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Abstract 

Container-based virtualization has become prominent as lightweight 

virtualization due to its scalability, resource utilization, and portability, especially in 

microservices. Container scheduler plays an essential role in Container services to 

optimize performance to reduce the overall cost by managing load balancing. 

However, scheduling Containers with efficiency while ensuring the Container 

security remains one of the major challenges. This paper presents a hybrid 

scheduling approach by combining a nature-inspired algorithm with the security 

principle. Our proposed technique combines the optimization of the Intelligent Water 

Drop (IWD) algorithm with Anti-Collocation and Security Affinity Rules (ACAR) to 

ensure the privacy of Containers. IWD-ACAR focuses on resource optimization, and 

one of the security concerns is that no more than two Containers should be placed on 

the less secure node. To simulate the proposed technique, we have used Python, and 

the simulation results demonstrate 25% improvement in the resource utilization along 

with a 98% threat detection rate in real-time monitoring. The proposed approach 

balances the various performance evaluation parameters like CPU utilization, 

memory utilization, along security in a cloud environment. 
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I. Introduction 

Cloud computing deals with essential services like on-demand access to virtual 

resources, broad network access, resource pooling, rapid elasticity, and measured 

services. It provides a shared pool of configurable resources that can be used with 

minimal involvement of resource providers. These resources can be accessed by the 

user at any point in time, as well as from any global location. These resources can be 

shared among multiple users by exploiting virtualization to render more flexibility for 

accommodating on-demand resource provisioning. Cloud providers divide physical 

servers into several virtual instances using Virtual Machines (VMs). Task scheduling 

is the most crucial function in the cloud system since it is connected to the cloud's 

effective performance. By executing several tasks concurrently on the same physical 

hardware this allows cloud providers to optimize resource consumption [XII]. In a 

cloud environment, a Container refers to a small and lightweight application that must 

be assigned to a server or node for execution. The process of allocating of node to a 

Container is known as scheduling. Container scheduling involves assigning resources 

like CPU, memory, and bandwidth so that Containers can be managed efficiently. 

While allocating the resources to the Container, ensuring the security of the Container 

becomes critical these days. Additionally. Security is a major concern when 

deploying Containers in the Cloud, as these environments are less secure against 

various network threats. Any vulnerability in the network can cause the complete 

containerized process to fail or get infected with malware [XIII]. 

This study presents a novel approach for scheduling Containers that integrates the 

Intelligent Water Drop (IWD) algorithm with enhanced security considerations 

through Anti-Collocation and Security Affinity Rules (ACAR). IWD-ACAR aims to 

ensure the resource efficiency with the security of the nodes where Containers are 

scheduled. The majority of existing scheduling algorithms, like as meta-heuristic, 

heuristic, and machine learning-based algorithms, prioritize performance optimization 

and efficient resource allocation while neglecting the security of nodes and 

Containers. To address this challenge, our proposed novel technique is to embed 

security as a core component of the scheduling process. Our proposed approach not 

only prioritizes efficient resource allocation but also ensures that Containers are 

securely scheduled. Figure 1 depicts the hybrid orchestration process. Any 

application requested by the user is wrapped up with necessary dependencies and 

libraries, including the host OS. Then this containerized process is scheduled on the 

most appropriate node by embedding security into it.  

Contribution: This article includes a thorough overview of the IWD algorithm and 

ACAR for scheduling containers that are already in use in the cloud. The major 

contributions of this paper include: 

• Optimized resource allocation to the Containers 

• Enhancing Container security using ACAR to prevent malicious attacks. 
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Fig. 1. Hybrid scheduling technique using IWD-ACAR. 

Paper Orientation: The rest of this paper is organized as follows. Section 2 

describes the literature review. Section 3 explains the proposed hybrid approach for 

Container scheduling. Section 4 explains the results and the discussion section. The 

paper is concluded in the last section. 

