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Abstract 

A novel closed-type modified anti-Gaussian 4-point transformed rule has been 

developed for solving Cauchy principal value complex integrals. Furthermore, a more 

precise mixed quadrature rule MQ(f), has been created by combining the closed-type 

modified quadrature rule with the Gauss-Legendre 2-point transformed technique. 

Theoretical analysis of errors confirms the enhanced performance of the newly 

proposed quadrature rule. Numerical computation of various sample integrals is 

performed. The numerical calculations demonstrate the superiority of the new rule 

among others. 

Keywords: Cauchy principal value integrals, Gauss-Legendre transformed rule, 

closed-type anti-Gaussian transformed rule, mixed rule, singularity. 

I.   Introduction 

In complex analysis, Cauchy principal value problems commonly appear when 

working with complex functions. A special type of Cauchy principal value (CPV) 

integral is given by  

𝐼(𝑓(𝑧)) = ∫
𝑧0  +  ℎ

𝑧0−ℎ

𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧  (1) 

 where 𝑓(𝑧)  is analytic in simply connected domain Ω = {𝑧 ∈ 𝐶:  |𝑧 − 𝑧0| ≤ 𝜌 =

𝑟|ℎ|: 𝑟 > 1} containing the line segment 𝑧 = 𝑧0 + ℎ𝑡;  −1 ≤ 𝑡 ≤ 1. 
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These types of integrals show up in various fields like signal processing, potential 

theory, and solving boundary value problems. However, evaluating these integrals 

directly can be difficult because the singularities make them undefined or divergent. 

Therefore, a numerical approach can be employed by transforming standard quadrature 

for real integrals, adapting it to effectively solve the CPV integral. In 1979, Acharya 

and Das [I] developed a transformed rule by utilizing the pair of rules originally 

formulated by Price [VIII]. Many authors [VI, XIII] also successfully constructed rules 

for the numerical solution of CPV integrals. The anti-quadrature rule was introduced 

by D.P. Laurie in 1996 [IV]. He developed a suboptimal anti-Gaussian quadrature rule 

by using the Gaussian quadrature rule. This approach offered a different way to 

numerically evaluate definite integrals of analytic functions over an interval [−1,1]. 

In literature review, methods such as Richardson extrapolation and  Kronrod extension 

[IX, VII] are known to improve the accuracy of certain mathematical rules, but these 

methods can be quite complicated. To simplify this, in 1996, R.N. Das and G. Pradhan 

introduced a more straightforward approach called the mixed quadrature rule, as 

discussed in [XII]. Very recently, in 2025, Tusar Singh et al [XVIII] worked on a mixed 

quadrature technique of higher precision. Further studies in [III, XI, II] have also 

successfully improved accuracy by applying a combination of simpler quadrature rules. 

S.K.Mohanty and R.B.Dash [XV] in 2022 generalised the idea of mixed quadrature 

rule in their paper.  

In this paper, getting inspiration from Laurie, a closed-type anti-Gaussian 4-point rule 

𝐴𝐺4(𝑓) has been constructed by adopting the Gauss-Legendre 2-point rule, which is 

then utilised to construct an anti-Gaussian 4-point transformed rule for solving Cauchy 

principal value integrals involving complex-valued functions. The error associated with 

the rule is thoroughly analysed, and a hybrid quadrature rule is constructed via blending 

anti-Gaussian 4-point and Gauss-Legendre 2-point transformed rules. Furthermore, the 

theoretical predictions of the rule are validated numerically using test integrals. 

II.    Formulation of Closed Type Anti-Gaussian 4-point Transformed Rule 
 

  Making partial modifications to D. P. Laurie’s principle, a closed-type anti-

Gaussian 4-point rule, denoted as 𝐴𝐺4(𝑓)  is developed utilizing the following 

characteristics: 

    • The nodes −1 and 1 are fixed as pre-assigned endpoints.  

