JOURNAL OF MECHANICS OF CONTINUA AND
MATHEMATICAL SCIENCES
www.journalimems.org

ISSN (Online): 2454 -7190, Vol.-20, No.-7, July (2025) pp 171-183 ISSN (Print) 0973-8975

A MODIFIED CLOSED-TYPE HYBRID QUADRATURE
FOR THE NUMERICAL SOLUTION OF SINGULAR
COMPLEX-VALUED INTEGRALS

Bibhuranjan Nayak!, Shubhankar Palai?, Dwiti Krushna Behera?
Tusar Singh*

123 Department of Mathematics, Ravenshaw University, Cuttack-753003
Odisha, India.

“Department of Mathematics, Siksha O Anusandhan University, Bhubaneswar,
Odisha, India.

Email: thibhuranjan12345@gmail.com, 2shubhankarpalai96 @gmail.com,
3dkb_math@ravenshawuniversity.ac.in, “tusarsingh@soa.ac.in

Corresponding Author: Dwiti Krushna Behera
https://doi.org/10.26782/jmcms.2025.07.00010

(Received: April 13, 2025; Revised: June 23, 2025; Accepted: July 06, 2025)

Abstract

A novel closed-type modified anti-Gaussian 4-point transformed rule has been
developed for solving Cauchy principal value complex integrals. Furthermore, a more
precise mixed quadrature rule MQ(f), has been created by combining the closed-type
modified quadrature rule with the Gauss-Legendre 2-point transformed technique.
Theoretical analysis of errors confirms the enhanced performance of the newly
proposed quadrature rule. Numerical computation of various sample integrals is
performed. The numerical calculations demonstrate the superiority of the new rule
among others.

Keywords: Cauchy principal value integrals, Gauss-Legendre transformed rule,
closed-type anti-Gaussian transformed rule, mixed rule, singularity.

I. Introduction

In complex analysis, Cauchy principal value problems commonly appear when
working with complex functions. A special type of Cauchy principal value (CPV)
integral is given by

I(f(z) = [ L2 g, (1)

Zg—h z-2zq

where f(z) is analytic in simply connected domain Q={z€C: |z—2zy| <p =
r|h|:r > 1} containing the line segment z = z, + ht; —1 <t <1.
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These types of integrals show up in various fields like signal processing, potential
theory, and solving boundary value problems. However, evaluating these integrals
directly can be difficult because the singularities make them undefined or divergent.
Therefore, a numerical approach can be employed by transforming standard quadrature
for real integrals, adapting it to effectively solve the CPV integral. In 1979, Acharya
and Das [I] developed a transformed rule by utilizing the pair of rules originally
formulated by Price [VI111]. Many authors [V1, XI111] also successfully constructed rules
for the numerical solution of CPV integrals. The anti-quadrature rule was introduced
by D.P. Laurie in 1996 [IV]. He developed a suboptimal anti-Gaussian quadrature rule
by using the Gaussian quadrature rule. This approach offered a different way to
numerically evaluate definite integrals of analytic functions over an interval [—1,1].

In literature review, methods such as Richardson extrapolation and Kronrod extension
[IX, VII] are known to improve the accuracy of certain mathematical rules, but these
methods can be quite complicated. To simplify this, in 1996, R.N. Das and G. Pradhan
introduced a more straightforward approach called the mixed quadrature rule, as
discussed in [XI11]. Very recently, in 2025, Tusar Singh et al [ XV111] worked on a mixed
guadrature technique of higher precision. Further studies in [Ill, XI, 1] have also
successfully improved accuracy by applying a combination of simpler quadrature rules.
S.K.Mohanty and R.B.Dash [XV] in 2022 generalised the idea of mixed quadrature
rule in their paper.

In this paper, getting inspiration from Laurie, a closed-type anti-Gaussian 4-point rule
AG,(f) has been constructed by adopting the Gauss-Legendre 2-point rule, which is
then utilised to construct an anti-Gaussian 4-point transformed rule for solving Cauchy
principal value integrals involving complex-valued functions. The error associated with
the rule is thoroughly analysed, and a hybrid quadrature rule is constructed via blending
anti-Gaussian 4-point and Gauss-Legendre 2-point transformed rules. Furthermore, the
theoretical predictions of the rule are validated numerically using test integrals.

