

JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES

www.journalimcms.org

ISSN (Online): 2454 -7190 Vol.-19, No.-11, November (2024) pp 207 - 216 ISSN (Print) 0973-8975

REGULAR PARTIAL DOMATIC NUMBER ON ANTI FUZZY GRAPHS

Rengasamy Muthuraj¹, Palanisamy Vijayalakshmi² Anandaraman Sasireka³

^{1,2} PG & Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai – 622 001, Tamilnadu, India. (Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India).

^{2,3} Department of Mathematics, PSNA College of Engineering and Technology, Dindigul – 624 622, Tamilnadu, India.

Corresponding Author: Rengasamy Muthuraj

Email: ¹rmr1973@gmail.com, ²vijibharathi2020@gmail.com ³sasireka.psna@gmail.com

https://doi.org/10.26782/jmcms.2024.11.00014

(Received: September 03, 2024; Revised: October 27, 2024; Accepted: November 06, 2024)

Abstract

 $A_G = (N, A, \sigma, \mu)$ be a anti fuzzy graph. A partition of $N(A_G)$ $\Pi = \{D_1, D_2, ..., D_k\}$ is a regular anti fuzzy partial domatic partition of A_G if (i) for each D_i , $< D_i >$ is an anti fuzzy regular and (ii) D_i is an anti fuzzy dominating set of G_A . The maximum fuzzy cardinality of a regular anti fuzzy partial domatic partition of A_G is called the regular anti fuzzy partial domatic number [RAPDN] of A_G and it is denoted by $d_r^{af}(A_G)$. Also these numbers are determined for various anti fuzzy graph. In this work, random r-regular anti fuzzy graph, regular partial domatic number in anti fuzzy graphs, regular partial anti domatic number in anti fuzzy graphs are introduced. Some bounds for anti fuzzy domatic numbers are discussed.

Keywords: Anti fuzzy graph, Dominating set, Domatic number, Vertex degree.

I. Introduction

The idea of an anti fuzzy structure on a graph from the fuzzy relation started by Zadeh [XIII] is well known to Muhaamad Akram [I]. The idea of a graph's domatic number was first presented by S.T. Hedetniemi and E.J. Cockayne [III]. Bohdan Zelinka [XVI] first proposed the idea of a graph's anti domatic number. A. Sasireka and R. Muthuraj [VIII, XI, IX] determined the dominance parameters for anti-fuzzy graphs and demonstrated the generality of specific anti fuzzy graph types. The novel ideas of regular domatic partition and regular anti-domatic partition in fuzzy graphs were first presented by K.M. Dharmalingam and K. Valli [V]. The novel ideas of regular partial domatic number, random r-regular anti fuzzy graph, and regular partial anti fuzzy number in an anti fuzzy.

Definition 1.1 [IX]

An anti fuzzy graph [AFG] $G_A = (\sigma, \mu)$ is a pair of functions $\sigma: V \rightarrow [0,1]$ and $\mu: V \times V \rightarrow [0,1]$, with $\mu(u,v) \ge \sigma(u) \vee \mu(v)$ for all $(u,v) \in V$.

II. Random r- Regular Anti Fuzzy Graph

 A_G is an AFG with n nodes. A_G is represented as a r-regular AFG on n nodes and it is denoted by A_G (n, r). To build a random r-regular AFG at random on the node set $\{v_1, v_2, \ldots, v_n\}$. To collapse each set $\{v_{i,1}, v_{i,2}, \ldots v_{i,r}\}$ into a single node vi by taking a random matching on the node set $\{v_{1,1}, v_{1,2}, \ldots v_{1,r}, v_{2,1}, v_{2,2}, \ldots, v_{n,r}\}$. Throw away the generated AFG if it has any loops or more than one arc.

Note

- 1. $\bar{d}(A_G) = d(\bar{A}_G)$ is the domatic partition of the complement of AFG.
- 2. $A_G = C_n \cup C_M$ is a 3- regular graph which forms a cycle that has length even.
- 3. If $G_A = C_n \cup C_M$ is a 3- regular graph then $\overline{A_G}$ is $(n \delta 1)$ regular graph where δ is a minimum degree of an AFG.