    • Error related to 𝐴𝐺4(𝑓) is −
1

2
 times the  error of the Gauss-Legendre 2-

point    

       rule when applied to integrate polynomials of degree up to 5. This    

       relationship can  be expressed  mathematically as: 

𝐴𝐺4(𝑓) = 𝜔1𝑓(−1) + 𝜔2𝑓(𝜉1) + 𝜔3𝑓(𝜉2) + 𝜔4𝑓(1)      (2) 

such that 
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 𝐼(𝑓) − 𝐴𝐺4(𝑓) = −
[𝐼(𝑓)−𝐺2(𝑓)]

2
 

      𝑂𝑟,    𝐴𝐺4(𝑓) =
3𝐼(𝑓)−𝐺2(𝑓)

2
                                (3) 

𝑤ℎ𝑒𝑟𝑒      𝐺2(𝑓) = 𝑓 (√
1

3
) + 𝑓 (−√

1

3
)             (4) 

Choosing the monic polynomials 1, 𝜉, 𝜉2, 𝜉3, 𝜉4, 𝜉5 and using them in (3), we get the 

following equations.  

  𝜔1 + 𝜔2 + 𝜔3 + 𝜔4 = 2 

−𝜔1 + 𝜔2𝜉1 + 𝜔3𝜉2 + 𝜔4 = 0 

𝜔1 + 𝜔2𝜉1
2 + 𝜔3𝜉2

2 + 𝜔4 =
2

3
 

−𝜔1 + 𝜔2𝜉1
3 + 𝜔3𝜉2

3 + 𝜔4 = 0 

𝜔1 + 𝜔2𝜉1
4 + 𝜔3𝜉2

4 + 𝜔4 =
22

45
 

−𝜔1 + 𝜔2𝜉1
5 + 𝜔3𝜉2

5 + 𝜔4 = 0 

  Solving the above system of equations, we have 

𝜉1 = √
2

15
, 𝜉2 = −√

2

15
, 𝜔2 =

20

26
= 𝜔3, 𝜔1 =

6

26
= 𝜔4 

 By putting the values of 𝜉𝑖’s and 𝜔𝑖’s in Equation(2), we get  

𝐴𝐺4(𝑓) =
6

26
𝑓(−1) +

20

26
𝑓 (√

2

15
) +

20

26
𝑓 (−√

2

15
) +

6

26
𝑓(1)        (5) 

 Considering the suggestion to transform the integral employing a Lather [V] 

transformation, Equation (1) can be rewritten as:  

𝐼(𝑓(𝑧)) = ∫
1

−1

𝑓(𝑧0+ℎ𝑡)

𝑡
𝑑𝑡        − 1 ≤ 𝑡 ≤ 1            (6) 

 Substituting equation (5) in (6), the closed-type anti-Gaussian 4-point transformed rule 

is formulated as follows:  

𝐴𝐺4(𝑓(𝑧)) =  

 
6

20
[𝑓(𝑧0 + ℎ) − 𝑓(𝑧0 − ℎ)] +

5√30

13
[𝑓 (𝑧0 + ℎ√

2

15
) − 𝑓 (𝑧0 − ℎ√

2

15
)]    (7) 

II.i. Error Analysis 

Theorem 1  

Assuming an analytic function 𝑓(𝑧) over interval[𝑧0 − ℎ, 𝑧0 + ℎ]. Then, error 

associated with AG4(f(z)) is given by  
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𝐸𝐴𝐺4(𝑓(𝑧)) = −
1

1350
ℎ5𝑓𝑣(𝑧0) −

19529

309582000
ℎ7𝑓𝑣𝑖𝑖(𝑧0)−. .. 

Proof:  

 The error corresponding to the rule defined in  (7) is given by  

             𝐸𝐴𝐺4(𝑓(𝑧)) = 𝐼(𝑓(𝑧)) − 𝐴𝐺4(𝑓(𝑧))                                  (8) 

  Taylor series expansion of  f(z)  about 𝑧0 is given by 

𝑓(𝑧) = 𝑓(𝑧0) +
𝑓′(𝑧0)

1!
(𝑧 − 𝑧0) +

𝑓′′(𝑧0)

2!
(𝑧 − 𝑧0)2 +

𝑓′′′(𝑧0)

3!
(𝑧 − 𝑧0)3 + ⋯      (9) 

 Using equation (9) in (8), we have  

𝐸𝐴𝐺4(𝑓(𝑧)) = −
1

1350
ℎ5𝑓𝑣(𝑧0) −

19529

309582000
ℎ7𝑓𝑣𝑖𝑖(𝑧0) − ⋯           (10) 

  Degree of precision  of 𝐴𝐺4(𝑓(𝑧)) is 4. 

