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Abstract 

We inspect a nonlinear partial differential equation, known as the Geng 

equation, which captures the behavior of systems such as shallow water wave 

dynamics and quantum field interactions and has notable applications in the areas of 

engineering sciences, mechanics, and quantum mechanics in the present research 

work. Multiple exact wave solutions are determined for the Geng equation by 

utilizing two effective strategies, namely, (𝐺′/(𝐺′ + 𝐺 + 𝐴)) -expansion and two 

variables (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion strategies. The solutions derived are formulated 

through elementary functions having rational, hyperbolic, exponential, and 

trigonometric forms. With specific values of chosen constants, the graphic 

representations of the obtained exact wave solutions are depicted using density, 

contour, 2D, and 3D plots to illuminate the inherent structure of the phenomenon. 

Additionally, we obtained kink-shaped, anti-kink-shaped, compacton, and singular-

periodic-shaped solitons. The findings demonstrate that the mentioned strategies 

serve as influential mathematical tools and are shown to be highly efficient, 

computationally adaptable, and easily manageable for exploring solutions of 

nonlinear partial differential equations in mathematical physics. 
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I.   Introduction 

Nonlinear partial differential equations (NLPDEs) stand as the vital tool for 

the analysis of nonlinear phenomena that are currently being studied in numerous 

scientific disciplines, for instance, mathematical physics, quantum mechanics, 

nonlinear dynamics, neural networks, epidemiology, thermodynamics, biology, as 

well as medicine [XLIII]. NLPDEs represent physical issues in engineering sciences, 

meteorology, fluid mechanics, plasma physics, diseases, nonlinear optics, and the 

aerospace industry [XXXIX]. A particular type of NLPDEs is the nonlinear evolution 

equations (NLEEs), which govern the behavior of systems evolving over continuous 

time. It serves an important function in representing complex systems and modeling 

numerous problems in the universe. Nonlinear wave equations and the concept of 

solitons have introduced remarkable achievements in the field of applied sciences. 

The phenomenon of the solitary wave was first observed in early 1834 by British 

scientist John Scott Russell. Solitary waves are localized waves traveling with 

constant speeds and shape, asymptotically approaching zero at large distances 

[XXVI]. Solitons are solitary waves that remain unchanged after interacting with 

other solitons. The exploration of completely integrable nonlinear evolution equations 

is advancing rapidly, engaging physicists and mathematicians alike, because these 

equations encapsulate the true nature of phenomena present in numerous scientific, 

technological, and engineering applications [XXVIII]. Mathematicians have 

concentrated on formulating and utilizing advanced techniques to solve integrable 

equations. 

The determination of exact solutions for NLEEs is challenging due to the lack of 

universal methods applicable to all such equations, often requiring individual 

analysis. However, recent advancements have resulted in the creation of several 

reliable and efficient strategies, including the (
𝐺′

𝐺
)-expansion scheme [XIV], [XV], 

[XL], the extended (
𝐺′

𝐺2)-expansion process [III], [XXIX], the Sardar sub-equation 

scheme [IX], [XII], [XXXVII], the modified exp-function technique [XXXVIII], the 

logistic process [XVI], the inverse scattering technique [XXVII], the homogeneous 

balance scheme [XXXIV], the modified auxiliary equation scheme [IV], the tanh-coth 

expansion approach [VI], [XXX], the improved tanh (
∅

2
)  procedure [XXXV], 

[XXXVI], the Lie symmetry approach [XXII], [XXIII], the sine-Gordon procedure 

[XXI], the generalized Kudryashov technique [XIX], the two variables (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-

expansion approach [V],  the generalized exponential rational function (GERF) 

scheme [XXIV], the modified sub-equation process [XXXIII], and there are many 

more. Miah et al. [XXXII] applied the (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion strategy for exact 

traveling wave solutions of NLPDEs, and obtained kink, periodic, singular periodic, 

anti-bell, and many other shaped solitons. Recently, some scholars also utilized this 

expansion technique and discovered closed-form wave solutions [VII], [XI], [XVIII], 

[XXXI], [XLII]. In [XVII], [XX] researchers operated the novel (𝐺′/(𝐺′ + 𝐺 + 𝐴))-
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expansion process to attain the solutions of NLEEs. Very lately, Borhan et al. [X] 

executed this new (𝐺′/(𝐺′ + 𝐺 + 𝐴)) -expansion scheme for two NLEEs and 

established various analytic solutions. 

