

JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES

www.journalimcms.org

ISSN (Online): 2454 -7190 Vol.-18, No.-04, April (2023) pp 1-9 ISSN (Print) 0973-8975

n-KERNELS OF SKELETAL CONGRUENCES ON A DISTRIBUTIVE NEARLATTICE

Shiuly Akhter

Department of Mathematics, University of Rajshahi, Bangladesh

Email: shiuly.mim@gmail.com

https://doi.org/10.26782/jmcms.2023.04.00001

(Received: January 20, 2023; Accepted: March 28, 2023)

Abstract

In this paper, the author studied the skeletal congruences θ^* of a distributive nearlattice S, where * represents the pseudocomplement. Then the author described $\theta(I)^*$, where $\theta(I)$ is the smallest congruence of S containing n-ideal I as a class and showed that I^+ is the n-kernel of $\theta(I)^*$.

In this paper, the author established the following fundamental results:

When n is an upper element of a distributive nearlattice S, the author has shown that the n-kernels of the skeletal congruences are precisely those n-ideals which are the intersection of relative annihilator ideals and dual relative annihilator ideals whose endpoints are of the form $x \vee n$ and $x \wedge n$ respectively.

For a central element n of a distributive nearlattice S, the author proved that $P_n(S)$ is disjunctive if and only if the n-kernel of each skeletal congruence is an annihilator n-ideal.

Finally, the author discussed that $P_n(S)$ is semi-Boolean if and only if the map $\theta \to Ker_n\theta$ is a lattice isomorphism of SC(S) onto $K_nSC(S)$ whose inverse is the map $I \to \theta(I)$ where I is an n-ideal and n is a central element of S.

Keywords: n-Kernels of skeletal congruence, Pseudo complement, Annihilator n-ideal, Disjunctive nearlattice, Semi-Boolean algebra.

I. Introduction

In this paper, the author will be concerned with a distributive nearlattice S with a fixed element n. Skeletal congruences on distributive lattices have been studied by Cornish in [VIII]. Also, skeletal congruences on distributive nearlattices have been studied extensively by Akhter [VI]. Cornish [VIII] studied the Kernels of Skeletal congruences on the distributive lattice. On the other hand Latif in [III] has generalized the results of [VIII] for n-ideals in lattices.

In this paper, the author extended and generalized those results for nearlattices. A nearlattice S is a meet semilattice with the property that any two elements possessing a common upper bound, have a supremum. Nearlattice S is distributive if for all $x, y, z \in S$, $x \land (y \lor z) = (x \land y) \lor (x \land z)$ provided $y \lor z$ exists. For detailed literature on nearlattices and their congruences and ideals, we refer the reader to [VII], [IX], [I] and [II]. Here C(S) denotes the lattice of congruences of S. For any $\theta \in C(S)$, θ^* denotes the pseudocomplement of θ . So by its definition, $\theta \cap \emptyset = \omega$ iff $\emptyset \leq \theta^*$, $\emptyset \in C(S)$. The existence of θ^* is guaranteed by the fact that C(S) is a distributive algebraic lattice. A non-empty subset I of a nearlattice S is ideal if it is hereditary and closed under existent finite suprema. We denote the set of all ideals of S by I(S). For a distributive nearlattice S with S0, S1 is pseudo-complimented. The pseudocomplement S1 is the annihilator ideal

$$I^* = \{x \in S: x \land i = 0 \text{ for all } i \in I\}.$$

The skeleton $SC(S) = \{\theta \in C(S): \theta = \theta^{**}\}$.

The kernel of congruence θ is $ker\theta = \{x \in S: x \equiv 0(\theta)\}$. Of course $ker\theta(I) = I$.

We also denote $KSC(S) = \{ker\theta : \theta \in SC(S)\}\$

For a fixed element $n \in S$, a convex subnear lattice of S containing n is called an n-ideal. Since the lattice of n-ideals $I_n(S)$ of a distributive near lattice S is a distributive algebraic lattice, so $I_n(S)$ is pseudocomplemented

An element s of a nearlattice S is called standard if for all $t, x, y \in S$,

$$t \wedge [(x \wedge y) \vee (x \wedge s)] = (t \wedge x \wedge y) \vee (t \wedge x \wedge s).$$

The element s is called neutral if

- (i) s is standard and
- (ii) for all $x, y, z \in S$, $s \wedge [(x \wedge y) \vee (x \wedge z)] = (s \wedge x \wedge y) \vee (s \wedge x \wedge z)$.

