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Abstract 

             This paper presents a comprehensive analysis of a feedback queue model 

with a Priority mechanism and investigates its behavior under stochastic conditions. 

This model comprises two serially connected service channels, with priority applied 

exclusively to the first service channel. Upon entry, customers are classified into two 

groups-low and high priority. A preemptive priority discipline is used at the first 

server to distinguish between high- and low-priority customers, thereby reflecting 

real-world service hierarchies. The feedback mechanism in the model allows for a 

maximum of one time only for the customer’s satisfaction with the service. The 

arrival of the customers is governed by a Poisson process and and service times at 

both servers are assumed to follow independently and be exponentially distributed. 

Upon service completion at the second server, customers may either exit the system 

permanently or re-enter the network through a feedback loop. The Steady-state 

behavior of the system is captured through a set of differential equations, which are 

solved by using the generating function technique combined with classical calculus 

laws. Various queue performance indicators, including average queue length, 

variance in queues, server utilization, and total duration time, are discussed. In the 

last section, a comparative study of the model with the literature is also discussed. 

The model’s behaviour is well demonstrated both graphically and numerically and 

provides an in-depth understanding of how each parameter influences the overall 

system performance, and the obtained results prove the stability and accuracy of the 

model. The insights derived from the analysis could help understand the design and 

optimization of the queueing model in different settings such as hospitals, 

manufacturing industries, and telecommunications. 
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I.  Introduction 

              Queueing theory plays a vital role in the analysis of diverse domains such as 

industrial systems, manufacturing companies, hospitals, and telecommunications 

networks. In the queuing theory context, it is necessary to identify that not all users 

are always homogeneous; they can exhibit heterogeneous characteristics. Due to these 

differences, it is essential to implement a priority mechanism in the system. O’Brien 

[XIII] discussed the problems of queuing theory with their potential Solution. Jackson 

[VII] contributed to studying the queuing problems for two-phase and three-phase 

systems. Finch P.D. [IV] expanded the field further by examining the cyclic queues 

with feedback. Subsequent advancements in queuing theory have included the 

contributions of Luo C. et al [XII], who discussed the transient queue size distribution 

solution of queues with feedback, and Pang Y. [XIV] introduced the concept of a 

retrial queue system with preemptive resume and Bernoulli Feedback. Later on, Singh 

T.P et al [XIX] made a remarkable work in analyzing the behavior of various 

feedback queue models, and Kusum [VIII] developed mathematical modeling of 

various feedback and fuzzy queue network models. Tyagi A. et al. [XX] explained 

the behavior of impatient customers by taking a serial queue model in a stochastic 

environment. Zadeh A.B. [XXII] focused on a multi-phase system including random 

feedback in service, single vacation, and batch arrival. Kumar S.. et al. [IX- X] 

studied a feedback queuing model of three servers and explored the probability of 

customers receiving service at most twice. Gupta R. et al [V-VI] analyzed a bi-serial 

server with bulk arrival, contributing to the understanding of complex queueing 

networks. After that, Ajewole O.R et al [I] explored a Preemptive priority queue 

model in which the service unit follows an Erlang type distribution. Later on, Dudin 

A. et al [III, XI] further advanced the field by analyzing both single server and multi-

class queues with batch arrivals, unreliable service, dynamic change of Priorities, and 

also analyzed a priority queueing system with enhanced fairness of servers. After 

that, Saini V. et al [XVI] analyzed the behavior of a feedback queue system 

consisting of two serial servers, with arriving customers are impatient in behavior. 

Saini A. et al [XV] discussed the mathematical study of two serial servers with the 

concept of priority and reneging. Later on, Sangeeta et al [XVII] analyzed a serial 

queue with the use of reneging, feedback, and discouragement, offering a more 

nuanced approach to understanding customer behavior. Agarwal D. et al [II] 

participated by examining a retrial priority G-queue network model with Bernoulli 

feedback and detecting the optimal working vacation service rate. Shree V. et al 

[XVIII] studied a priority queue system with batch arrival and Bernoulli feedback and 

determined the optimal working vacation service rate. Recently, Liu L. et al [XXI] 

examined a two-stage Queueing system with priority.  

In the current study, we undertake an in-depth analysis of a priority-based feedback 

queueing model, which extends the foundational work of Saini A. et al. [XV]. The 

main objective of this paper is to investigate the key queue characteristics using a 

combination of advanced mathematical tools, including probability-generating 

functions and calculus-based methodologies. Additionally, graphical analysis is to be 
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performed to facilitate a deeper understanding of the model and to illustrate its 

behavior easily. 