II.     Literature Review 

The increasing demand for cloud resources has driven extensive research into 

resource scheduling while ensuring security, as both play an important role in 

efficient resource utilization and Container scheduling. Li et al. [VII] have discussed 

various traditional scheduling techniques like Round Robin scheduling and First 

Come First Serve. These scheduling techniques struggle to manage dynamic 

workloads and do not perform efficiently, and to improve scheduling efficiency, 

heuristic and metaheuristic methods have been introduced. Gonzalez et al. [III] are 

concerned about the optimization of containers. The authors have established the 

model for optimization using the hybrid scheduling algorithm. Due to the increased 

demand for microservices in the current scenario, there is a need for optimized 

resource scheduling. Although the authors can achieve the basic optimization, there is 

a scope of extension in their work. This work can be applied to a real cloud container 

cluster to reduce the time complexity. Zhang et al. [XVII] have identified various 

security threats that can lead to various vulnerabilities in the Containers. The primary 

reason for the Container vulnerability is due to the shared operating system and 

kernel, which leads to the risk of exploitation. Moreover, Huang et al. [VIII] provided 

a security-enhanced Container scheduling approach while integrating encryption and 

decryption along with real-time safeguards. Liu et al. [XV] focus on the importance 

of real-time monitoring in detecting various vulnerabilities and malware. Chen et al. 

[IX] also focus on threat detection and monitoring in containerized applications. 

However, Kim and Park [V] proposed an adaptive solution to the resource allocation 

approach by adjusting resource distribution based on real-time data. Liu et al [VII] 

presented a machine learning-based scheduling framework that incorporates anomaly 

detection and threat mitigation within the same process of container placement, being 
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very applicable for cloud-native applications. Yang and Zhao [II] proposed another 

method to schedule the containers with security considerations to ensure that the 

containers that contain security-related information are deployed on the nodes with 

more security attributes, like isolation and encryption. Currently, Wang and Zhang 

[X] presented a secure container scheduling model based on the adaptive IWD 

algorithm. Thus, their results show how IWD can allocate containers profitably with 

security concerns, as well as adapt in terms of resources and security threats. In 

[XVIII], Gao and Zhou also confirmed the effectiveness of the IWD algorithm for 

time-critical security monitoring and dynamic resource allocation, and thus ideal for a 

cloud environment with fluctuating traffic demands. In the work of Tang and Lee [I], 

the authors explored how using artificial intelligence yields better results than 

conventional scheduling in terms of resources and security.  

III.    Intelligent Water Drop Algorithm 

The Intelligent Water Drop (IWD) algorithm offers a nature-inspired optimization 

approach for container scheduling in cloud computing. In this model, containers are 

treated as "water drops" that flow through a network of cloud nodes (servers), 

dynamically selecting the best paths based on resource availability and security 

requirements. Over time, this approach ensures optimal scheduling, effectively 

balancing performance and security [IV]. The IWD algorithm simulates the natural 

behaviour of water drops flowing in a riverbed. As water moves, it erodes soil and 

follows the path of least resistance, gradually discovering the optimal route. 

Similarly, in the container scheduling process, containers (water drops) navigate 

through a graph of physical nodes (riverbed), aiming to minimize resource conflicts, 

reduce energy consumption, and enhance security. 

a. Overview of the IWD-Based Scheduling Technique 

The proposed approach integrates resource-aware scheduling with security-aware 

placement, ensuring efficient resource utilization while mitigating security risks. The 

key Features of the IWD-Based Scheduling Technique: Initial Security Check, 

Resource Optimization Using IWD, and Real-Time Monitoring & Security Response. 

The proposed Hybrid IWD scheduling framework follows four main steps: 

• Step 1: Initialization: Initialize a set of Containers 

• Step 2: Path Selection: Node Assignment 

• Step 3: Security Evaluation: Examining the security level of each Node 

• Step 4: Dynamic Adaptation: Dynamically rescheduling of Containers based 

on resource availability 

Algorithm 1:  Pseudocode of the Proposed IWD-based Secure Container 

Scheduling Algorithm with Anti-Collocation and Affinity Rules 

1: Input: Set of containers C = {c1, c2, ..., cn}, Set of cloud nodes N = {n1, n2, ..., 

nm}, Security parameters S for each node, Resource parameters R for each 

container, Affinity rules Aaff, Anti-collocation rules Aanti. 