Il.  Formulation of Closed Type Anti-Gaussian 4-point Transformed Rule

Making partial modifications to D. P. Laurie’s principle, a closed-type anti-
Gaussian 4-point rule, denoted as AG,(f) is developed utilizing the following
characteristics:

* The nodes —1 and 1 are fixed as pre-assigned endpoints.
* Error related to AG,(f) is —%times the error of the Gauss-Legendre 2-
point
rule when applied to integrate polynomials of degree up to 5. This
relationship can be expressed mathematically as:

AGL(f) = w1f (1) + w2 f(§1) + w3f(§2) + waf (1) (2)
such that
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I1(f) — AG4(f) = _[1(f>—2_62(f)1

31 -G
Or, AG,(f) = L&D ®)

where G,(f) = f(\/g) +f<—\/§> 4

Choosing the monic polynomials 1, &, &2, &3, &4, &> and using them in (3), we get the
following equations.

(1)1+(U2+(1)3+(U4:2

-+ wyé w3 +w, =0

W1+ W87 + w38l + wy =<

3
_0)1 + (szf + 0)3523 + 0)4 = 0
4 4 22
Wy + Wy¢1 + w3é; + wy = 75

—wq + wsz + w3€25 + Wy = 0

Solving the above system of equations, we have

5_zf_ 2 206
17 {15’ %2~ 15’ 2 T g6 3L T 56 T 4

By putting the values of &;’s and w;’s in Equation(2), we get

160 = g+ 25 ([B)+ 2 (- E)+ 20 ©

Considering the suggestion to transform the integral employing a Lather [V]
transformation, Equation (1) can be rewritten as:

If@) =1 2™ 0ar  —1<t<1 (6)

Substituting equation (5) in (6), the closed-type anti-Gaussian 4-point transformed rule
is formulated as follows:

AG4(f(2)) =

20[f(Zo+h) f(zo = )] +—[f< +h\/7> f(Zo—h\/lzr)] (")

ILi. Error Analysis

Theorem 1

Assuming an analytic function f(z) over interval[z, — h, z, + h]. Then, error
associated with AG, (f(z)) is given by
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EAG — 1 h5 v 19529 h7 vii
o) = = WS (20) = 55 T P (z) ..

Proof:
The error corresponding to the rule defined in (7) is given by
EAG,(f(2)) = 1(f(2)) — AG.(f(2)) (8)

Taylor series expansion of f(z) about z, is given by
f' Vil £
f(2) = f(z) +%(Z —Zp) +$(z —20)2 +%(z - 20)3 4+ (9)

Using equation (9) in (8), we have

EAGL(f(2)) = = 5= h3f"(20) = sooers hf"i(zg) =+ (10)

Degree of precision of AG,(f(2)) is 4.
I11. Formulation of Gauss-Legendre 2-point Transformed Rule:

A Gauss-Legendre 2-point [XIV, X] transformed rule, by utilizing (4), is
constructed for numerical approximation of the Cauchy principal value integral defined
in (1). The rule is given by

h h
G(f(2) = V3 |f (20 + ) — f(20 — )] (12)
I1Li. Error Analysis
Theorem 2

Assuming an analytic function f(z) over interval [z, — h, z, + h]. Then error
associated with G, (f(z)) is given by

EGy(f(2)) = —h>F¥(20) + s W7 f"4(z)+. . (12)

Proof:

Use Taylor series expansion about z,.
The aforementioned theorem indicates that the level of precision is four.
IV. Construction of Mixed Quadrature Rule

Combined integration rule of enhanced degree is formulated by using AG,(f(2))
and G, (f (z)) transformed rules. By [ XV, XVI, XVII], a mixed quadrature rule can be
defined by

MQ(f(2)) = a14G4(f(2)) + a2 G2 (f(2)) (13)

Suchthata; + a, =1
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Multiplying a4 and a, with equations (10) and (12) respectively, and adding them, we
have

EMQ(f(2)) = (— ok + 2 ) hS£7(20) + (= soamae + =) 7 i (29) + -

1350 675 309582000 23815
(14)

where EMQ(f(z)) = I(f(z)) — MQ(f(2)), error associated with the mixed rule.
Restricting the degree of precision of MQ(f(z)) to 6 ,we have

ata, =1
a, ar
— — =0
1350 + 675
Solving the above equations, we obtain

a]_:

a, =

Wl WwWliN

Putting the above values in (13), the mixed rule will become

MOU (@) = 3 AG () +3 62 (2)
Which has a degree of precision of 6.
IV.i. Error Analysis
Theorem 3

Assuming an analytic function f(z) in domain Q along line L with end points z, —
h and zy + h .Then error associated with MQ(f(z)) is given by

8686 rviigy 73578
61425 x 7! “0) 394875 x 9

V. Results and Discussion

EMQ(f(2)) = h°fX(z,) ...