III. Lower Bound for Anti Fuzzy Domatic Number

Under this part, $r \ge 3$ is fixed for finding the anti fuzzy domatic number of a random r-regular AFG. Consider that the domatic number of a random r-regular AFG is at least 3.

Definition 3.1

Let A_G be a 3- regular AFG that is created by adding a perfect matching M to an anti fuzzy cycle $C = v_1, v_2, \ldots, v_n, v_1$. If v_i and v_{i+1} have matching partners v_j and v_k respectively, so that the anti fuzzy cycle segments $[v_j, v_i]$ and $[v_{i+1}, v_k]$ are disjoint and have cardinality 0 (mod 3), then an arc v_j , v_{j+1} of C (indices mod n) is a 3-edge.

Note

To the following theorem consider an A_G = CUM where C is anti fuzzy cycle with $n \ge 9$ and $n \equiv 0 \mod 3$.

Theorem 3.2

Let A_G be a random 3-regular AFG. Then

- (i) $d_f(A_G) \le d_f(C_n) \le d_f(C_M)$
- (ii) $d(C_M) \le d(C_n) \le d(A_G)$
- (iii) $d(A_G) \ge 3$

Proof

Let's think of A_G as an AFG that is created by adding a random perfect matching M to a cycle.

That is,
$$A_G = C_n U C_M$$

If C_n is a cycle with length n > 9 and $n \equiv 0 \mod 3$. C_n has a 3- edge. Consider v_i v_{i+1} is a 3- arc of C_n . Let v_j , v_k be their corresponding matching partners respectively. Let D_i be a dominating set of A_G and $D_l = \{v_n / n \equiv l \mod 3\}$ when l = 1, 2, 3.

The cycle $c'=v_1, v_j, v_{j+1}, \ldots, v_n, v_1$ has length 0 mod 3 if $n \equiv 1 \mod 3$. As v_1v_2 has 3-nodes. In case the length of the cycle $c''=v_1, v_j, v_{j-1}, v_{j-2}, \ldots, v_1$ has length $n-|c'|+2 \equiv 0 \mod 3$. Then $n \equiv 1 \mod 3$.

Since A_G has at least three disjoint dominating set by choosing each node individually from each cycle c' and c''. Let D_i be the dominating set for l = 1, 2, 3, ...

$$\begin{split} D_1 &= \{v_1,\, v_4,\, v_7,\, \ldots,\, v_{j\text{-}2}\} \,\, \text{U} \,\, \{v_{n\text{-}2},\, v_{n\text{-}5},\, \ldots,\, v_{j+1}\} \\ D_2 &= \{v_2,\, v_5,\, v_8,\, \ldots,\, v_{j\text{-}1}\} \,\, \text{U} \,\, \{v_{n\text{-}1},\, v_{n\text{-}4},\, v_{n\text{-}7},\, \ldots,\, v_{j+2}\} \\ D_3 &= \{v_3,\, v_6,\, v_9,\, \ldots,\, v_i\} \,\, \text{U} \,\, \{v_n,\, v_{n\text{-}3},\, v_{n\text{-}6},\, \ldots,\, v_i\} \end{split}$$

Any one of Di's are minimal dominating set of AG.

If $n \equiv 2 \mod 3$, then $k \equiv j \equiv 1 \pmod 3$. We select a three disjoint dominating set of AFG A_G by choosing, for the same collection, all three nodes of the anti fuzzy cycle except v_1 and v_2 .

$$\begin{split} D_1 &= \{v_4,\, v_7,\, ...,\, v_{n\text{-}5},\, v_{n\text{-}2}\} \,\, \text{U} \,\, \{v_1\} \\ D_2 &= \{v_5,\, v_8,\, ...,\, v_{n\text{-}4},\, v_{n\text{-}1}\} \,\, \text{U} \,\, \{v_2\} \\ D_3 &= \{v_3,\, v_6,\, v_9,\, ...,\, v_{n\text{-}3},\, v_n\} \end{split}$$

Each of the dominating sets D_1 , D_2 , and D_3 are disjoint minimal dominating sets of A_G . which yields a domatic partition of A_G . $DP = \{D_1, D_2, D_3\}$. $D(A_G) = 3$.