2: Output: Optimal schedule for containers on cloud nodes with embedded 

security, affinity, and anti-collocation. 
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3: Initialization: Initialize velocity vi and soil Si,j for each water drop (container) 

ci. Set initial security parameters for each node, nj. Set initial resource 

availability for each node, nj. Initialize affinity and anti-collocation rule 

matrices. 

4: For each container ci ∈ C do 

5:  Perform an initial security check on ci to ensure integrity 

6:  Initialize water drop behavior: set velocity vi and soil levels for ci 

7:  Initialize node availability for the container ci 

8:  While container ci is not scheduled do 

9:   for each node nj ∈ N do 

10:   Calculate the soil level Si,j between ci and nj 

11:  Calculate the velocity vi,j of the water drop ci moving to node nj 

12:  Evaluate the security level of node nj using parameters S 

13:  Evaluate the resource availability of node nj using parameters R 

14:  Check Affinity Rules: 

15:  If container ci has affinity with other containers (based on Aaff) then 

16:   Ensure ci is placed on the same node as its affinity containers 

17:  end if 

18:  Check Anti-Collocation Rules: 

19:  If container ci must avoid co-location with certain containers (based on 

Aanti) then 

20:   Ensure ci is placed on a node that doesn’t host restricted containers 

21:  end if 

22:  If node nj meets the security, resource, affinity, and anti-collocation 

requirements of ci then 

 

23:  Calculate the probability P(i,j) of assigning ci to nj : 

 

𝑃(𝑖, 𝑗) =
1

𝑆𝑖,𝑗
/∑

1

𝑆𝑖,𝑘
𝑘∈𝑁(𝑖)                                                                    (1) 

 

24:  end if 

25:  end for 

26:  Assign container ci to the node nj with the highest probability P(i, j) 

27:  Update the soil and velocity for the path between ci and nj 

28: end while 

29: After deployment, initiate real-time monitoring for security threats on ci 

30: If any security threat is detected on ci then 

31:  Migrate the container ci to a secure node or isolate it 

32: end if 

33: end for 

34: End of Algorithm 

b. Anti-Collocation and Security Affinity Rules 

To improve security, sensitive containers can be scheduled on physically or logically 

separate nodes to avoid co-residency attacks (e.g., side-channel attacks). Anti-

collocation policies ensure that containers handling critical or sensitive workloads are 
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not scheduled on shared infrastructure with untrusted workloads. This prevents 

potential security breaches caused by the interaction of sensitive and lower-security 

Containers. The IWD-ACAR algorithm is designed to prevent co-location risks of 

high-security containers with low-trust workloads, mitigating side-channel attacks 

and other security vulnerabilities. The following mechanisms ensure secure container 

placement: 

• Co-Location Prevention for Sensitive Workloads:  Ensure that sensitive 

workloads are not scheduled on nodes shared with lower-trust workloads. For 

this purpose, Containers are assigned trust levels based on their security 

needs. High-security Containers are scheduled on nodes that meet strict 

security criteria. 

• Node Affinity with Security Tags: Node and pod affinity rules are deployed 

to place Containers on the most appropriate nodes. 

 

Table 1 discusses the complexity analysis of the IWD-ACSAR algorithm. The above 

table provides the complete description of various complexities along with their time 

complexity, like path selection complexity, security evaluation complexity, ACSAR 

complexity, and dynamic adaptation complexity. 

Table 1: Analysis of algorithm complexity 

Complexity Analysis Description Time complexity 

Path Selection Complexity The complexity of IWD in general is N*N 

due to the fact that it outlines its paths after 

the evaluation of the soil erosion and 

velocity. 

 O(N²)  

Security Evaluation 

Complexity 

The proposed method looks at the 

availability and security clearance of the 

resources for each node at the time a 

container is deployed. In the worst case, if 

there are M containers and N nodes, the 

search ranks will be of the order of M*N.  

O(M × N) 

Anti-Collocation and 

Security Affinity Rules 

Complexity 

The Data eventually passes through the 

affinity and anti-collocation rules that help 

prevent some types of containers from 

being placed together. Supposing that there 

exist C affinity constraints and an anti-

collocation constraint, worst-case 

complexity would be the addition of C and 

A. 

O(C+A) 

Dynamic Adaptation 

Complexity 

In this method, there is always an active 

tracking of real-time threats and the 

consequent rescheduling of containers.  