The (3 + 1)-dimensional Geng equation (GE) [I], [XIII], 

  3𝑢𝑥𝑧 − (2𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 2𝑢𝑢𝑥)𝑦 + 2(𝑢𝑥𝜕𝑥
−1𝑢𝑦)

𝑥
= 0,              (1.1) 

was originally introduced in [XIII] as part of the investigation of the algebraic 

geometrical solutions. The GE contains the nonlinear effect 𝑢𝑥𝜕𝑥
−1𝑢𝑦  and the 

dispersion effect 𝑢𝑥𝑧 and for this, the equation represents a nonlinear, nonlocal wave 

equation arising in integrable systems, optical physics, and fluid mechanics. This 

equation is significant because it illustrates nonlinear wave phenomena that are 

essential in many areas of physics and applied sciences, including nonlinear optics, 

acoustics, fluid dynamics, high-energy physics and field theory models, plasma 

physics, geophysics, and astrophysics. A limited number of mathematicians have 

researched Eq. (1.1); for example, Geng obtained the algebraic geometrical solution 

of multi-dimensional NLEEs [XIII]. In [I], Ahmed et al. applied the homoclinic 

breathers approach for the nonlinear (3+1)-dimensional GE and constructed solutions 

having kink, periodic cross-rational, in addition, M-shape solitons. Li et al. [XXV] 

considered the GE, besides finding the hybrid soliton as well as breather waves of this 

model. Lately, dipole, damped periodic, breather, and kink solitons have been 

observed for the mentioned equation [VIII]. Recently, Ahmed et al. [II] probed the 

mentioned GE and uncovered distinct outcomes like X-waves, bright, dark lump 

waves, butterfly waves, etc. While studies exist on the Geng model and related 

solution methods, a literature review suggests that the nominated model has not yet 

been considered using both variables (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion strategy and the novel 

(𝐺′/(𝐺′ + 𝐺 + 𝐴) -expansion technique. From this motivation, we analyze the 

selected equation through these new techniques. 

The objectives of our article are to extract the exact solutions of the mentioned 

equation by engaging two distinct approaches, the (𝐺′/(𝐺′ + 𝐺 + 𝐴)) -expansion 

technique and the two variables (𝐺′ 𝐺⁄ , 1 𝐺⁄ ) -expansion strategy. Using these 

techniques, we derive exact solutions to the GE, including trigonometric, hyperbolic, 

rational, and exponential solutions. Moreover, to visualize the exact solutions, we 

generated the 3D and 2D plots, as well as contour and density plots. Furthermore, 

studying the different wave behaviors could help gather further information about the 

mentioned GE. 

Our article is structured as follows: Section I presents the introduction. Segment II 

presents the main procedures of the proposed strategies. Segment III demonstrates the 

application of these strategies to evaluate the solutions of the considered equation. In 

segment IV, the consequences are graphically presented and discussed, followed by 

the conclusions and  Acknowledgements in Sections V and VI, respectively.  

II.   Clarification of the proposed Strategies 
 

This section of the research work details the comprehensive methodology 

employed to achieve traveling wave solutions to the NLEEs. The NLEEs under 

consideration are, 
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𝐻(𝑢, 𝑢𝑥, 𝑢𝑡 , 𝑢𝑦, 𝑢𝑧, 𝑢𝑥𝑥, 𝑢𝑥𝑡, 𝑢𝑧𝑡 , 𝑢𝑥𝑥𝑥, 𝑢𝑦𝑡𝑡, … … … ) = 0,                  (2.1) 

Here, 𝐻 denotes a polynomial expression involving 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) and its multiple 

partial derivatives up to a specified order; the dependent variable 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) 

depends on the self-regulating variables 𝑥, 𝑦, 𝑧, 𝑡. 

At first, define a new variable 𝜇 which represents a combination of all the monitored 

variables 𝑥, 𝑦, 𝑧, and 𝑡, 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝜇), 𝜇 = 𝑥 + 𝑦 + 𝑧 − 𝑠𝑡,                    (2.2) 

at which 𝑠 represents a constant wave velocity.                                                      

The ordinary differential equation (ODE) can be obtained after utilizing Eq. 

(2.2) and Eq. (2.1),  

𝐿(𝑣, 𝑣′, −𝑠𝑣′, 𝑣′′, −𝑠𝑣′′, 𝑣′′′, 𝑠2𝑣′′′, … … . . ) = 0,               (2.3) 

wherein 𝐿 is a polynomial of 𝑣, and both it and its several ordinary derivatives are 

functions of the independent variable 𝜇, the primes ( ′ ) indicate differentiation for 𝜇. 