II.     Model Description, Notations used, and their Practical implication 

Assumptions  

          The following assumptions of this model are: 

• A customer who is willing to get service may join the first service channel, and 

after getting service from this service channel, they will go to the next phase for 

service. 

• Arrival unit follows a Poisson distribution, and the Service unit follows an 

exponential distribution. 

• Feedback is allowed only once, i.e., Revisit of the customers is allowed only 

once. 

• A Preemptive priority discipline is followed by customers 

• The Arrival Population is infinite in this model. 
 

Practical Implications 

Queueing theory has diverse and widespread applications across various sectors, 

offering valuable insights for customer satisfaction and operational efficiency. 

Queueing theory has been used in banking, telecommunications, hospitals, parks, 

offices, manufacturing industries, educational institutions, saloons, etc. One practical 

example can be seen in the context of a theater. In this setting, customers seeking to 

purchase tickets can be divided into two groups:  low-priority customers like adults, 

and high-priority customers like kids, VIPs, senior citizens, etc. These groups are 

processed according to a priority rule; high-priority customers are given precedence 

in getting service at the ticket counter. In the case where a customer is unsuccessful 

in getting a ticket during their initial attempts, the system allows revisiting the 

facility at the ticket counter. The revisit facility not only enhances customer 

satisfaction but also emphasizes the importance of prioritizing particular customer 

groups to manage resources effectively. By applying appropriate priority and 

feedback mechanisms, service providers can better balance customer demand with 

available resources, reduce wait duration, and increase overall satisfaction. 

Notation Used in the Model 

               The terminology applied in the current study is shown in Table 1: 

Table 1(Notations used in the model) 

Service Channel SC1 SC2 

Arrival Rate 
1 1,H L   - 

Service Rate 
1 1,H L   2  

No. of Customers 
1 1,H Ln n  2n  

Probability of the 

Customers moving from 

one service channel to 

another service channel 

SC1           SC2              

12a  

SC2             SC1                     21a
 

SC2            exit ( 2a )     
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III. Mathematical Modeling of the Proposed Model 

          In this model, there are two service channels, SC1 and SC2, which are in series. 

Both types of customers (low and high priority) arrive in the system to get service 

with arrival rates 1 1,H L   and service rates 1 1,H L  . Priority is allowed only service 

channel SC1. The arriving customers first go to service channel SC1 to take service 

based on some priority rule, and after getting service from service channel SC1, they 

may go to service channel SC2 with a probability 12a . After getting service from SC2, 

either a customer exits from the system with probability 2a  , or if he is not satisfied 

with the service, then he may visit again to the service channel SC1 again with 

probability 21a . Finally, he may exit from the system with the same probability 2a  

demonstrated in Figure 1: 

 
Fig. 1. (Proposed Priority and Feedback Queue Model with two Serial Channels) 

Justification for Parameter Selection  

The arrival and service rate parameters (such as 1 1,H L  , 1 1,H L  and 2 ) utilized in 

mathematical computations are selected in accordance with typical ranges noticed in 

similar queueing models [XV, XVI]. These values correspond to moderate traffic 

intensity(λ/μ) <1, thereby ensuring the system stability (i.e system remains in steady 

state). Their ranges were further evaluated using a sensitivity analysis to ensure the 

robustness of the performance measures. 

IV. Steady State Analysis of the Model 

            The Steady state form of the differential difference equation is outlined as 

below: 

  

1 1 2

1
1 1 2 1 1 1

1 1 2 1 1 1 1

1 1 2 1 1
1 2

1 1 21 1 2 22 2 2

2
( ) , , 1, , , 1,

, , 1 , , 1 , , 1

, , 0
H L

H
H L H H L

H L H L H L

L H H L
L

H

When

P P Pn n n n n n n n n

P a P a Pn n n n n n n n n

n n n

     

  
+ −

+ + + = +− −

+ + +− + +
         

 (I) 

  

1 1 2

1 1 2 2
( ) 0,0,0 0,0,1

, , 0
H L

H L

When

P a P

n n n

  + =

=

                                                             (II)
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Solution Methodology 

              By taking all the possible combinations of 1 1 2, ,H Ln n n , a Total of (I) to 

(VIII) equations have been obtained. Both Generating and partial generating 

function techniques are employed to solve the differential difference equation in 

steady state as given in the following sections: 

1 1 2

1 1 2

1 1 2

, ,

0 0 0

( , , ) H L

H L

H L

n n n

n n n

n n n

N X Y Z P X Y Z
  

= = =

=                        (1)                 