III.    Formulation of Gauss-Legendre 2-point Transformed Rule: 

A Gauss-Legendre 2-point [XIV, X] transformed rule, by utilizing (4), is 

constructed for numerical approximation of the Cauchy principal value integral defined 

in (1). The rule is given by  

𝐺2(𝑓(𝑧)) = √3 [𝑓(𝑧0 +
ℎ

√3
) − 𝑓(𝑧0 −

ℎ

√3
)]                                       (11) 

III.i.    Error Analysis 

Theorem 2  

Assuming an analytic function 𝑓(𝑧) over interval [𝑧0 − ℎ, 𝑧0 + ℎ]. Then  error 

associated with G2(f(z)) is given by  

𝐸𝐺2(𝑓(𝑧)) =
1

675
ℎ5𝑓𝑣(𝑧0) +

1

23814
ℎ7𝑓𝑣𝑖𝑖(𝑧0)+. ..                         (12) 

 Proof:   

             Use Taylor series expansion about 𝑧0. 

The aforementioned theorem indicates that the level of precision is four. 

IV.    Construction of Mixed Quadrature Rule 

 Combined integration rule of enhanced degree is formulated by using 𝐴𝐺4(𝑓(𝑧)) 

and 𝐺2(𝑓(𝑧)) transformed rules. By [ XV, XVI, XVII], a mixed quadrature rule can be 

defined by  

𝑀𝑄(𝑓(𝑧)) = 𝛼1𝐴𝐺4(𝑓(𝑧)) + 𝛼2𝐺2(𝑓(𝑧))              (13) 

 Such that 𝛼1 + 𝛼2 = 1  
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 Multiplying 𝛼1 and 𝛼2 with equations (10) and (12) respectively, and adding them, we 

have  

𝐸𝑀𝑄(𝑓(𝑧)) = (−
𝛼1

1350
+

𝛼2

675
) ℎ5𝑓𝑣(𝑧0) + (−

19529⋅𝛼1

309582000
+

𝛼2

23815
) ℎ7𝑓𝑣𝑖𝑖(𝑧0) + ⋯ 

(14) 

 where 𝐸𝑀𝑄(𝑓(𝑧)) = 𝐼(𝑓(𝑧)) − 𝑀𝑄(𝑓(𝑧)), error associated with the mixed rule. 

 Restricting the degree of precision of 𝑀𝑄(𝑓(𝑧)) to 6 ,we have  

𝛼1 + 𝛼2 = 1 

−
𝛼1

1350
+

𝛼2

675
= 0 

 Solving the above equations, we obtain  

𝛼1 =
2

3
 

𝛼2 =
1

3
 

  Putting the above values in (13), the mixed rule will become  

𝑀𝑄(𝑓(𝑧)) =
2

3
𝐴𝐺4(𝑓(𝑧)) +

1

3
𝐺2(𝑓(𝑧)) 

Which has a degree of precision of 6.  

IV.i.   Error Analysis  

Theorem 3  

Assuming an analytic function 𝑓(𝑧) in  domain Ω along  line  L with end points z0 −

h and z0 + h .Then  error associated with MQ(f(z)) is given by  

EMQ(f(z)) =
−8686

61425 × 7!
h7f vii(z0) −

73578

394875 × 9!
h9f ix(z0) … 

V.      Results and Discussion 

  Numerical evaluations of test integrals have been conducted to verify the 

theoretical predictions, as demonstrated through tables and figures. The results, 

presented in these tables and figures, include a comparison of our method with the 4-

point rule R(f) from [VI], highlighting the differences in accuracy and efficiency 

between the two methods.  