The (𝑮′/(𝑮′ + 𝑮 + 𝑨))- expansion Strategy 

NLPDEs are notoriously difficult to solve. A brief summary of the (𝐺′/(𝐺′ +
𝐺 + 𝐴))- expansion strategy is presented here, aimed at finding precise solutions to 

NLEEs. For analytical purposes, the outcome of Eq. (2.3), 

𝑣(𝜇) = ∑ 𝑏𝑝 (
𝐺′

𝐺′+𝐺+𝐴
)

𝑝
𝑞
𝑝=0 ,                 (2.1.1)                                 

Herein, 𝑞 signifies the degree of the polynomial, which is evaluated by the balancing 

process, and 𝐺(𝜇) obeys Eq. (2.1.2), 

𝐺′′ + 𝐸𝐺′ + 𝐹𝐺 + 𝐴𝐹 = 0,              (2.1.2) 

additionally, the coefficients for (
𝐺′

𝐺′+𝐺+𝐴
)

𝑝
 (𝑝 = 0,1,2,3, … . . , 𝑞) are calculable. The 

terms 𝑏𝑝  (𝑝 = 0,1,2,3, … … , 𝑞), 𝐴, 𝐸,  and 𝐹 represent constants, while 𝐺 is derived 

from 𝐴, 𝐸, 𝐹, and Eq. (2.1.2).  

Solving Eq. (2.1.2) yielded two possible outcomes, which are, 

Outcome 1: For 𝐷 = 𝐸2 − 4𝐹 > 0, 

(
𝐺′

𝐺′+𝐺+𝐴
) =

𝐶1(𝐸+√𝐷)+𝐶2(𝐸−√𝐷)𝑒√𝐷𝜇

𝐶1(𝐸+√𝐷−2)+𝐶2(𝐸−√𝐷−2)𝑒√𝐷𝜇
.            (2.1.3)

  

Outcome 2: For 𝐷 = 𝐸2 − 4𝐹 < 0, 

(
𝐺′

𝐺′+𝐺+𝐴
) =

𝑠𝑖𝑛(
√−𝐷𝜇

2
)(𝐸𝐶2+𝐶1√−𝐷)+𝑐𝑜𝑠(

√−𝐷𝜇

2
)(𝐸𝐶1−𝐶2√−𝐷)

𝑠𝑖𝑛(
√−𝐷𝜇

2
)((𝐸−2)𝐶2+𝐶1√−𝐷)+𝑐𝑜𝑠(

√−𝐷𝜇

2
)((𝐸−2)𝐶1−𝐶2√−𝐷)

,        (2.1.4)
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wherein, 𝐶1  and 𝐶2 are constants.  

The resulting algebraic equations involving 𝐸, 𝐹,  and 𝑏𝑝  (𝑝 = 0,1,2,3, … . . , 𝑞)  are 

obtained by equating the coefficients of (
𝐺′

𝐺′+𝐺+𝐴
)

𝑝
 (𝑝 = 0,1,2,3, … . . , 𝑞) to zero. 

Following these algebraic steps, the desired solution of the given NLEEs can be 

quickly obtained by inserting the values found for the 𝑏𝑝’s and 𝑠. 

The two-variable (𝑮′ 𝑮⁄ , 𝟏 𝑮⁄ ) -expansion strategy  

Many real-world phenomena, especially in engineering, quantum mechanics, 

fluid dynamics, and plasma physics, are governed by nonlinear PDEs. The strategy is 

specifically tailored to handle the complexities introduced by nonlinearity. This 

section succinctly describes the fundamental procedures of the two variables 
(𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion strategy for generating new exact wave solutions related to 

NLEEs. The associated auxiliary linear ordinary differential equation (LODE) is 

given by, 

𝐺′′(𝜇) + 𝜆𝐺(𝜇) = 𝜏.             (2.2.1) 

For 𝑇 =
𝐺′

𝐺
, 𝑀 =

1

𝐺
This equation yields the two relations shown below, 

𝑇′ = −𝑇2 + 𝜏𝑀 − 𝜆,   𝑀′ = −𝑇𝑀.           (2.2.2) 

Three possibilities are identified by the solution to the previous Eq. (2.2.1), which is 

dependent on 𝜆, 

Scenario 1: For  𝜆 <  0, we have,  

𝐺(𝜇) = 𝐾1 𝑠𝑖𝑛ℎ(√−𝜆𝜇) + 𝐾2𝑐𝑜𝑠ℎ(√−𝜆𝜇) +
𝜏

𝜆
,         (2.2.3) 

 𝐾1 and 𝐾2 are two constants chosen arbitrarily. As a consequence, we obtain 

𝑀2 =
−𝜆(𝑇2−2𝜏𝑀+𝜆)

𝜆2𝜌1+𝜏2   and 𝜌1 = 𝐾1
2 − 𝐾2

2.          (2.2.4) 