An element n of a nearlattice S is called medial if $m(x, n, y) = (x \land y) \lor (x \land n) \lor (y \land n)$ exists in S for all $x, y \in S$. An element n of a nearlattice S is called an upper element if $x \lor n$ exists for all $x \in S$. An element n of a nearlattice S is called a central element of S if it is neutral, upper, and complemented in each interval containing it.

If n is a medial element, then for any n-ideal I of a distributive nearlattice S, we define $I^+ = \{x \in S : m(x, n, i) = n \text{ for all } i \in I\}$. Obviously, I^+ is an n-ideal and $I \cap I^+ = \{n\}$. We call I^+ the annihilator n-ideal of I which is the pseudocomplement of I in $I_n(S)$.

We define the n-kernel of a congruence θ by

$$Ker_n\theta = \{x \in S: x \equiv n\theta\}$$
 which is an *n*-ideal.

 $\theta \in C(S)$ is called dense if $\theta^* = \omega$, while an n-ideal I is called dense if $I^+ = \{n\}$. A non-empty subset T of a nearlattice S is called join-dense if each $y \in S$ is the join of its predecessors in T, while T is called meet-dense if each $y \in S$ is the meet of its successors in T. A distributive nearlattice S with 0 is called disjunctive if $0 \le a < b$ implies the existence of $x \in S$ such that $x \land a = 0$ and $0 < x \le b$. A nearlattice S with S is called semi-Boolean if it is distributive and the interval S is complemented for each S is complemented for each S is called semi-Boolean if it is distributive and the interval S is complemented for each S is called semi-Boolean if it is distributive and the interval S is complemented for each S is called semi-Boolean if it is distributive and the interval S is complemented for each S is called semi-Boolean if it is distributive and the interval S is complemented for each S is called semi-Boolean if it is distributive and the interval S is complemented for each S is the meet of its successor in S is called dense if S is the meet of its successor in S is the me

An *n*-ideal generated by a single element *a* is called principal *n*-ideal and denoted by $< a >_n$. The set of principal *n*-ideals is denoted by $P_n(S)$. When $n \in S$ is standard and medial then for any $a \in S$

$$\langle a \rangle_n = \{ y \in S : y = (y \land a) \lor (y \land n) \lor (a \land n) .$$

When n is an upper element, then $< a >_n$ is the closed interval $[a \land n, a \lor n]$.

In this paper, we generalize several results of [5] on n-kernels of skeletal congruences in a distributive nearlattice.

II. Main results

To obtain the main results of this paper we need the following theorems.

The following theorems are due to [V]. These will be needed for further development of this paper.

Theorem 2.1. In a distributive nearlattice S the mapping $I \to \theta(I)$ is an embedding from $I_n(S)$ to C(S) where $I_n(S)$ is the lattice of n-ideals of S and C(S) is the lattice of congruences of S.

Theorem 2.2. For a distributive nearlattice S with 0, the following conditions hold:

- (i) For $a \le b$ $(a, b \in S)$, $x \equiv y(\theta(a, b)')$ if and only if $x \land b) \lor a = (y \land b) \lor a$ where $\theta(a, b)'$ is the complement of $\theta(a, b)$.
- (ii) For any $\theta \in C(S)$, $x \equiv y(\theta^*)$ $(x, y \in S)$ if and only if for each $a, b \in S$ with $a \le b$ and $a \equiv b(\theta)$; $(x \land b) \lor a = (y \land b) \lor a$.
- (iii) For any $\theta \in C(S)$, $x \equiv y(\theta^*)$ if and only if $\theta(0,x) \cap \theta = \theta(0,y) \cap \theta$ if and only if $\psi_x \cap \theta = \psi_y \cap \theta$.