O(M log N) 

IV.    Result and Discussion 

In this section, the performance measurement indices to be used in evaluating 

and validating the IWD-ACAR algorithm are described. Based on the results 

obtained, resource utilization, time consumption, energy consumed, and fault 

tolerance were assessed as performance proportion measures on the IWD-ACAR 
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algorithm. The experiments are performed in a simulated cloud environment with the 

IWD-ACAR algorithm and compared to other heuristics such as ACO, PSO, BCO, 

CSO, and GA. 

a. Performance Evaluation Metrics 

The proposed IWD-based container scheduling algorithm is tested with its integrated 

security mechanisms through benchmarking with some performance parameters. 

These assess its efficiency in the resource usage, security, load distribution, power, 

and ability to operate in shifting cloud conditions. The following are the details of 

each of the metrics. 

• Resource Utilization Efficiency (RUE) 

The Resource Utilization Efficiency (RUE) measures the efficiency of the use of the 

available cloud resources such as CPU, Memory, storage etc. (Eq. 1) In cloud 

environments, resource allocation should be properly deployed to ensure that many 

resources are not underutilized or overused, as it can put pressure on the expenses of 

operation while diluting performance-described by high r values, the overall use of 

resources in the cloud environments is better enhanced. The proposed IWD-ACAR 

algorithm tried to improve the RUE because the containers are going to be provided 

to the various nodes depending on the immediate availability and security necessity 

of the resources. This is done by shifting the position of the containers over the 

resources, given the different demands for use, to achieve a desirable manner in 

which the resources are utilized to minimize the time during which the resources 

remain idle.  

 

RUE =
∑ Resources utilized by container 𝑐𝑖
𝑛
𝑖=1

∑ Total available resources in cloud node 𝑛𝑗
𝑛
𝑖=1

                                            (2) 

From Table 1, it is evident that the performance of IWD-ACAR is better than other 

algorithms, where it uses more resources, 15% higher than ACO and PSO**. This is 

because, owing to the IWD algorithm, true to form, the containers are deployed to the 

nodes that are endowed with the best resource profile. 

• Makespan (Total Execution Time) 

The Makespan means it takes the total amount of time for planning and executing all 

concurrent operations in the system. Thus, makespan minimization is critical for 

improving the cloud throughput and reducing waiting time. This is very important, 

especially for those cloud service providers who have to perform many functions 

within a limited period to perform their duties. The IWD algorithm defines that the 

best possible nodes are selected depending on the current available resource and 

security situations, which in turn reduces the total makespan and enhances the speed 

of the containerized applications compared with the existing scheduling algorithms 

like Round Robin/First Come, First Serve. 

Makespan= MAX( Maximum of completion time of all scheduled Containers)       (3) 
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From Table 1, it can be observed that IWD-ACAR outperforms the traditional 

algorithms, such as PSO and GA, where it offers a makespan reduction of between 

10% to 20%. This is mainly because resource and Security assessment in the 

evaluation of nodes for selection are well optimized in this schedule. 

• Load Balancing Factor (LBF) 

The Load Balancing examines the effectiveness of the workload distribution among 

all the available nodes. A balanced workload prevents the unnecessary overloading of 

any node in the network. It reduces the chances of uneven distribution. 

LBF =
MAX(Load of any NODE)−MIN(Load of any NODE)

∑ (Average load on all nodes)𝑚
𝑗=1

                                    (4) 

The performance comparison between the IWD-ACAR algorithm and other 

algorithms, such as ACO, PSO, and GA, is as follows: It can be evident from the 

above tables that load balancing in the IWD-ACAR algorithm is better than the ACO, 

PSO, and GA algorithms. The constant process of monitoring the algorithm, along 

with its capability of adjusting it to the changes in the availability of resources, also 

means this algorithm provides a balanced distribution of workload throughout the 

clouds. The integrated security assessments ensure much sensitive containers are 

assigned to nodes with a better enhanced security level, hence improving the load 

balancing aspect. 