Scenario 2: For 𝜆 >  0, we have,  

𝐺(𝜇) = 𝐾1 𝑠𝑖𝑛(√𝜆𝜇) + 𝐾2𝑐𝑜𝑠(√𝜆𝜇) +
𝜏

𝜆
,          (2.2.5) 

and therefore, 

𝑀2 =
𝜆(𝑇2−2𝜏𝑀+𝜆)

𝜆2𝜌2−𝜏2   and 𝜌2 = 𝐾1
2 + 𝐾2

2.          (2.2.6) 

Scenario 3: For  𝜆 =  0 we have, 

𝐺(𝜇) =
𝜏

2
𝜇2 + 𝐾1𝜇 + 𝐾2,             (2.2.7) 

and hence, 

 𝑀2 =
(𝑇2−2𝜏𝑀)

𝐾1
2−2𝜏𝐾2

.             (2.2.8) 
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By applying the (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion strategy, the consequence of Eq. (2.1.3) 

takes the form, 

 𝑣(𝜇) = 𝑐0 + ∑ 𝑐𝑖𝑇𝑖(𝜇)𝑞
𝑖=1 + ∑ 𝑑𝑖𝑇𝑖−1(𝜇)𝑀(𝜇)𝑞

𝑖=1 ,         (2.2.9) 

herein, 𝑐𝑖
2 + 𝑑𝑖

2 ≠ 0 (𝑖 = 1,2,3, … … 𝑞), with constants 𝜆, 𝑠, 𝑐0, 𝑐𝑖 , 𝑑𝑖  ( ∀ 𝑖) and 𝑞  is 

the positive integer that represents the homogeneous balance number. Now, these 

constants are to be determined using the two variables (𝐺′ 𝐺⁄ , 1 𝐺⁄ ) -expansion 

strategy, with additional explanations available in references [XLI]. 

III.   Applications of the projected approaches 

The current section presents the precise, sophisticated, advanced, and 

exceptionally practical outcomes of the GE, derived using projected approaches. The 

exact solution for the GE in Eq. (1.1) will be examined in this subsection. Appling the 

transformation 𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒘𝒙(𝒙, 𝒚, 𝒛, 𝒕) in Eq. (1.1), we obtain,                                                              

𝟑𝒘𝒙𝒙𝒛 − 𝟐𝒘𝒙𝒕𝒚 − 𝒘𝒙𝒙𝒙𝒙𝒚 + 𝟐(𝒘𝒙𝒘𝒙𝒙)𝒚 + 𝟐(𝒘𝒙𝒙𝒘𝒚)
𝒙

= 𝟎.             (3.1) 

Currently, Eq. (1.1) is transformed into the resulting ODE by adjusting the formulas 

in Eq. (2.2) and (3.1), 

(𝟑 + 𝟐𝒔)𝒗′′′ − 𝒗(𝒗) + 𝟒(𝒗′′)𝟐 + 𝟒𝒗′𝒗′′′ = 𝟎 .                                            

(3.2) 

Utilizing the homogeneous balancing approach, one might have 𝒒 = 𝟏.  

Application of (𝑮′/(𝑮′ + 𝑮 + 𝑨))-expansion strategy  

The outcomes of Eq. (3.2), 

𝒗(𝝁) = 𝒃𝟎 + 𝒃𝟏 (
𝑮′

𝑮′+𝑮+𝑨
),              (3.1.1) 

herein, 𝒃𝟎 and 𝒃𝟏 are constants.  

We have the constants, 

𝒃𝟎 = 𝒃𝟎,   𝒃𝟏 = 𝟑(−𝟏 + 𝑬 − 𝑭),  𝒔 =
𝟏

𝟐
(−𝟑 + 𝑬𝟐 − 𝟒𝑭).  

Using the above values, the wave solutions of Eq. (1.1). 

Case –I: For 𝑫 = 𝑬𝟐 − 𝟒𝑭 > 𝟎, 

𝒗(𝝁) = 𝒃𝟎 + 𝟑(−𝟏 + 𝑬 − 𝑭)
𝑪𝟏(𝑬+√𝑫)+𝑪𝟐(𝑬−√𝑫)𝒆√𝑫𝝁

𝑪𝟏(𝑬+√𝑫−𝟐)+𝑪𝟐(𝑬−√𝑫−𝟐)𝒆√𝑫𝝁
.          (3.1.2) 

And hence, the exact wave solution of the nonlinear GE, 

            𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒃𝟎 + 𝟑(−𝟏 + 𝑬 −

             𝑭)
𝑪𝟏(𝑬+√𝑫)+𝑪𝟐(𝑬−√𝑫)𝒆

√𝑫(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑+𝑬𝟐−𝟒𝑭)𝒕)