The results of the test integrals due to 𝐺2(𝑓(𝑧)), 𝑅(𝑓), 𝐴𝐺4(𝑓(𝑧)), 𝑀𝑄(𝑓(𝑧))  are 

reflected in the Table-1,2,3,4. The modulus of truncation errors E1 ,  E2 , E3 , E4         

associated with these rules, respectively, are also provided in the Table-1,2,3,4. 
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Table  1: 𝑰𝟏 = ∫
𝒊

−𝒊

𝒆𝒛

𝒛
𝒅𝒛 

 Exact Value   1.892166140734366i  

𝑮𝟐(𝒇(𝒛))   1.8907261113408342i  

|𝑬𝟏|   0.001440029393531717  

𝑹(𝒇)   1.905428775506396i  

|𝑬𝟐|   0.013262634772030157  

𝑨𝑮𝟒(𝒇(𝒛))   1.8928719260409321i  

|𝑬𝟑|   0.000705785306566176  

𝑴𝑸(𝒇(𝒛))   1.8921566544742325i  

|𝑬𝟒|   0.000009486260133418  

 

Table  2: 𝐈𝟐 = ∫
𝐢

−𝐢

𝟏+𝐳𝐜𝐨𝐬𝐳

𝐳
𝐝𝐳 

 Exact Value   2.3504023872876i  

𝑮𝟐(𝒇(𝒛))   2.3426960879097303i  

|𝑬𝟏|   0.007706299377869819  

𝑹(𝒇)   2.417642383665751i  

|𝑬𝟐|   0.067239996378150924  

𝑨𝑮𝟒(𝒇(𝒛))   2.354361381358771i  

|𝑬𝟑|   0.003958994071171063  

𝑴𝑸(𝒇(𝒛))   2.350472950209091i  

|𝑬𝟒|   0.000070562921490769  

 

Table  3: 𝑰𝟑 = ∫

(𝒊+𝟏)

√𝟐
−(𝒊+𝟏)

√𝟐

𝒛𝟐𝒆𝒛

𝒛
𝒅𝒛 

 Exact Value   -0.5168305647486302+0.4226120102352736i  

𝑮𝟐(𝒇(𝒛))  -0.4971537270819438+0.4447823752407798i  

|𝑬𝟏|   0.029642925379228392  

𝑹(𝒇)   -0.7028991466676475+0.23205575087880048i  

|𝑬𝟐|   0.266332884108000323  

𝑨𝑮𝟒(𝒇(𝒛))   -0.5262155849127564+0.41111299553928676i  

|𝑬𝟑|   0.014842706709343066  

𝑴𝑸(𝒇(𝒛))   -0.5165282989691522+0.42233612210645105i  

|𝑬𝟒|   0.000409241812463809  
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Table  4: 𝑰𝟒 = ∫
𝒊

−𝒊

(𝟏+𝒛)𝒆𝒛

𝒛
𝒅𝒛 

 Exact Value   3.5751081103501594i  

𝑮𝟐(𝒇(𝒛))   3.5665497667308204i  

|𝑬𝟏|   0.008558343619339048  

𝑹(𝒇)   3.654552273207412i  

|𝑬𝟐|   0.079444162857252643  

𝑨𝑮𝟒(𝒇(𝒛))   3.5792742052415036i  

|𝑬𝟑|   0.004166094891344230  

𝑴𝑸(𝒇(𝒛))   3.5750327257379424i  

|𝑬𝟒|   0.000075384612217011  

The figure provided below shows the behaviour of the integrand in 𝐼1. 

 
                                                     Fig. 1. 

The following figure represents the behaviour of the integrand of 𝐼2. 

 
                                                         Fig. 2. 
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The figure depicted below demonstrates the behaviour of the integrand in 𝐼3. 

 
                                                         Fig. 3. 

The following figure represents the behaviour of the integrand in 𝐼4. 

 
                                                         Fig. 4. 