If $A_G = C_n UM$ with C_n has length < 9. Then A_G has at least 3 dominating sets which forms a domatic partition of A_G .

$$d(A_G) \ge 3$$
 and $d(C_n) \le d(A_G)$ (1)

By the results in [14] $d(C_n) \ge 3$.

Let C_M be a graph which consider the node set attained by adding a random matching M to an even – order cycle $C = v_1, v_2, \ldots, v_n, v_1$. At least two components and one dominating set larger than the cycle C_n are present in C_m .

$$d(C_{M}) \le d(C_{n}) \tag{2}$$

From (1) and (2) we get, $d(C_M) \le d(C_n) \le d(A_G)$.

Similarly, the anti fuzzy value of these graphs has the inequality as,

$$d_{af}(A_G) \le d_{af}(C_n) \le d_{af}(C_m).$$

IV. Regular Partial Domatic Number on Anti Fuzzy Graphs

In this section, the concept of a regular partial domatic number on an anti fuzzy graph [AFG] is defined in this section. We explore the associated outcomes and theorems.

Definition 4.1

Let $A_G = (N, A, \sigma, \mu)$ be an AFG. A partition $\Pi = \{D_1, D_2, \ldots, D_n\}$ of $N(A_G)$ is called regular anti fuzzy partial domatic partition [RAPDP] of A_G if (i) for each D_i , $< D_i >$ is an anti fuzzy regular and (ii) D_i is an anti-fuzzy dominating set of G_A . The maximum

fuzzy cardinality of a regular anti fuzzy partial domatic partition of A_G is called the regular anti fuzzy partial domatic number [RAPDN] of A_G and it is denoted by $d_r^{af}(A_G)$.

Example 4.2

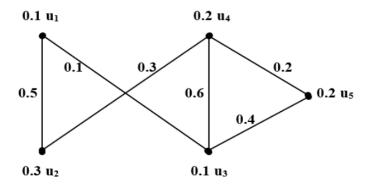


Figure 1 Anti Fuzzy Graph A_G

From Figure 1.

$$\begin{aligned} d_{A_G}(u_1) &= 0.1 + 0.5 = 0.6 \\ d_{A_G}(u_2) &= 0.5 + 0.3 = 0.8 \\ d_{A_G}(u_3) &= 0.1 + 0.6 + 0.4 = 1.1 \\ d_{A_G}(u_4) &= 0.3 + 0.6 + 0.2 = 1.1 \\ d_{A_G}(u_5) &= 0.2 + 0.4 = 0.6 \\ d_{A_G}(u_1) &= d_{A_G}(u_5) = 0.6 \\ d_{A_G}(u_3) &= d_{A_G}(u_4) = 1.1 \end{aligned}$$

 $D_1 = \{u_1, u_5\}$ is a dominating and anti fuzzy regular.

 $D_2 = \{u_3, u_4\}$ is a dominating and anti fuzzy regular.

 $\Pi = \{D_1, D_2\}$ is a regular anti fuzzy partial domatic partition of A_G . Therefore $d_r^{af}(A_G) = 2$.

Remark

All anti fuzzy graphs have no regular anti fuzzy partial domatic partition.

Example 4.3

- (i) $K_1 \cup K_2$ has no partial regular anti fuzzy domatic partition
- (ii) Any anti fuzzy graph $A_G \neq \overline{K_n}$ of order ≥ 3 with an isolated node has no partial regular anti fuzzy domatic partition.

Note

- i) If A_G is a regular AFG with n nodes, then $d_r^{af}(A_G) \ge 1$.
- ii) $d_r^{af}(A_G) \leq d_{af}(A_G)$.

Theorem 4.4

Let A_G be an AFG with a pendent node. Then $\delta_{af}(A_G) \leq d_r^{af}(A_G) + 1$.

Proof

Suppose $\Pi = \{D_1, D_2,, D_{d_r^{af}(A_G)}\}$ is a regular anti fuzzy domatic partition of A_G . Assume that u is a pendent node with support v. Without loss of generality, let $u \in D_1$.

If $v \in D_1$, then the node in D_2 cannot dominate u. If $v \in D_2$ then any node in V_i , $i \ge 3$ cannot dominate u. Therefore, |DP| > 2.