𝑪𝟏(𝑬+√𝑫−𝟐)+𝑪𝟐(𝑬−√𝑫−𝟐)𝒆√𝑫(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑+𝑬𝟐−𝟒𝑭)𝒕)
,                   (3.1.3) 

wherein, 𝑪𝟏 and 𝑪𝟐 constants are chosen arbitrarily. 
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Case –II: For 𝑫 = 𝑬𝟐 − 𝟒𝑭 < 𝟎, 

    𝒗(𝝁) = 𝒃𝟎 + 𝟑(−𝟏 + 𝑬 −

                𝑭)
𝒔𝒊𝒏(

√−𝑫𝝁

𝟐
)(𝑬𝑪𝟐+𝑪𝟏√−𝑫)+𝒄𝒐𝒔(

√−𝑫𝝁

𝟐
)(𝑬𝑪𝟏−𝑪𝟐√−𝑫)

𝒔𝒊𝒏(
√−𝑫𝝁

𝟐
)((𝑬−𝟐)𝑪𝟐+𝑪𝟏√−𝑫)+𝒄𝒐𝒔(

√−𝑫𝝁

𝟐
)((𝑬−𝟐)𝑪𝟏−𝑪𝟐√−𝑫)

.           (3.1.4) 

Accordingly, the precise solution of Eq. (1.1), 

    𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒃𝟎 + 𝟑(−𝟏 + 𝑬 −

                𝑭)
𝒔𝒊𝒏(

√−𝑫𝝁

𝟐
)(𝑬𝑪𝟐+𝑪𝟏√−𝑫)+𝒄𝒐𝒔(

√−𝑫𝝁

𝟐
)(𝑬𝑪𝟏−𝑪𝟐√−𝑫)

𝒔𝒊𝒏(
√−𝑫𝝁

𝟐
)((𝑬−𝟐)𝑪𝟐+𝑪𝟏√−𝑫)+𝒄𝒐𝒔(

√−𝑫𝝁

𝟐
)((𝑬−𝟐)𝑪𝟏−𝑪𝟐√−𝑫)

,           (3.1.5) 

wherein, 𝑪𝟏 and 𝑪𝟐 are arbitrary constants and 𝝁 = 𝒙 + 𝒚 + 𝒛 − (𝟏 𝟐)⁄ (−𝟑 + 𝑬𝟐 −

𝟒𝑭)𝒕. 

Now, we implement the two variables (𝑮′ 𝑮⁄ , 𝟏 𝑮⁄ )-expansion strategy to solve the 

(3+1)-dimensional nonlinear GE in Eq. (3.1). 

Application of the two variables (𝑮′ 𝑮⁄ , 𝟏 𝑮⁄ )-expansion strategy  

The (3+1) nonlinear GE in Eq. (1.1) moves to an ODE in Eq. (3.2) by using the 

transformation 𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒘𝒙(𝒙, 𝒚, 𝒛, 𝒕) and the transformations in Eq. (2.2). The 

outcomes of Eq. (3.2), 

𝒗(𝝁) = 𝒄𝟎 + 𝒄𝟏𝑻(𝝁) + 𝒅𝟏𝑴(𝝁),                    (3.2.1) 

Herein, the constants 𝒄𝟎, 𝒄𝟏  and 𝒅𝟏  will be governed, as well as the next three 

circumstances, will be examined. 

Case I: For 𝝀 < 𝟎, 

We have the following results, 

𝒄𝟎 = 𝒄𝟎, 𝒄𝟏 = −
𝟑

𝟐
, 𝒅𝟏 = ±

𝟑√−𝝉𝟐−𝝀𝟐𝝆𝟏

𝟐√𝝀
 , 𝒔 = (𝟏 𝟐)⁄ (−𝟑 − 𝝀). 

Now, the outcome of Eq. (3.2), 

𝒗(𝝁) = 𝒄𝟎 −
𝟑√−𝝀(𝑲𝟏 𝒄𝒐𝒔𝒉(√−𝝀𝝁)+𝑲𝟐𝒔𝒊𝒏𝒉(√−𝝀𝝁))

𝟐(𝑲𝟏 𝒔𝒊𝒏𝒉(√−𝝀𝝁)+𝑲𝟐𝒄𝒐𝒔𝒉(√−𝝀𝝁)+
𝝉

𝝀
)

±

𝟑√−𝝉𝟐−𝝀𝟐𝝆𝟏

𝟐√𝝀(𝑲𝟏 𝒔𝒊𝒏𝒉(√−𝝀𝝁)+𝑲𝟐𝒄𝒐𝒔𝒉(√−𝝀𝝁)+
𝝉

𝝀
)
                                                           (3.2.2) 