• Security Risk Score (SRS) 

SRS is defined as the extent of security risks in a cloud environment. As for several 

antagonistic resources provided in multi-tenant structures, security is considered a 

significant concern in cloud computing environments since the consumers of many of 

these containers share conservative resources. It incorporates real-time security 

assessments to provide optimum nodes that offer the least security threats, which 

would reduce the overall probability of a security event happening in the containers 

provided for their stay. The Security Risk Score (SRS) assesses the danger linked to 

security weaknesses. The IWD-ACAR algorithm, because of its integrated security 

features, greatly reduced the SRS in comparison to other algorithms. 

SRS =
∑ Threats detected on node 𝑛𝑗
𝑚
𝑗=1

∑ Total containers deployed on node 𝑛𝑗
𝑚
𝑗=1

                                                  (5) 

Table 1 illustrates that the suggested IWD-ACAR algorithm enhances the overall 

security of the cloud environment by guaranteeing that sensitive containers are 

launched exclusively on nodes with sufficient protection. The performance 

assessment reveals that 98% of security threats are identified and addressed in real-

time via the integrated monitoring system, marking a notable enhancement compared 

to conventional scheduling techniques. 

• Energy Efficiency (EE) 

Energy consumption is a growing concern in large-scale cloud infrastructures. Energy 

Efficiency (EE) measures the total energy consumed by the cloud nodes relative to 
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the workload. Cloud providers strive to optimize energy usage to reduce costs and 

minimize the environmental impact of their data centers. 

EE =
Total energy consumed by cloud nodes

Total execution time (Makespan)
                                                         (6) 

The IWD-ACAR algorithm improves energy efficiency by minimizing idle time and 

reducing unnecessary resource usage. By dynamically adjusting the scheduling based 

on real-time conditions, the algorithm reduces power consumption without sacrificing 

performance. The evaluation results show that the proposed method achieves better 

energy efficiency compared to traditional scheduling algorithms. Energy efficiency is 

a growing concern in large-scale cloud computing infrastructures. As shown in Table 

1, the IWD-ACAR with security feature presents 10-15% more efficiency in terms of 

energy than the other algorithms, such as ACO and Bee-Colony Optimization. 

Specifically, the cloud computing algorithm decreases the down times of nodes by 

readjusting power resources flow within a particular period, depending on the 

demand and associated security threats, thus saving energy. 

• Threat Detection Rate (TDR) 

Assessment of the algorithm’s ability to immediately respond to identified security 

threats is captured in the Threat Detection Rate (TDR). In the cloud context, 

especially for systems that store and process confidential data, it is important to focus 

on threats and risks that may occur at any given time. Thus, a greater TDR points to 

the level of threat identification that the algorithm has manifested before it penetrates 

any particular system being under analysis. Due to its integrated security, the IWD 

algorithm of the containers ensures the constant monitoring of their activity to be in a 

position to counter any dangerous actions or vulnerabilities within the shortest time. 

The Threat Detection Rate (TDR) measures the capacity of the system to detect 

threats in the security domain. It can be seen from the metrics result Table 2, which 

has the highest TDR because of the characteristic of real-time monitoring in the IWD-

ACAR algorithm. 

TDR =
∑ Detected Threats on Node 𝑛𝑘
𝑚
𝑘=1

∑ Total possible Threats on Node 𝑛𝑘
𝑚
𝑘=1

                                                    (6) 

Table 2: Metrics Results 

Algorithm RUE (%) Makespan 

(sec) 

LBF SRS EE 

(Joules) 

TDR 

(%) 

ACO 81.2 1090 0.33 0.15 820 75.5 

PSO 78.9 1125 0.38 0.16 830 72.0 

BCO 80.5 1110 0.35 0.14 815 77.3 

CSO 79.3 1105 0.37 0.12 810 76.2 

GA 82.1 1050 0.32 0.11 800 78.0 

IWD-ACAR 89.3 975 0.28 0.10 785 98.5 

b. Discussion 

In this study, the simulation of the IWD-ACAR algorithm was performed with the 

help of Python. The dataset employed to evaluate the algorithm's performance 
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includes a collection of containerized applications, each having distinct resource and 

security needs. These containers were distributed across various cloud nodes (servers) 

to evaluate the algorithm's capacity to enhance resource usage, reduce execution time, 

and uphold strong security standards. 
 