Case(i)

If $|\Pi|=1$, then A_G is anti fuzzy regular. If A_G has a pendent node, then all the pendent nodes should be contained in any one D_i . Therefore, $\delta_{af}(A_G) \leq d_r^{af}(A_G) + 1$.

Case(ii)

If $|\Pi| > 1$ then the minimum fuzzy degree values of $\delta_{af}(G_A)$ is at least 0.1. In such case $d_r^{af}(A_G) = 1$. Therefore, $\delta_{af}(A_G) \le d_r^{af}(A_G) + 1$.

Note

If A_G has no pendent node, then the result is not true.

Result

If A_{G_1} and A_{G_2} are two AFG's for which $d_r^{af}(A_{G_1})$ and $d_r^{af}(A_{G_2})$ exist. Then, $d_r^{af}(A_{G_1} \cup A_{G_2})$ exists iff there exists partition $\Pi_1 = \{D_1, D_2,, Dd_r^{af}(A_{G_1})\}$ and $\Pi_2 = \{U_1, U_2,, Ud_r^{af}(A_{G_1})\}$ such that (i) if the anti fuzzy regular domatic number $d_r^{af}(A_{G_1}) = d_r^{af}(A_{G_2})$ then for each D_i there exists U_i such that D_i and U_i are having the same anti fuzzy regularity for each i, $1 \le i \le d_r^{af}(A_{G_1}) = d_r^{af}(A_{G_2})$. (ii) if $d_r^{af}(A_{G_1}) < d_r^{af}(A_{G_2})$ then D_i and U_i are having the same fuzzy regularity for each i, $1 \le i \le d_r^{af}(A_{G_1})$ and $Dd_r^{af}(A_{G_2}) + 1$,, $Dd_r^{af}(A_{G_2})$ must have the same anti fuzzy regularity with any one $D_1, D_2,, Dd_r^{af}(A_{G_1})$.

V. Regular Partial Anti Domatic Number in Anti Fuzzy Graphs

The idea of a regular partial anti domatic number in an AFG is defined in this section. Results and theorems in correspondence are given.

Definition 5.1

Let $A_G = (N, A, \sigma, \mu)$ be an AFG. A partition $\Pi = \{D_1, D_2,, D_K\}$ of $N(A_G)$ is called regular partial anti fuzzy anti domatic partition of A_G if (i) for each V_i , $<\!V_i\!>$ is anti fuzzy regular and (ii) V_i is a non anti fuzzy dominating set of A_G . The minimum cardinality of regular anti fuzzy anti domatic partition is called the regular anti fuzzy anti domatic number of A_G and is denoted by $\overline{d_i^{af}(A_G)}$.

Example 5.2

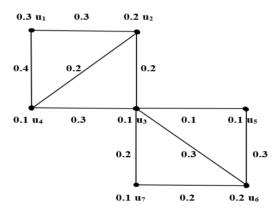


Figure 2 Anti Fuzzy Graph A_G

From Figure 2.

$$\begin{aligned} &d_{A_G}(u_1) = 0.3 + 0.4 = 0.7 \\ &d_{A_G}(u_2) = 0.3 + 0.2 + 0.2 = 0.7 \\ &d_{A_G}(u_3) = 0.3 + 0.2 + 0.2 + 0.3 + 0.1 = 1.1 \\ &d_{A_G}(u_4) = 0.4 + 0.2 + 0.3 = 0.9 \\ &d_{A_G}(u_5) = 0.1 + 0.3 = 0.4 \\ &d_{A_G}(u_6) = 0.2 + 0.3 + 0.3 = 0.8 \\ &d_{A_G}(u_7) = 0.2 + 0.2 = 0.4 \\ &d_{A_G}(u_1) = d_{A_G}(u_2) = 0.7 \end{aligned}$$

 $D_1 = \{u_1, u_2\}$ is a non-dominating and anti fuzzy regular.

$$d_{A_G}(u_5) = d_{A_G}(u_7) = 0.4$$

 $D_2 = \{u_5, u_7\}$ is a non-dominating and anti fuzzy regular.

Therefore, $\Pi = \{D_1, D_2\}$ is a regular anti fuzzy anti domatic partition of A_G .