And the Partial generating function techniques are given as: 

  
1

1 2 1 1 2

1

, , ,

0

( ) H

L H L

H

n

n n n n n

n

N X P X


=

=                                                (2)                                                                                                                                                                                                                                           

  
1

2 1 2

1

,

0

( , ) ( ) L

L

L

n

n n n

n

N X Y N X Y


=

=                                        (3)                                                                                                                                 

  
2

2

1 0

( , , ) ( , )
L

n

n

n

N X Y Z N X Y Z


=

=                                            (4)                                                                                    

 The solution for steady-state equations may be obtained by solving equations (I) to 

(VIII) by using (1) to (4) gives equation (5): 

21 2
1 1 1 2 2

3 1

21 2
1 1 1 2

(1 ) (1 ) (1 )

(1 )

( , , )

(1 ) (1 ) (1 ) (1 )

H L

L

H L H

a X aZ Z
S S

X Y Z Z

Z
S

Y
N X Y Z

a X aZ
X Y

X Z Z

  



   

   
− − − + − −   

    
  
+ −  

  =
 − + − + − + − −
 
 
 
 
 

                                               

                                                                                                                 (5) 

For convenience, let us take 

  1 0 2 0,0 3 0( , ), ( ), ( , )S N Y Z S N Z S N X Y= = =   

Now, after putting X=Y=Z=1 in equation (5), an indeterminate form (i.e 
0

0

 
 
 

) arises  

 

whose solution can be found by using L’Hospital’s rule. Taking Y=Z=1 and 

differentiating w.r.t X, we get: 
 

                                           (6) 

Taking X=Z=1 and differentiating w.r.t Y, we get: 

           1 1 3 1 1L L LS S  − + = −                                                                           (7)                                                                                     

 

1 1 21 2 2 1 1 21 2H H HS a S a    − = − + −
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Taking X=Y=1 and differentiating w.r.t Z, we get: 

1 1 1 2 2 3 1 1 2( )H L L HS S S     − + + − = − +                                        (8)                                                                                                                                                                      

Solving equations (6) to (8), we obtain the following values of S1, S2, and S3: 

  
21 1 1

1

1 21

1
(1 )

L H

H

a
S

a

 



 +
= − 

−                                                                  (9)

 

  
1 1

2

2 21

1
(1 )

L HS
a

 



 +
= − 

−                                                                      (10)

 

  21 1 1 1
3

1 21 1

1
(1 )

L H L

H L

a
S

a

  

 

 +
= − + 

−                                                          (11)

 

And the Utilization factor at different Servers is given below: 

 

 

 

 

 

Convergence and Numerical Stability of Generating Function Approach 

In the present Feedback-priority queue network model, the system behavior has been 

investigated through a sequence of steady-state differential equations (see Equations 

(I) to (VIII)). These equations were transformed into generating function form using a 

3-variable probability generating function (PGF), as defined in Equation (1): 

  1 1 2

1 1 2

1 1 2

, ,

0 0 0

( , , ) H L

H L

H L

n n n

n n n

n n n

N X Y Z P X Y Z
  

= = =

=     

To ensure the numerical validity of this function and the model results derived from 

it, the convergence of the generating function was checked under the following 

scenarios: 

• Convergence Region: For the PGF to be convergent, the magnitude of the 

variables must fulfill the condition ∣X∣=∣Y∣=∣Z∣≤1 

• Stability Condition: The system's traffic intensity<1 for each queueing 

service channel, guaranteeing that the PGF series converges absolutely. 

• Normalization Check: At X=Y=Z=1, the generating function meets 

N(1,1,1)=1, confirming the total probability condition. 

• Indeterminate form: At X=Y=Z=1 and N(1,1,1)=1, an indeterminate form 

must be required to provide the result. 

21 1 1
1

1 21

1 1
2

2 21

21 1 1 1
3

1 21 1

(1 )

(1 )

(1 )

L H

H

L H

L H L

H L

a

a

a

a

a
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• Similar convergence methods have been used in related works (Kusum 

[VIII], Gupta R. [V]). 