Thus, the outcome of Eq. (1.1), 

𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒄𝟎 −

𝟑√−𝝀(𝑲𝟏 𝒄𝒐𝒔𝒉(√−𝝀(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑−𝝀)𝒕))+𝑲𝟐𝒔𝒊𝒏𝒉(√−𝝀(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑−𝝀)𝒕)))

𝟐(𝑲𝟏 𝒔𝒊𝒏𝒉(√−𝝀(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑−𝝀)𝒕))+𝑲𝟐𝒄𝒐𝒔𝒉(√−𝝀(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑−𝝀)𝒕))+
𝝉

𝝀
)

 ±

𝟑√𝝉𝟐+𝝀𝟐𝝆𝟏

𝟐√−𝝀(𝑲𝟏 𝒔𝒊𝒏𝒉(√−𝝀(𝒙+𝒚+𝒛−𝟏 𝟐⁄ (−𝟑−𝝀)𝒕))+𝑲𝟐𝒄𝒐𝒔𝒉(√−𝝀(𝒙+𝒚+𝒛−𝟏 𝟐⁄ (−𝟑−𝝀)𝒕))+
𝝉

𝝀
)
  

                   (3.2.3)  
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wherein, 𝝆𝟏 = 𝑲𝟏
𝟐 − 𝑲𝟐

𝟐.  

In a special case, if  𝑲𝟏 ≠ 𝟎, 𝑲𝟐 = 𝟎 and 𝝉 = 𝟎 in Eq. (3.2.3), the solitary wave 

solution, 

𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒄𝟎 −
𝟑

𝟐
√−𝝀 (𝒄𝒐𝒕𝒉 (√−𝝀(𝒙 + 𝒚 + 𝒛 − 𝟏 𝟐⁄ (−𝟑 − 𝝀)𝒕)) ±

𝒄𝒐𝒔𝒆𝒄𝒉 (√−𝝀(𝒙 + 𝒚 + 𝒛 − 𝟏 𝟐⁄ (−𝟑 − 𝝀)𝒕))).                           (3.2.4)  

Case-II: For 𝝀 > 𝟎, 

We have the findings, 

𝒄𝟎 = 𝒄𝟎,  𝒄𝟏 = −
𝟑

𝟐
, 𝒅𝟏 = ±

𝟑√−𝝉𝟐+𝝀𝟐𝝆𝟐

𝟐√𝝀
 , 𝒔 = 𝟏 𝟐⁄ (−𝟑 − 𝝀).  

Now, the following form represents the solution to Eq. (3.2), 

𝒗(𝝁) = 𝒄𝟎 −
𝟑√𝝀(𝑲𝟏 𝒄𝒐𝒔(√𝝀𝝁)−𝑲𝟐𝒔𝒊𝒏(√𝝀𝝁))

𝟐(𝑲𝟏 𝒔𝒊𝒏(√𝝀𝝁)+𝑲𝟐𝒄𝒐𝒔(√𝝀𝝁)+
𝝉

𝝀
)

±
𝟑√−𝝉𝟐+𝝀𝟐𝝆𝟐

𝟐√𝝀(𝑲𝟏 𝒔𝒊𝒏(√𝝀𝝁)+𝑲𝟐𝒄𝒐𝒔(√𝝀𝝁)+
𝝉

𝝀
)
.     

                  (3.2.5) 

Thus, the exact solution of Eq. (1.1), 

𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒄𝟎 −

𝟑√𝝀(𝑲𝟏 𝒄𝒐𝒔(√𝝀(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑−𝝀)𝒕))−𝑲𝟐𝒔𝒊𝒏(√𝝀(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑−𝝀)𝒕)))

𝟐(𝑲𝟏 𝒔𝒊𝒏(√𝝀(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑−𝝀)𝒕))+𝑲𝟐𝒄𝒐𝒔(√𝝀(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑−𝝀)𝒕))+
𝝉

𝝀
)

±

 
𝟑√−𝝉𝟐+𝝀𝟐𝝆𝟐

𝟐√𝝀(𝑲𝟏 𝒔𝒊𝒏(√𝝀(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑−𝝀)𝒕))+𝑲𝟐𝒄𝒐𝒔(√𝝀(𝒙+𝒚+𝒛−(𝟏 𝟐)⁄ (−𝟑−𝝀)𝒕))+
𝝉

𝝀
)
,                      

                  (3.2.6)  

wherein, 𝝆𝟐 = 𝑲𝟏
𝟐 + 𝑲𝟐

𝟐.  