Therefore,
$$|\Pi| = \overline{d_r^{af}(A_G)} = 2$$
.

Definition 5.3

An anti domatic partition of an anti fuzzy graph A_G is a partition of $N(A_G)$ into non dominating sets. The minimum cardinality of an anti domatic partition of an anti fuzzy graph A_G is called anti fuzzy anti domatic number of A_G and it is denoted by $\bar{d}_r^{af}(A_G)$.

Remark

Let $A_G = (N, A, \sigma, \mu)$ be an AFG.

(i) If A_G has a full degree node, then A_G has no regular partial anti fuzzy anti domatic partition. Since A_G has non dominating sets. Therefore, A_G has no full degree node. Suppose A_G has full degree node, all nodes dominate each other nodes of A_G and anti fuzzy regular. Therefore, A_G has no regular partial anti fuzzy anti domatic partition.

 $\label{eq:linear_equation} \begin{array}{ll} \mbox{(ii)} & \mbox{Let } N(A_G) = \{N_1,\,N_2,\,\ldots,,\,N_n\}. \mbox{ Then } \Pi = \!\!\{\{N_1\},\,\{N_2\},\,\ldots,,\,\{N_n\}\} \\ & \mbox{is a regular anti fuzzy anti domatic partition of } A_G. \end{array}$

Theorem 5.4

Let A_G be any AFG without full degree node, then $\overline{d}_r^{af}(A_G) \ge 2$.

Proof

Suppose $d_r^{af}(G_A)=1$. Then $\Pi=\{D\}$ is an anti fuzzy regular and not dominating. $N(A_G)$ is a regular anti fuzzy anti domatic partition which is contradiction to our assumption. Therefore, $\bar{d}_r^{af}(A_G) \ge 2$.

Definition 5.5 [V]

The distance d (u, v) between two vertices u and v in an anti fuzzy graph A_G is the length of a shortest u-v path in A_G . The diameter of a connected anti fuzzy graph A_G is the length of any shortest u-v path and it is denoted by $diam^{af}(A_G)$.

Theorem 5.6

If $diam^{af}(A_G) \ge 3$ and $x, y \in N(A_G)$ such that $d(x, y) = diam^{af}(A_G)$ with N[x] and (N-N[x]) are anti fuzzy regular. Then $\bar{d}_r^{af}(A_G) = 2$.

Proof

Let $diam^{af}(A_G) \ge 3$. Let $x, y \in N(A_G)$ such that $d(x, y) = diam^{af}(A_G)$ and N[x] and (N - N[x]) are anti fuzzy regular. Clearly, N[x] and (N - N[x]) are anti fuzzy dominating sets. Therefore, $\bar{d}_r^{af}(A_G) = 2$.

Theorem 5.7

If A_G is a disconnected AFG with k components $A_{G_1}, A_{G_2}, \ldots, A_{G_k}$. Then $\bar{d}_r^{af}(A_G) = 2$ if and only if for some i, $1 \le i \le k-1, A_{G_1}, A_{G_2}, \ldots, A_{G_i}$ are anti fuzzy r_1 - regular and $A_{G_{i+1}}, A_{G_{i+2}}, \ldots, A_{G_{i+k}}$ are anti fuzzy r_2 -regular.

Proof

Let A_G be disconnected anti fuzzy graph with components $A_{G_1}, A_{G_2}, \ldots, A_{G_k}$. Suppose $A_{G_1}, A_{G_2}, \ldots, A_{G_i}$ are anti fuzzyr₁-regular and $A_{G_{i+1}}, A_{G_{i+2}}, \ldots, A_{G_{i+k}}$ are anti fuzzy r₂-regular, for some i, $1 \le i \le k-1$. Let $\Pi = \{N(A_{G_1}) \cup N(A_{G_2}) \cup \ldots \cup A_{G_i}, \cup N(A_{G_{i+1}}) \cup N(A_{G_{i+2}}) \cup \ldots \cup N(A_{G_{i+k}})\}$. Then Π is a regular partial anti fuzzy anti domatic partition of A_G . Therefore, $\bar{d}_i^{af}(A_G) = 2$. The converse is obvious.