Theorem 2.3. Let S be a distributive nearlattice with an upper element n. Then for any $\theta \in C(S)$, $x \equiv y(\theta^*)$ if and only if $\theta(n, x) \cap \theta = \theta(n, y) \cap \theta$.

Recall that the n-kernel of a congruence θ is given by $Ker_n\theta = \{x \in S: x \equiv n\theta\}$, which is also an n-ideal.

Theorem 2.4. If S is a distributive nearlattice and $n \in S$ is an upper element, then the following conditions hold:

- (i) For any n-ideal I, $x \equiv y(\theta(I)^*)$ $(x, y \in S)$ if and only if $\langle x \rangle_n \cap I = \langle y \rangle_n \cap I$ i.e, if and only if m(x, n, i) = m(y, n, i) for all $i \in I$.
- (ii) For an n-ideal I, both $\theta(I^+)$ and $\theta(I)^*$ have I^+ as their n-kernel.
- (iii) The n-kernels of the skeletal congruences are precisely those n-ideals that are the intersection of relative annihilator ideals and dual relative annihilator ideals whose endpoints are of the form $x \vee n$ and $x \wedge n$ respectively.
- (iv) Each principal n-ideal in a distributive nearlattice is the intersection of relative annihilator ideals and dual relative annihilator ideals whose endpoints are of the form $x \vee n$ and $x \wedge n$ respectively.
- **Proof.** (i) For any two *n*-ideals *I* and *J* of *S*, the author $\theta(I \cap J) = \theta(I) \cap \theta(J)$. Also, since *n* is upper so $\theta(n,x) = \theta(n \land x, n \lor x) = \theta(< x >_n)$. Then by Theorem 2.3, $x \equiv y(\theta(I)^*)$ if and only if $\theta(n,x) \cap \theta(I) = \theta(n,y) \cap \theta(I)$ if and only if $\theta(< x >_n) \cap \theta(I) = \theta(< y >_n) \cap \theta(I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if and only if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if $\theta(< x >_n \cap I)$ if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if $\theta(< x >_n \cap I) = \theta(< y >_n \cap I)$ if $\theta(< x >_n \cap I)$ if $\theta(< x >_n \cap I)$ if $\theta(< x >_n \cap I$

Hence (i) holds.

- (ii) If $x \in Ker_n(\theta(I)^*)$, then $x \equiv n(\theta(I)^*)$. Then by above (i), $\langle x \rangle_n \cap I = \langle n \rangle_n \cap I$ if and only if m(x, n, i) = m(n, n, i) = n for all $i \in I$ and so $x \in I^+$. Thus (ii) holds.
- (iii) Let $a, b \in S$ with $a \le b$. Since $\theta(a, b)^* = \theta(a, b)'$, so by Theorem 2.2, $x \in Ker_n(\theta(a, b)^*)$ if and only if $(x \land b) \lor a = (n \land b) \lor a$ (Since $a \le b$, $(x \land b) \lor a$ and $(n \land b) \lor a$ exist by the upper bound property of S).

Now, we shall show that $(x \wedge b) \vee a = (n \wedge b) \vee a$ is equivalent to $x \in \langle b \vee n, a \vee n \rangle \cap \langle a \wedge n, b \wedge n \rangle_d$. Since $(x \wedge b) \vee a = (n \wedge b) \vee a$ implies $x \wedge b \leq a \vee n$, then the author $x \wedge (b \vee n) = (x \wedge b) \vee (x \wedge n) \leq a \vee n$, and so $x \in \langle b \vee n, a \vee n \rangle$. Again from $(x \wedge b) \vee a = (n \wedge b) \vee a$, the author $b \wedge n \leq (x \wedge b) \vee a$. So $(b \wedge n) \leq (x \wedge b \wedge n) \vee (a \wedge n) \leq x \vee (a \wedge n)$, which implies that $x \in \langle a \wedge n, b \wedge n \rangle_d$.

Hence $x \in \langle b \lor n, a \lor n \rangle \cap \langle a \land n, b \land n \rangle_d$.

Conversely, let $x \in \langle b \lor n, a \lor n \rangle \cap \langle a \land n, b \land n \rangle_d$.

Then $x \in \langle b \lor n, a \lor n \rangle$ and $\in \langle a \land n, b \land n \rangle_d$.