In a special case, if 𝑲𝟏 ≠ 𝟎, 𝑲𝟐 = 𝟎 and 𝝉 = 𝟎 in Eq. (3.2.6), the solitary wave 

solution, 

𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒄𝟎 −
𝟑

𝟐
√𝝀 (𝒄𝒐𝒕 (√𝝀(𝒙 + 𝒚 + 𝒛 − (𝟏 𝟐)⁄ (−𝟑 − 𝝀)𝒕)) ±

              𝒄𝒐𝒔𝒆𝒄 (√𝝀(𝒙 +  𝒚 + 𝒛 − (𝟏 𝟐)⁄ (−𝟑 − 𝝀)𝒕))),                   (3.2.7) 

whereas, if 𝑲𝟏 = 𝟎, 𝑲𝟐 ≠ 𝟎 and 𝝉 = 𝟎 in Eq. (3.2.6), the solitary wave solution,  

𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒄𝟎 +
𝟑

𝟐
√𝝀 (𝒕𝒂𝒏 (√𝝀(𝒙 + 𝒚 + 𝒛 − (𝟏 𝟐)⁄ (−𝟑 − 𝝀)𝒕)) ±

             𝒔𝒆𝒄 (√𝝀(𝒙 +  𝒚 + 𝒛 − (𝟏 𝟐)⁄ (−𝟑 − 𝝀)𝒕))).            (3.2.8) 

Case-III: For 𝝀 = 𝟎, 

We get the following outcomes, 

𝒄𝟎 = 𝒄𝟎,  𝒄𝟏 = −
𝟑

𝟐
, 𝒅𝟏 = ±

𝟑

𝟐
√𝑲𝟏

𝟐 − 𝟐𝝉𝑲𝟐 , 𝒔 = −
𝟑

𝟐
.    
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Consequently, the consequence of Eq. (3.2), 

𝒗(𝝁) = 𝒄𝟎 −
𝟑(𝝉𝝁+𝑲𝟏)

𝝉𝝁𝟐+𝟐(𝑲𝟏𝝁+𝑲𝟐)
±

𝟑√𝑲𝟏
𝟐−𝟐𝝉𝑲𝟐

𝝉𝝁𝟐+𝟐(𝑲𝟏𝝁+𝑲𝟐)
.            (3.2.9) 

Thus, the solution for Eq. (1.1) is given by, 

𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒄𝟎 −
𝟑(𝝉(𝒙+𝒚+𝒛+(𝟑 𝟐)⁄ 𝒕)+𝑲𝟏)

𝝉(𝒙+𝒚+𝒛+(𝟑 𝟐)⁄ 𝒕)𝟐+𝟐(𝑲𝟏(𝒙+𝒚+𝒛+(𝟑 𝟐)⁄ 𝒕)+𝑲𝟐)
  

                        ±
𝟑√𝑲𝟏

𝟐−𝟐𝝉𝑲𝟐

𝝉(𝒙+𝒚+𝒛+(𝟑 𝟐)⁄ 𝒕)𝟐+𝟐(𝑲𝟏(𝒙+𝒚+𝒛+(𝟑 𝟐)⁄ 𝒕)+𝑲𝟐)
.            (3.2.10)

  

Remark: In this case, by choosing arbitrary values for 𝑲𝟏and 𝑲𝟐 , two additional 

solitary wave solutions of the GE can be found, but we have excluded them. 

IV.    Graphical depiction and discussion of results 
 

In essence, the selected equation provides a framework for understanding 

how systems in nature behave when nonlinearity plays a significant role, leading to 

phenomena such as solitons, wave interactions, and complex dynamics. We illustrate 

and explain the physical aspects of selected exact wave solutions discussed in our 

study. Since the functioning of exact solutions is contingent upon their graphical 

representations, we demonstrate several types of solitons, including kink-shaped, 

singular anti-kink-shaped, compacton-shaped, and singular periodic shape solitons. 

In this section, we scrutinize the results obtained, focusing on only five solutions for 

simplicity. Initially, we display the outcome in Eq. (3.1.3) with four different 

formats, and acquire the kink-shaped solution within the interval 𝑥, 𝑡 ∈ [0, 10] , 

which are depicted in Figure 1, including the parameters 𝑏0 = −1, 𝐸 = 0.5, 𝐹 = −1, 

𝐶1 = 1, 𝐶2 = −1, 𝑦 = −1, 𝑧 = −1 and 𝑡 = 1,2,3. The solutions in Eq. (3.1.5) and 

Eq. (3.2.6) reveal singular periodic-shaped solitons, which are given in Figures 2 and 

