanjani. "A survey on

security challenges in cloud computing: issues, threats, and

solutions." The journal of supercomputing 76.12 (2020): 9493-9532.

10.1007/s11227-020-03213-1

VI. Huang, Lin, Xuefeng Li, and Zhiqiang Zhang. “Security-Enhanced

Cloud Scheduling for Container-Based Environments.” IEEE

Transactions on Dependable and Secure Computing, vol. 20, no. 2, 2023,

pp. 1345 1357. 10.1145/3579856.3582835

VII. Xiong, Ke, Zhonghao Wu, and Xuzhong Jia. "DeepContainer: A Deep

Learning-based Framework for Real-time Anomaly Detection in Cloud-

Native Container Environments." Journal of Advanced Computing

Systems 5.1 (2025): 1-17.DOI: 10.69987/JACS.2025.50101

VIII. Parampottupadam, Santhosh, and Arghir-Nicolae Moldovann. "Cloud-

based real-time network intrusion detection using deep learning." 2018

International Conference on Cyber Security and Protection of Digital

Services (Cyber Security). IEEE, 2018.

10.1109/CyberSecPODS.2018.8560674

IX. Tao, Ye, et al. "Dynamic resource allocation algorithm for container-

based service computing." 2017 IEEE 13th international symposium on

autonomous decentralized system (ISADS). IEEE, 2017.

10.1109/ISADS.2017.20

X. Ahmad, Shahnawaz, et al. "Machine learning-based intelligent security

framework for secure cloud key management." Cluster Computing 27.5

(2024): 5953-5979. 10.1007/s10586-024-04288-8

XI. Altahat, Mohammad A., Tariq Daradkeh, and Anjali Agarwal.

"Optimized encryption-integrated strategy for containers scheduling and

secure migration in multi-cloud data centers." IEEE Access (2024).

10.1109/ACCESS.2024.3386169

XII. Muthakshi, S., and K. Mahesh. "Secure and energy-efficient task

scheduling in cloud container using VMD-AOA and ECC-

KDF." Malaysian Journal of Computer Science 37.1 (2024): 48-70.

10.22452/mjcs.vol37no1.2

XIII. Sadeghi Hesar, Alireza, Seyed Reza Kamel Tabakh, and Mahboobeh

Houshmand. "Task Scheduling Using the PSO-IWD Hybrid Algorithm in

Cloud Computing with Heterogeneous Resources." Journal of

Control 15.2 (2021): 81-96. 10.52547/joc.15.2.81

XIV. Pal, Souvik, et al. "An intelligent task scheduling model for hybrid

internet of things and cloud environment for big data

applications." Sustainability 15.6 (2023): 5104. 10.3390/su15065104

https://doi.org/10.1145/3579856.3582835

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025) pp 184-201

K. Sharma et al

201

XV. Mangalampalli, Sudheer M., et al. “Multi-Objective Prioritized Task

Scheduler Using Improved Asynchronous Advantage Actor Critic (A3C)

Algorithm in Multi-Cloud Environment.” IEEE Access, 2024.

10.1109/ACCESS.2024.3355092

XVI. Aron, Rajni, and Ajith Abraham. "Resource scheduling methods for

cloud computing environment: The role of meta-heuristics and artificial

intelligence." Engineering Applications of Artificial Intelligence 116

(2022): 105345. 10.1016/j.engappai.2022.105345

XVII. Yahia, Hazha Saeed, et al. "Comprehensive survey for cloud computing

based nature-inspired algorithms optimization scheduling." Asian Journal

of Research in Computer Science 8.2 (2021): 1-16.

10.9734/AJRCOS/2021/v8i230195

XVIII. Chen, Honghua, et al. "Container Scheduling Algorithms for Distributed

Cloud Environments." Processes 12.9 (2024): 1804. 10.3390/pr12091804

XIX. Rambabu, D., and A. Govardhan. “Optimized Data Replication in Cloud

Using Hybrid Optimization Approach.” Transactions on Emerging

Telecommunications Technologies, vol. 35, no. 11, 2024, e70022.

 10.1002/ett.70022

https://doi.org/10.1016/j.engappai.2022.105345
https://doi.org/10.3390/pr12091804
https://doi.org/10.1002/ett.70022