 
Fig. 2. Resource Utilization Efficiency 

 

 
 

Fig. 3. Load Balancing Factor 
 

 
 

Fig. 4. Makespan 
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Fig. 5. Threat Detection Rate 

 

 
Fig. 6. Security Risk Factor 

 

 

 
Fig. 7. Energy Efficiency 

 

Figure 2 depicts the resource utilization efficiency. It is visible in the graph that our 

proposed technique provides the best resource utilization efficiency. The task 

migration frequency of each algorithm is represented in Figure 3. Our proposed 

approach proves better in this parameter also. Figure 4 represents the makespan time 

taken by each algorithm. Figure 5 represents the detection rate of each algorithm. Due 

to our proposed approach security principle, the TDR rate is very high in this. Figure 

6 shows the security risk factor, which is very less in our hybrid algorithm. Figure 7 

shows the energy efficiency. Table 3 represents the dataset used to simulate the 

aforementioned algorithms. The simulation environment in Python of the assigned 
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dataset consists of creating 500 container with the attributes of type Lightweight, 

Medium, or Heavy, as well as randomized resource demands (CPU (0.5-4 cores), 

memory (512MB- 8GB), and the storage (1-50GB)) and their security levels (Low, 

Medium, or High). The simulated fifty cloud nodes are divided into three categories, 

namely, Small, Medium, and Large, and the resource capacity of the cloud nodes is 

also differentiated. A dynamic workload pattern is injected by simulating the 

variation of demand over time by randomized time-step loads or sinusoidal functions 

to represent real-life variation in usage. The simulation provides the possibility to do 

several iterations to receive the statistical variance and help to evaluate the 

dependability of the model based on t-test analyses. The Intelligent Water Drop 

(IWD) algorithm will choose to identify optimal nodes and paths with anti-

collocation and affinity considerations. The output of each run, e.g., CPU/memory 

utilization, makes pan, fault tolerance, and security score, will be saved in a 

convenient structure to allow performing a detailed comparison of the output of each 

run and plotting the graphs. 

Table 3: Summary of Dataset Characteristics 

Attribute Value 

Number of Containers 500 

Types of Containers Lightweight, Medium, Heavy 

Resource Requirements CPU: 0.5–4 cores, Memory: 512 MB–8 GB, 

Storage: 1–50 GB 

Security Requirements Low, Medium, High 

Number of Cloud Nodes 50 

Node Types Small, Medium, Large 

Workload Characteristics Dynamic (varying demand over time) 

 

Table 4 summarizes the results. The results demonstrate that the IWD-ACAR 

significantly outperforms other optimization algorithms in terms of resource 

utilization, execution time, load balancing, security risk, and energy efficiency. The 

embedded security features of the IWD-ACAR contributed to its superior 

performance, particularly in security risk management and threat detection. 

Table 4: Comparison of Optimization Algorithms for Cloud Scheduling 

Algorithm Convergence 

Speed 

Resource 

Utilization 

Security 

Integration 

Dynamic 

Adaptation 

ACO Medium High Low Medium 

PSO Fast Medium Low Medium 

Bee Colony Slow High Low Low 

Chicken Swarm Medium Medium Low Medium 

Genetic Algorithm (GA) Fast High Low Medium 

IWD-ACAR Fast Very High High High 
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Fig. 8. Resource utilization comparison of other algorithms with IWD-ACAR 

 

 
Fig. 9. Convergence speed comparison of other algorithms with IWD-ACAR 

 
Fig. 10. Security integration score comparison of other algorithms with IWD-ACAR 
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Fig. 11. Dynamic Adaptation efficiency comparison of other algorithms with IWD-ACAR 

 

In addressing the statistical confirmation that the improvement realized by IWD-

ACAR was worthwhile to begin with, the simulated runs were administered severally 

(n=30). All of the major metrics were recorded as p < 0.05 by a one-way ANOVA 

test, which means that even the statistical result proves that the proposed method 

positively impacts existing techniques. Moreover, boxplot and error bar graphs 

indicate the reduced variance, which sets the reliability and robustness of the 

suggested method on the dynamic conditions of the cloud.  