Queue Performance Indicators 

The Queue performance indicators have been calculated by using the following 

formulas: 

a) Expected Queue length: 

  
1 1 2H Ln n nL L L L= + +  

Where 

1 1 2

31 2

1 3 2

, ,
1 1 1H Ln n n

vv v
L L L

v v v
= = =

− − −
 

b) Variance in Queues:  

  
1 1 2H Ln n nVariance V V V= + +  

Where  

1 1 2

31 2

2 2 2

1 3 2

, ,
(1 ) (1 ) (1 )H Ln n n

vv v
V V V

v v v
= = =

− − −
 

(c) Expected Wait Time of the customers: 

   
1 1( ) , H L

L
Expt W Where   


= = +  

Behavioral Analysis of the Model through Numerical Illustrations 

In the following analysis, different queue performance metrics, including average 

queue length, wait time, and variance in queues, etc., are examined by taking different 

combinations of arrival and service rate as given in Table 2: 

Table 2: Arrival rate for low and high priority customers, service rate for low 

and high priority customers, and probability values for Customers' visits 

1 1 1 1 2 21 25, 3, 19, 21, 16, 0.2, 0.8H L H L a a    = = = = = = =  

 

 
Fig. 1. Average and partial queue length versus arrival rate for high priority 

customers, i.e., 𝜆1H w.r.t. Table 3 
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Table 3: Traffic Intensity, Average Queue Length, Partial queue length, customer’s 

waiting time, and variance of queues w.r.t 𝜆1H i.e. arrival rate for high priority 

customers as shown in the table: 

 

1H
 

1  2  3  
L1 L2 L3 L Varianc

e 

Expt 

(W) 

1 0.1053 0.3125 0.2481 0.3300 0.1176 0.4545 0.9022 1.2315 0.1128 

1.5 0.1382 0.3516 0.2810 0.3908 0.1603 0.5422 1.0933 1.5657 0.1367 

2 0.1711 0.3906 0.3139 0.4575 0.2063 0.6410 1.3049 1.9677 0.1631 

2.5 0.2039 0.4297 0.3468 0.5309 0.2562 0.7534 1.5406 2.4557 0.1926 

5 0.3684 0.6250 0.5113 1.0462 0.5833 1.6667 3.2962 7.5086 0.4120 

7 0.5000 0.7813 0.6429 1.8000 1.0000 3.5714 6.3714 23.3665 0.7964 

10 0.6316 0.9375 0.7744 3.4333 1.7143 15 20.1476 259.8742 2.5185 

Table 4: Traffic Intensity, Average Queue Length, Partial queue length, 

customer’s waiting time, and variance of queues w.r.t. 𝝀1L, i.e., arrival rate for 

low priority customers as shown in the table: 

1L  1  2  3  
L1 L2 L3 L Variance Expt 

(W) 

1 0.3421 0.4688 0.3897 0.6386 0.5200 0.8824 2.0410 3.4977 0.2551 

1.5 0.3487 0.5078 0.4201 0.7245 0.5354 1.0317 2.2916 4.1675 0.2864 

2 0.3553 0.5469 0.4505 0.8198 0.5510 1.2069 2.5778 5.0101 0.3222 

2.5 0.3618 0.5859 0.4809 0.9264 0.5670 1.4151 2.9085 6.0906 0.3636 

3 0.3684 0.6250 0.5113 1.0462 0.5833 1.6667 3.2962 7.5086 0.4120 

4.5 0.3882 0.7422 0.6024 1.5154 0.6344 2.8788 5.0286 16.0148 0.6286 

7 0.4211 0.9375 0.7544 3.0714 0.7273 15 18.7987 253.7613 2.3498 

Table 5: Traffic Intensity, Average Queue Length, Partial queue length, 

customer’s waiting time, and variance of queues w.r.t 𝛍𝟏𝐇 i.e., service rate for 

high priority customers as shown in the table: 

 

1H  1  2  3  
L1 L2 L3 L Variance Expt 

(W) 

19 0.3684 0.6250 0.5113 1.0462 0.5833 1.6667 3.2962 7.5086 0.4120 

20 0.3500 0.6250 0.4929 0.9718 0.5385 1.6667 3.1770 7.1891 0.3971 

21 0.3333 0.6250 0.4762 0.9091 0.5000 1.6667 3.0758 6.9300 0.3845 

22 0.3182 0.6250 0.4610 0.8554 0.4667 1.6667 2.9888 6.7161 0.3736 

26 0.2692 0.6250 0.4121 0.7009 0.3684 1.6667 2.7360 6.1408 0.3420 

30 0.2333 0.6250 0.3762 0.6031 0.3043 1.6667 2.5741 5.8081 0.3218 

40 0.1750 0.6250 0.3179 0.4660 0.2121 1.6667 2.3448 5.3847 0.2931 
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Table 6: Traffic Intensity, Average Queue Length, Partial queue length, 

customer’s waiting time, and variance of queues w.r.t 𝝁𝟏𝑳 i.e., service rate for 

low priority customers as shown in the table: 