Theorem 5.8

Let A_G be an AFG without full degree nodes. If u is a node of degree $\delta^{af}(A_G)$ such that N - N[u] is an anti fuzzy regular. Then $\bar{d}_r^{af}(A_G) \leq \delta^{af}(A_G) + 2$.

Proof

Let u be a node of degree $\delta^{af}(A_G)$ and N - N[u] is an anti fuzzy regular. Let N[u]= {u, $v_1, v_2,, v_{\delta f}$ }. Let $\Pi = \{V - N[u], \{u\}, \{v_1\},,\} \{v_{\delta f}\}$. Then Π is a regular anti fuzzy anti domatic partition of A_G .

Therefore,
$$\bar{d}_r^{af}(A_G) \leq |\Pi| = \delta^{af}(A_G) + 2$$
. Hence $\bar{d}_r^{af}(A_G) \leq \delta^{af}(A_G) + 2$.

Theorem 5.9

If A_G is an uninodal AFG without full degree nodes. Then $\bar{d}_r^{af}(A_G) = n$ if and only if n is even and $A_G = \overline{k_2} \oplus \overline{k_2} \dots (\frac{n}{2})$ times.

Proof

Suppose n is even and $A_G = \overline{k_2} \oplus \overline{k_2} \dots (\frac{n}{2})$ times. Then $\overline{d}_r^{af}(A_G) = n$. Conversely, suppose $\overline{d}_r^{af}(G_A) = n$, every node in G_A is an anti fuzzy regular and which form a non dominating set. Since A_G is an anti fuzzy regular. Then A_G is uninodal anti fuzzy graph.

Result

The sum of the regular partial anti fuzzy domatic number and regular anti fuzzy anti – domatic number is greater than equal to two.

That is,
$$d_r^{af}(G_A) + \bar{d}_r^{af}(G_A) \ge 2$$
.

Theorem 5.10

Let A_G be a disconnected anti fuzzy graph with no isolated nodes. Then $d(A_G) \le d(\overline{A_G})$ if and only if A_G has exactly two components as anti fuzzy cycle each with same domatic number.

Theorem 5.11

If A_G is a disconnected graph of two components of cycle with n nodes, then

$$d(A_G) = \begin{cases} 3 & if \ n \equiv 0 \ mod \ 3 \\ 2 & otherwise \end{cases}$$

where n_1 and n_2 are number of nodes in two components ($n_1 = n_2$). d ($\overline{A_G}$) = n_1 .

Theorem 5.12

Let L [A_G] be an anti fuzzy line graph of $n \ge 3$. Then d[L(A_G)] = 2.

Proof

Let L [A_G] be an anti fuzzy line graph. D₁ is a dominating set of A_G.

Case (i): Suppose n is the odd number of nodes. Consider $u \in D_1$ is adjacent to at least two vertices in L $[A_G]$. Then L $[A_G]$ - $D_1 \in N$ (L $[A_G]$) does not dominate with L $[A_G]$. That is, the number of nodes of an anti fuzzy line graph required to dominate all the nodes. Suppose there exists another dominating set, which cover all nodes in L $[A_G]$ - D_1 . The anti fuzzy line graph G_A has at least one minimal dominating set and has two domatic partition. Therefore d $[L(G_A)] = 2$.

Case (ii): Suppose n is the even number of vertices in anti fuzzy line graph. Let D_1 and D_2 be two dominating sets with equal number of vertices. That is both dominating sets

are minimal. Therefore, the domatic partitions becomes $D_1 = \{v_1, v_3, \dots, v_{n-1}\}$ and $D_2 = \{v_2, v_4, \dots, v_{n-2}\}$. Hence d [L (G_A)] = 2.