Figure 8 shows the analysis of the utilized resource leverages in all six scheduling 

algorithms, indicating that IWD-ACAR achieves and gives the best average 

utilization of the resource of about 92 percent, which outperformed all the other 

techniques. This implies that IWD-ACAR creates more efficient container workloads 

across the cloud nodes, and low ticks of idle times are realized. Other algorithms, 

such as GA and Bee Colony, perform well with a little more standard deviation, 

which implies that they are inefficient at times. Comparatively, Chicken Swarm and 

PSO are seen to be sub-optimally utilized, probably because they do not have as good 

a placement strategy when faced with the dynamic requirements of containers.  

Figure 9 shows that the crucial variable used to measure convergence speed is also 

the number of iterations necessary to get optimal or near-optimal scheduling in a real-

time environment. IWD-ACAR has the lowest number of iterations needed to 

converge to the desired solution, and this requires around 70 iterations, followed by 

the GA, which needs about 90 iterations. The number of iterations was much higher 

in older swarm-based algorithms like Bee Colony and Chicken Swarm, which were 

over 180 and not suitable for rapid, dynamic scheduling. The more rapid convergence 

of IWD-ACAR leads to quicker response to the changes in workloads, and also 

reduces scheduling delay.  

Figure 10 shows that the preference of IWD-ACAR is very decisive in security 

integration scores, with an average of 85 among a series of 100 scores. This is way 

higher compared to every other method that lies within the 30-35 scale. This positive 

value of IWD-ACAR was possible because it is designed to keep the security 
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parameters in mind, like node trust intervals and anti-collocation policies. This 

demonstrates its adequacy in the setup where conservation, segregation, and defence 

of containers against malicious inside attacks, such as co-residency or injections of 

malicious containers, are of fundamental importance. 

Figure 11 shows that the dynamic adaptation score is used to rate the level of 

responsiveness of each algorithm to the alterations in workload as time progresses. 

IWD-ACAR once more competes with the other algorithms favorably, with 90 points 

out of one hundred, showing better adaptability to change in container demands. The 

classical algorithms, notably ACO and PSO, work relatively better, though Bee 

Colony and Chicken Swarm do not cope with breathing systems in dynamic 

environments. The resilience of IWD-ACAR in the subjected section ascertains that it 

can be used to monitor densely dynamic cloud conditions where types of containers 

and resource requirements often vary.  

On all four major performance ingredients, namely, resource utilization, convergence 

speed, dynamic integration security, and dynamic adaptation, the suggested IWD-

ACAR algorithm yields better outcomes. In addition, its low intrinsic variance and 

reliable performance are made evident by the usage of error bars that are based on 30 

simulation runs. These results support statistically and empirically the use of IWD-

ACAR rather than the traditional scheduling methods under modern settings where 

security is sensitive and performance-intensive clouds are used. 
 

 
Fig. 12. Comparison of IWD algorithms with IWD-ACAR 

Figure 12 shows the comparison graph that shows the enhancement in the 

performance of the traditional Intelligent Water Drop (IWD) algorithm by using the 

Anti-collocation rule and the Secure Anti-affinity rule. In the key optimal results, the 

secure version observes a significant decrease in the number of CPUs used, as well as 

the memory up in more efficient utilization of resources. They are also more cost-

effective because the execution takes a shorter time, due to a good selection of the 

nodes that will not overload it or be susceptible to attacks. The most important fact is 

that the security score goes up dramatically, indicating the success of the work done 
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with the inclusion of security constraints into the scheduling. In general, an improved 

IWD algorithm is not only optimally performing but also better secures the system 

against side-channel attacks, counterfeit container injection, and co-location attacks. 

V.     Conclusion 

The IWD-ACAR scheduling technique with embedded security effectively 

tackles key challenges in resource utilization, load balancing, security, energy 

efficiency, and scalability within cloud computing environments. With the integration 

of intelligent decision making with real-time security monitoring, the proposed 

algorithm significantly outperforms the existing scheduling methods. The proposed 

work enhances the resource utilization while minimizing the makespan. Moreover, 

this technique also ensures that the Container with sensitive information must be 

deployed on highly secure nodes. In comparison to traditional scheduling techniques 

like ACO, PSO, and GA, the IWD-ACAR algorithm offers a more energy-efficient 

and secure approach. 
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