To provide a better comparison of the constructed rule with both its base rules and the 

approach presented in [VI], the absolute values of the truncation errors 𝐸1, 𝐸2, 𝐸3, 𝐸4 

obtained by the four quadrature rules 𝐺2(𝑓(𝑧)), 𝑅(𝑓), 𝐴𝐺4(𝑓(𝑧)), 𝑀𝑄(𝑓(𝑧)) , 

respectively, when applied to the test integrals 𝐼1 to 𝐼4, are shown in  Figure-5. 
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Fig. 5. 

Observations: 

 The following observations are derived from the Table-1,2,3,4 and Figure 5: 

    • For integral-1, we observed that the absolute value of truncation error of 

𝑀𝑄(𝑓) is significantly less than those of 𝐴𝐺4(𝑓) and 𝐺2(𝑓). 𝑀𝑄(𝑓) gives an accurate 

result up to 5 significant places, whereas 𝐴𝐺4(𝑓) gives accuracy up to 4 significant 

places. 𝐺2(𝑓) is accurate up to 3 significant places, while 𝑅(𝑓) has the highest error, 

retaining accuracy up to only 1 significant place. From the error comparison figure, it 

can be seen that 𝑀𝑄(𝑓) provides a better result than its base rule and 𝑅(𝑓), further 

confirming its superior accuracy. 

    • For integral-2, we observed that the absolute value of truncation error of 

𝑀𝑄(𝑓) is significantly less than those of 𝐴𝐺4(𝑓) and 𝐺2(𝑓). 𝑀𝑄(𝑓) gives an accurate 

result up to 5 significant places, whereas 𝐴𝐺4(𝑓) gives accuracy up to 3 significant 

places. 𝐺2(𝑓) is accurate up to 2 significant places, while 𝑅(𝑓) has the highest error, 

retaining accuracy up to only 1 significant place. From the error comparison figure, it 

can be seen that 𝑀𝑄(𝑓) provides a better result than its base rule and 𝑅(𝑓), further 

confirming its superior accuracy. 

    • For integral-3 real part of 𝑀𝑄(𝑓)  gives an accurate result up to 3 

significant places, whereas the imaginary part of 𝑀𝑄(𝑓) also gives an accurate result 

up to 3 significant places. 𝐴𝐺4(𝑓) gives the real part accurate up to 1 significant place 

and the imaginary part up to 1 significant place as well. 𝐺2(𝑓) gives the imaginary part 

up to 1 significant place. 𝑅(𝑓) has the highest error and does not provide a correct 

result up to any significant place. From the error comparison, it can be seen that 𝑀𝑄(𝑓) 

provides a better result than its base rule and 𝑅(𝑓). 

    • For integral-4, we observed that the absolute value of truncation error of 

𝑀𝑄(𝑓) is significantly less than those of 𝐴𝐺4(𝑓) and 𝐺2(𝑓). 𝑀𝑄(𝑓) gives an accurate 

result up to 4 significant places, whereas 𝐴𝐺4(𝑓) gives accuracy up to 3 significant 

places. 𝐺2(𝑓) is accurate up to 2 significant places, while 𝑅(𝑓) has the highest error, 
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retaining accuracy up to only 1 significant place. From the error comparison figure, it 

can be seen that 𝑀𝑄(𝑓) provides a better result than its base rule and 𝑅(𝑓), further 

confirming its superior accuracy.  

VI.    Conclusions 

The tables and graphs suggest that the developed closed-type mixed rule 

generally provides more accurate, favorable results compared to its base rule and the 

alternative proposed by [VI]. The degree of precision of the final quadrature rule is 6 

where whereas the degrees of precision of other rules are less. Also, the error value of 

the final quadrature rule is very minimal compared to other quadrature rules. The error 

value of quadrature rules varies inversely with their corresponding degree of precision. 

Hence newly constructed quadrature rule 𝑀𝑄(𝑓)  is the most efficient as compared to 

other methods. In the future, this work can be further improved using splines and 

various interpolation formulas. It can be further extended to multidimensional 

quadrature rules. 
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