VII. Results and Discussion

In path anti fuzzy graph, $\gamma\left(A_{G}\right)+d\left(A_{G}\right)\leq\left[\frac{n}{2}\right]+2.$

- 1) In cycle anti fuzzy graph, $\gamma(A_G) + d(A_G) \le \left\lceil \frac{n}{2} \right\rceil + 2$.
- 2) In complete anti fuzzy graph, $\gamma(A_G) + d(A_G) = n + 1$.
- 3) In any anti fuzzy graph, $\gamma(A_G) + d(A_G) \le \left\lceil \frac{n}{2} \right\rceil + 2$.
- 4) If A_G is an anti fuzzy wheel graph of order n, then $d(A_G) = \begin{cases} 4 \ ; \ if \ n \equiv 1 \ mod \ 4 \\ 3 \ ; \ otherwise \end{cases}$

VII. Conclusion

The definitions of regular partial domatic number and regular partial anti domatic number in anti fuzzy graphs are given in this paper. Lower bound for anti fuzzy domatic number is discussed. A vast array of issues may be solved with the help of the regular partial domatic and regular partial anti domatic numbers. This will result in an anti fuzzy graph with a new notation. For graphical research, the regular anti fuzzy domatic number and regular anti fuzzy anti domatic number are very useful for solving very wide range problems. We can impose additional restriction. This will lead us to a new notation for anti fuzzy graph. Also, the regular fuzzy domatic number and the regular anti fuzzy anti domatic numbers are useful to solve Transportation problems.

Conflict of interest:

There is no conflict of interest regarding this paper.

References

- I. Akram, Muhammad. "Anti fuzzy structures on graphs." *Middle East Journal of Scientific Research* 11.12 (2012): 1641-1648. 10.5829/idosi.mejsr.2012.11.12.131012
- II. Allan, Robert B., and Renu Laskar. "On domination and independent domination numbers of a graph." *Discrete mathematics* 23.2 (1978): 73-76. 10.1016/0012-365X(78)90105-X
- III. Chang, Gerald J. "The domatic number problem." *Discrete Mathematics* 125.1-3 (1994): 115-122. 10.1016/0012-365X(94)90151-1
- IV. Cockayne, Ernest J., and Stephen T. Hedetniemi. "Towards a theory of domination in graphs." *Networks* 7.3 (1977): 247-261. 10.1002/net.3230070305

- V. Dharmalingam, K.M., and Valli, K., "Regular Domatic Partition in Fuzzy Graph." *World Journal of Engineering Research and Technology*, 5.5 (2019), 100-107.b http://wjert.org/admin/assets/article_issue/34082019/1567157413.pdf
- VI. Gani, A. Nagoor, and K. Prasanna Devi. "2-domination in fuzzy graphs." *International Journal of Fuzzy Mathematical Archive* 9.1 (2015): 119-124. http://www.researchmathsci.org/IJFMAart/IJFMA-V9n1-14.pdf
- VII. Haynes, Teresa W., Stephen Hedetniemi, and Peter Slater. *Fundamentals of domination in graphs*. CRC press, 2013. 10.1201/9781482246582
- VIII. Muthuraj, R., and A. Sasireka. "Domination on anti fuzzy graph." *International Journal of Mathematical Archive* 9.5 (2018): 82-92. https://sadakath.ac.in/naac/criterion_iii/research/maths_supportingdocumen ts.pdf
- IX. Muthuraj, R., and A. Sasireka. "Total domination on anti fuzzy graph." *New Trends in Mathematical Sciences* 6.4 (2018): 28-39. 10.20852/ntmsci.2018.312
- X. Muthuraj, R., Vijayalakshmi, P., and Sasireka, A., "Domatic Number On Anti Fuzzy Graph." *AIPCP*. [Accepted]
- XI. Muthuraj, R., and A. Sasireka. "On anti fuzzy graph." Advances in Fuzzy Mathematics 12.5 (2017): 1123-1135. https://www.ripublication.com/afm17/afmv12n5_06.pdf
- XII. Somasundaram, A., and S. Somasundaram. "Domination in fuzzy graphs—I." *Pattern recognition letters* 19.9 (1998): 787-791. 10.1016/S0167-8655(98)00064-6
- XIII. Zadeh, Lotfi Asker, George J. Klir, and Bo Yuan. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers. Vol. 6. World scientific, 1996.
- https://books.google.co.in/books/about/Fuzzy_Sets_Fuzzy_Logic_and_Fuzzy_Sy stems.html?id=wu0dMiIHwJkC
- XIV. Zelinka, Bohdan. "Antidomatic number of a graph." Archivum Mathematicum 33.2 (1997): 191-195. https://dml.cz/bitstream/handle/10338.dmlcz/107610/ArchMathRetro_033-1997-2_2.pdf