So $x \land (b \lor n) \le a \lor n$ and $x \lor (a \land n) \ge b \land n$.

Now, $x \land (b \lor n) (x \land b) \lor a = (n \land b) \lor a \le a \lor n$ implies

$$x \wedge b = x \wedge b \wedge (b \vee n) \leq (a \vee n) \wedge b$$

$$= (a \wedge b) \vee (b \wedge n) = a \vee (b \wedge n)$$
 and so $(x \wedge b) \vee a \leq (b \wedge n) \vee a$.

On the other hand, $b \wedge n \leq x \vee (a \wedge n)$ implies $b \wedge n \leq b \wedge (x \vee (a \wedge n))$

$$= (x \wedge b) \vee (a \wedge b \wedge n) = (x \wedge b) \vee (a \wedge n)$$
 and so $(n \wedge b) \vee a \leq (x \wedge b) \vee a$.
Hence $(x \wedge b) \vee a = (n \wedge b) \vee a$.

Since for any $\theta \in C(S)$, $\theta^* = \cap \{\theta(a,b)^* : a \equiv b\theta\}$, hence the result follows.

(iv) Since each principal n-ideal

$$\langle a \rangle_n = \ker_n \theta (\langle a \rangle_n) = \ker_n \theta (a \land n, a \lor n)$$

and since $\theta(a \land n, a \lor n)$ is skeletal so by (iii) the result follows.

A non-empty subset T of a nearlattice S is called large if $x \wedge t = y \wedge t$ for all $t \in T$, $x, y \in S$ implies x = y while recall that T is join-dense if each $z \in S$ is the join of its predecessors in T.

A non-empty subset T of a nearlattice S is called *small* if for all $x, y \in S$ with $x \le y$ and $y = x \lor (y \land t)$ for all $t \in T$ imply x = y while recall that T is meet-dense if each $z \in S$ is the meet of its successors in T.

The following lemma is due to [II] and it will be needed for our next theorem.

Lemma 2.5. A convex superlattice J of a distributive nearlattice S is large if and only if it is join-dense in S.

Theorem 2.6. Let S be a distributive nearlattice with an upper element n. Then for any n-ideal I of S, $\theta(I)$ is dense in C(S) if and only if I is both meet and join-dense.

Proof. Let $\theta(I)$ be dense in C(S), that is $\theta(I)^* = \omega$. Suppose $x \wedge i = y \wedge i$ for all $i \in I$. Then m(x, n i) = m(y, n, i) for all $i \in I$. Then by Theorem 2.4 (i), the author $x \equiv y\theta(I)^* = \omega$. Hence x = y. This implies I is large and so by Lemma 2.5, I is join-dense.

Again for $x, y \in S$ with $x \le y$ let $y = x \lor (y \land i)$ for all $i \in I$. Since $n \in I$, so $y = x \lor (y \land n)$. This implies $x \lor n = y \lor n$; as n is upper.

Now
$$m(x, n, y \land i) = (x \lor n) \land (n \lor (y \land i)) \land (x \lor (y \land i))$$

$$= (y \lor n) \land (n \lor (y \land i)) \land y$$

$$= m(y, n, y \land i)$$
 for all $i \in I$.

Hence
$$(x \land n) \lor (x \land i) \lor (y \land n \land i) = (y \land i) \lor (y \land n) \lor (n \land y \land i)$$
 and so

$$(x \wedge n) \vee (x \wedge i) \vee (n \wedge i) = (y \wedge i) \vee (y \wedge n) \vee (n \wedge i).$$

That is, m(x, n, i) = m(y, n, i) for all $i \in I$. Hence by Theorem 2.4 (i), the author $x \equiv y\theta(I)^* = \omega$. This implies that x = y and so I is meet-dense.

Conversely, let *I* be both meet join-dense and $x \equiv y\theta(I)^*$ with $x \leq y$. Then by Theorem 2.4 (i), the author m(x, n, i) = m(y, n, i) for all $i \in I$.

Now, $(x \lor n) \land i = m(x, n, i) \land i = m(y, n, i) \land i = (y \lor n) \land i$ for all $i \in I$. So by Lemma 2.5, $x \lor n = y \lor n$.