Numerical evaluations of test integrals have been conducted to verify the
theoretical predictions, as demonstrated through tables and figures. The results,
presented in these tables and figures, include a comparison of our method with the 4-
point rule R(f) from [VI], highlighting the differences in accuracy and efficiency
between the two methods.

The results of the test integrals due to G,(f(2)), R(f),AG4(f(2)), MQ(f(z)) are
reflected in the Table-1,2,3,4. The modulus of truncation errors E,, E,, E3, E,
associated with these rules, respectively, are also provided in the Table-1,2,3,4.
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Table 1: I, = f_ii %dz

Table 2: 1, = [1, 22 dg

i

(i+1)

2

zzez

dz

z

ﬁ
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Table 4: I, = [, 2% dz

-1

G,(f(2)) 3.5665497667308204i
3.654552273207412i

R(f)

AG,(f(2)) 3.5792742052415036i

MQ(f(2)) 3.5750327257379424i
I

The figure provided below shows the behaviour of the integrand in I;.

Contours of Real (blue) and Imaginary (red) Parts of f(z) = ;
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Fig. 1.

The following figure represents the behaviour of the integrand of I,.
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The figure depicted below demonstrates the behaviour of the integrand in I5.
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Fig. 3.

The following figure represents the behaviour of the integrand in 1.
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Fig. 4.

To provide a better comparison of the constructed rule with both its base rules and the
approach presented in [VI], the absolute values of the truncation errors E;, E,, E3, E,
obtained by the four quadrature rules G,(f(2)),R(f),AG4(f(2)), MQ(f(2)) ,
respectively, when applied to the test integrals I; to I,, are shown in Figure-5.
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Fig. 5.
Observations:

The following observations are derived from the Table-1,2,3,4 and Figure 5:

» For integral-1, we observed that the absolute value of truncation error of
MQ(f) is significantly less than those of AG,(f) and G,(f). MQ(f) gives an accurate
result up to 5 significant places, whereas AG,(f) gives accuracy up to 4 significant
places. G, (f) is accurate up to 3 significant places, while R(f) has the highest error,
retaining accuracy up to only 1 significant place. From the error comparison figure, it
can be seen that MQ(f) provides a better result than its base rule and R(f), further
confirming its superior accuracy.

* For integral-2, we observed that the absolute value of truncation error of
MQ(f) is significantly less than those of AG,(f) and G,(f). MQ(f) gives an accurate
result up to 5 significant places, whereas AG,(f) gives accuracy up to 3 significant
places. G, (f) is accurate up to 2 significant places, while R(f) has the highest error,
retaining accuracy up to only 1 significant place. From the error comparison figure, it
can be seen that MQ(f) provides a better result than its base rule and R(f), further
confirming its superior accuracy.

* For integral-3 real part of MQ(f) gives an accurate result up to 3
significant places, whereas the imaginary part of MQ(f") also gives an accurate result
up to 3 significant places. AG,(f) gives the real part accurate up to 1 significant place
and the imaginary part up to 1 significant place as well. G, (f) gives the imaginary part
up to 1 significant place. R(f) has the highest error and does not provide a correct
result up to any significant place. From the error comparison, it can be seen that MQ(f)
provides a better result than its base rule and R(f).

* For integral-4, we observed that the absolute value of truncation error of
MQ(f) is significantly less than those of AG,(f) and G,(f). MQ(f) gives an accurate
result up to 4 significant places, whereas AG,(f) gives accuracy up to 3 significant
places. G, (f) is accurate up to 2 significant places, while R(f) has the highest error,
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retaining accuracy up to only 1 significant place. From the error comparison figure, it
can be seen that MQ(f) provides a better result than its base rule and R(f), further
confirming its superior accuracy.

VI. Conclusions

The tables and graphs suggest that the developed closed-type mixed rule
generally provides more accurate, favorable results compared to its base rule and the
alternative proposed by [VI]. The degree of precision of the final quadrature rule is 6
where whereas the degrees of precision of other rules are less. Also, the error value of
the final quadrature rule is very minimal compared to other quadrature rules. The error
value of quadrature rules varies inversely with their corresponding degree of precision.
Hence newly constructed quadrature rule MQ(f) is the most efficient as compared to
other methods. In the future, this work can be further improved using splines and
various interpolation formulas. It can be further extended to multidimensional
quadrature rules.
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