 

1L  1  2  3  
L1 L2 L3 L Variance Expt( 

W) 

21 0.3684 0.6250 0.5113 1.0462 0.5833 1.6667 3.2962 7.5086 0.4120 

23 0.3684 0.6250 0.4989 0.9954 0.5833 1.6667 3.2454 7.3544 0.4057 

26 0.3684 0.6250 0.4838 0.9373 0.5833 1.6667 3.1873 7.1838 0.3984 

29 0.3684 0.6250 0.4719 0.8935 0.5833 1.6667 3.1435 7.0598 0.3929 

35 0.3684 0.6250 0.4541 0.8320 0.5833 1.6667 3.0820 6.8922 0.3852 

43 0.3684 0.6250 0.4382 0.7800 0.5833 1.6667 3.0300 6.7563 0.3787 

50 0.3684 0.6250 0.4284 0.7495 0.5833 1.6667 2.9995 6.6794 0.3749 

Table 7: Traffic Intensity, Average Queue Length, Partial queue length, 

customer’s waiting time, and variance of queues w.r.t 𝝁𝟐 i.e., service rate for the 

second service channel as shown in the table: 

 

2  1  2  3  
L1 L2 L3 L Variance Expt 

(W) 

16 0.3684 0.6250 0.4284 0.7495 0.5833 1.6667 2.9995 6.6794 0.3749 

17 0.3684 0.5882 0.4284 0.7495 0.5833 1.4286 2.7614 5.7043 0.3452 

18 0.3684 0.5556 0.4284 0.7495 0.5833 1.2500 2.5829 5.0475 0.3229 

30 0.3684 0.3333 0.4284 0.7495 0.5833 0.5000 1.8329 2.9850 0.2291 

32 0.3684 0.3125 0.4284 0.7495 0.5833 0.4545 1.7874 2.8961 0.2234 

34 0.3684 0.2941 0.4284 0.7495 0.5833 0.4167 1.7495 2.8252 0.2187 

36 0.3684 0.2778 0.4284 0.7495 0.5833 0.3846 1.7175 2.7675 0.2147 

 

 
 

Fig. 3: Expected waiting time and variance of queues versus arrival rate for high 

priority customers, i.e. 𝝀1H w.r.t Table 3 
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Fig. 4: Expected waiting time and variance of queues versus arrival rate for low 

priority customers, i.e. 𝝀1L w.r.t Table 4 

 

Fig. 5: Average and partial Queue Length versus Arrival rate for low priority 

customer, i.e. 𝜆1𝐿 w. r. t Table 4  

 

 
 

Fig. 6. Average and partial Queue Length versus Service rate for high priority 

customer, i.e. 𝝁𝟏𝑯 𝐰. 𝐫. 𝐭 𝐓𝐚𝐛𝐥𝐞 𝟓 
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Fig. 7. Expected waiting time and variance of queues versus service rate for high 

priority customer, i.e.  𝝁𝟏𝑯 𝐰. 𝐫. 𝐭. 𝐓𝐚𝐛𝐥𝐞 𝟓 

 
Fig. 8. Average and partial Queue Length versus Service rate for low priority 

customer, i.e. 𝝁𝟏𝑳 w.r.t Table 6 

 
 

Fig. 9. Expected waiting time and variance of queues versus service rate for low 

priority customer, i.e.  𝝁𝟏𝑳 w.r.t. Table 6 
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Fig. 10. Average and partial queue length versus Service rate 𝝁𝟐 w.r.t Table 7 

 

Fig. 11. Expected waiting time and variance of queues versus service rate for the 

second service channel, i.e.  𝝁𝟐 W.r.t. Table 7 

 

V. Comparative Study through existing Literature Data 
 

           Let us compare the average queue length derived through this model with 

existing literature data, particularly the work done by Saini A. et al [XV], by taking 

different service rates for low and high priority customers as used in her study. The 

following key questions will arise during the comparison of data: 

• Does any significant difference exist in average queue length between the 

model and the literature data? 

• What happens if feedback is applied at each of the service channels, 

particularly when integrated with a priority system? 