5, respectively, for the parameters 𝑏0 = −1, 𝐸 = 0.1, 𝐹 = 0.1, 𝐶1 = 1, 𝐶2 = −1, 

𝑦 = −1 , 𝑧 = −1  𝑡 = 1,2,3  and 𝑐0 = −0.1 , 𝜆 = 1.5 , 𝜏 = 0.005 , 𝐾1 = −0.1 , 𝐾2 =
−0.1, 𝑦 = 0.1, 𝑧 = 0.1 𝑡 = 1,2,3  within the intervals −10 < 𝑥 < 10, −10 < 𝑡 <
10 and 0 < 𝑥 < 10,  0 < 𝑡 < 10 respectively. In Figure 3, the compacton-shaped 

solution for Eq. (3.2.3) is presented within −10 < 𝑥 < 0 and −10 < 𝑡 < 0 for the 

parameters 𝑐0 = −1, 𝜆 = −1, 𝜏 = 2, 𝐾1 = 0.02, 𝐾2 = −0.01, 𝑦 = 1, 𝑧 = 1 and 𝑡 =
1,2,3. In Figure 4, the singular anti-kink-shaped soliton of Eq. (3.2.4) for parameters 

𝑐0 = 1, 𝜆 = −4, 𝑦 = −1, 𝑧 = −1 and 𝑡 = 1,2,3. 
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                   (a) 3D          (b) Contour 

 

                               
                                                                       

              (c) Density          (d) 2D  

Fig. 1. The kink-shaped soliton of Eq. (3.1.3) together with appropriate values of the 

parameters. 

 

                                                                                                             

 
 

      (a) 3D                 (b) Contour  
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        (c)  Density                   (d) 2D  

           

Figure 2. Singular periodic-shaped soliton of Eq. (3.1.5) having proper 
values of the parameters. 

 
 

                                          
 

                              (a) 3D      (b) Contour  

 

 

                   
      

 (c) Density                 (d) 2D  

       

Fig. 3. Compacton-shaped soliton of Eq. (3.2.3) along with appropriate values of the 

parameters. 

 

 



 

 

 

J. Mech. Cont.& Math. Sci., Vol.-20, No.-7, July (2025)  pp 95-112 

Hossain, Tozam et al. 
 

106 

 

                     
 

  (a) 3D                                     (b) Contour  

 

 

                     
 

         (c) Density            (d) 2D  

                           

Fig. 4. Singular anti-kink-shaped soliton of Eq. (3.2.4) together with suitable values 

of the parameters. 

 

 

 

                                 
 

        (a) 3D           (b) Contour  
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    (c) Density             (d) 2D  

       

Fig. 5. Singular periodic wave soliton of Eq. (3.2.6) with suitable values of the 

parameters. 

 

By utilizing contour, density, 3D together with 2D plots of the soliton solutions of 

GE, we successfully present accurate physical behavior. We have determined that the 

solutions of this equation are novel compared to those obtained in previous literature.  

Results comparison: 

 Here, we associate our consequences with the existing outcomes of our 

considered GE in the following part, 

Table 1: Comparison of our findings with others’ existing outcomes 

Author(s) Method(s) Outcomes 

Ahmed, Sarfaraz, et al.[I] 

The symbolic computation 

with ansatz functions 

technique, the logarithmic 

transformation, and the 

Homocentric breathers 

approach 

periodic cross-rational, 

kink cross-rational, and 

M-shape solitons 

Ahmed, Sarfaraz, et al. 

[II] 

The Hirota bilinear and the 

Cole-Hopf transformation 

techniques 

lump, kink, periodic, 

butterfly, and X-waves 

Li, Bang-Qing, et al. 

[XXV] 

The Hirota bilinear 

method 
hybrid soliton, and 

breather 

waves 

Our research work 

the (
𝐺′

𝐺′+𝐺+𝐴
)-expansion 

technique, and the two 

variables (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-

expansion strategy 

compacton, singular-

periodic shaped, kink-

shaped, singular anti-

kink-shaped 

The aforementioned comparison confirms to us that our extracted solutions are novel. 
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V.    Conclusion 
 

The (3 +  1)-dimensional nonlinear GE is noteworthy in numerous physical 

contexts due to its ability to model complex, nonlinear phenomena in high-

dimensional spaces comprising nonlinear optics, acoustics, fluid dynamics, field 

theory models, geophysics, and astrophysics. In this article, new solutions have been 

constructed for the Geng model by employing the proposed strategies, including 

different free parameters. To explain internal behavior, the solitons are visually 

depicted in 3D, contour, density, and 2D plots. The obtained solutions signify the 

kink-shaped soliton, singular periodic soliton, compacton-shaped soliton, singular 

anti-kink-shaped soliton, etc. It is significant to point out that some of the resulting 

solutions had not been recorded in previous studies. The outcomes demonstrated that 

the analyzed strategies yield prospective and strong mathematical frameworks that 

decrease computational difficulty and furnish an effective theoretical approach. 

These strategies have the potential to examine further NLEEs that recurrently occur 

in engineering, fluid mechanics, plasma science, and mathematical physics, and this 

is our next research initiative. 
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