• How does the service efficiency change when feedback is incorporated 

alongside a revisiting facility, at most once? 
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Table 8: Comparison of the Average Queue Length for various values of Service 

rate, juxtaposing the Literature data with Model data (Calculating the relative 

differences between Model and Literature Data) 

Service 

rate

1H  

Average 

queue 

length(from 

Model) 

Average 

Queue 

length( 

literature 

data) 

Difference 

b/w the 

model 

and the 

literature 

data 

Service 

rate

1L  

Average 

queue 

length(from 

Model) 

Average 

Queue 

length( 

literature 

data) 

Difference 

b/w the 

model 

and the 

literature 

data 

10 inf 2.9060 Inf 7 15.2500 2.659 
12.591 

11 17.7143 2.6559 
15.0584 

8 9.2500 2.4478 
6.8022 

12 10.2214 2.4646 
7.7568 

9 7.2500 2.3003 
4.9497 

13 7.6071 2.3138 
5.2933 

10 6.2500 2.1916 
4.0584 

14 6.2500 2.1914 
4.0586 

11 5.6500 2.1082 
3.5418 

15 5.4107 2.0896 
3.3211 

12 5.2500 2.0424 
3.2076 

16 4.8373 2.0055 
2.8318 

13 4.9643 1.9887 
2.9756 

17 4.4194 1.9330 
2.4864 

14 4.7500 1.9446 
2.8054 

18 4.1006 1.8708 
2.2298 

15 4.5833 1.9078 
2.6755 

Graphical Representation of the Model and Literature Data w.r.t various service 

rates for both high and low priority customers: 

 

Fig. 12. Comparison of Average Queue Length of the Model and Literature Data by 

taking various values of service rates for high priority customers 
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 Fig. 13. Comparison of Average Queue Length of Model and Literature Data 

by taking various values of service rates for low priority customers

VI. Results and Discussion 

As we observed that with an increase in the arrival rate for low and high 

priority customers leads to increase in the partial and average queue length of the 

system, variance in queues and expected waiting time of the customers, this trend is 

illustrates in figures 2 to 5 ( refer to  Tables 3 and 4). Specifically, while slight 

increase in λ1H and λ1L ranging from 1 to 2.5, and then there is not much increase in 

these performance metrics. However, when the parameters λ1H = 7 and λ1L = 4.5 are 

applied, a significant increase in all queueing features is observed, indicating a great 

impact on system performance.  

It is evident from Figures 6 to 9 and Tables 5 and 6 that an increase in service rate 

leads to a reduction in both the partial and average queue length as well as waiting 

time and variance, but the queue length of the second and third servers remains 

constant. This effect is most prominent in the first and second servers, where 

increased service efficiency results in shorter queues. However, the queue length at 

the third server remains largely unaffected, even as the system as a whole experiences 

improved performance due to reduced congestion and variability. 

Furthermore, as shown in Table 7 and Figures 10 to 11, an increase in the service rate 

of the system reduces the queue length at the third server, while the queue length at 

the first and second servers remains constant. The resulting variation leads to a 

decrease in the average queue length, waiting time, and variance of queues through 

the entire system. When service rates at the second server increase from 18 to 30, a 

marked reduction in all queueing features is observed, reflecting improved service 

efficiency and reducing congestion.  

From comparative evaluation with existing models from the literature (refer to Table 

8), it is demonstrated that when feedback is applied at all service stages with one one-

time revisiting facility for customers, then the mean queue length rises faster as 

compared to the model that implements priority at the first service channel. As the 

service rates increase, the average queue length correspondingly decreases, because 

more and more customers are served within the system. This indicates that the 
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application of feedback in conjunction with the priority based model improves the 

efficiency of the system by reducing delays and improving service outputs. The 

graphical representation of these results is shown in Figures 12 and 13, which 

describe the effect of feedback on system performance.  

VII. Conclusion and Future Scope 

                The present research investigates a feedback queue model with priority at 

the first server, and a single revisiting option demonstrates improved system stability 

over traditional models and reduced average queue length, particularly under 

moderate traffic intensity. Results highlight performance trade-offs between priority 

handling and customer feedback mechanisms. Compared to priority-only systems, 

feedback incorporation improves throughput but may increase queue length under 

certain conditions. These findings are significant for service environments such as 

healthcare triage systems and multi-stage call centers, where prioritization and limited 

re-entry are operationally common. Comparative analysis of the model with literature 

data has been conducted in the last section to prove the model’s validation and 

accuracy. Future work may investigate biserial queue configurations, multiple 

feedback loops, or fuzzy environments to further generalize the applicability of this 

approach in real-world systems such as telecommunications and healthcare networks. 

The model can be extended to include multiple service channels in parallel, in 

addition to serial ones, to better reflect real-world systems. 
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