Again
$$(x \land n) \lor ((y \land n) \land i) = (y \land (x \land n)) \lor (y \land (n \land i))$$
 as $x \le y$

$$=y\wedge [(x\wedge n)\vee (n\wedge i)]$$

$$= y \wedge m(x \wedge n, n, i)$$

$$= y \wedge m(y \wedge n, n, i)$$

$$= y \wedge [(y \wedge n) \vee (n \wedge i)]$$

$$= (y \wedge n) \vee (y \wedge n \wedge i)$$

This implies $(x \land n) \lor ((y \land n) \land i) = y \land n$ for all $i \in I$

Since *I* is meet-dense, so $x \wedge n = y \wedge n$.

Hence by the distributivity of S, x = y. That is, $\theta(I)^* = \omega$.

Therefore, $\theta(I)$ is dense in C(S).

The following result is due to [IV] which will be needed for the next theorem of this paper.

Theorem 2.7. For a neutral element n of a nearlattice S, the following conditions are equivalent:

- (i) n is central in S.
- (ii) n is upper and the map $\phi: P_n(S) \to (n]^d \times [n)$ defined by $\phi(\langle a \rangle_n) = (a \land n, a \lor n)$ is an isomorphism, where $(n]^d$ represents the dual of the lattice (n].

Recall that a distributive nearlattice S with 0 is called disjunctive if $0 \le a < b$ implies the existence of $x \in S$ such that $x \land a = 0$ and $0 < x \le b$.

Theorem 2.8. Let S be a distributive nearlattice with a central element n. Then the following conditions are equivalent:

- (i) $P_n(S)$ is disjunctive.
- (ii) For each congruence ϕ , $\phi^* = \theta(Ker_n\phi)^*$.
- (iii) For each congruence ϕ , $Ker_n(\phi^*) = (Ker_n\phi)^+$.
- (iv) For each congruence ϕ , $Ker_n(\phi^{**}) = (Ker_n\phi)^{++}$.
- (v) The n-Kernel of each skeletal congruence is an annihilator n-ideal.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Since $\theta(Ker_n\phi) \subseteq \phi$, so the author $\phi^* \subseteq \theta(Ker_n\phi)^*$. So it is sufficient to prove that $\phi \cap \theta(Ker_n\phi)^* = \omega$. Suppose $x \le y$ and $x \equiv y (\phi \cap \theta(Ker_n\phi)^*)$ implies $x \equiv y\phi$ and $x \equiv y\theta(Ker_n\phi)^*$.

If x < y, then either $x \land n < y \land n$ or $x \lor n < y \lor n$. Suppose $x \lor n < y \lor n$. Since $P_n(S)$ is disjunctive, so by Theorem 2.7, [n] is also disjunctive. So there exists $n < a \le y \lor n$ such that $a \land (x \lor n) = n$. Then $n = a \land (x \lor n) \equiv a \land (y \lor n = a(\phi))$ and so, $a \in Ker_n \phi$.

Since $x \equiv y\theta(Ker_n\phi)^*$ so $x \lor n \equiv y \lor n\theta(Ker_n\phi)^*$ and since $a \in Ker_n\phi$, so by Theorem 2.4, $m(x \lor n, n, a) = m(y \lor n, n, a)$ that is,

 $((x \lor n) \land n) \lor (a \land (x \lor n)) \lor (n \land a) = ((y \lor n) \land n) \lor (a \land (y \lor n)) \lor (n \land a)$ and so $n \lor (a \land (x \lor n)) = n \lor a$. This implies n = a which is a contradiction.

Therefore x = y and so $\phi \cap \theta(Ker_n\phi)^* = \omega$. Thus $\theta(Ker_n\phi)^* \subseteq \phi^*$.

Hence $\phi^* = \theta(Ker_n\phi)^*$.

Since by Theorem 2.4 (ii), $\theta(I)^*$ and $\theta(I^+)$ have I^+ as their *n*-kernels,

so (ii) \Rightarrow (iii) is obvious. (iii) \Rightarrow (iv) and (iv) \Rightarrow (v) are also obvious. Finally, we need to prove that (v) \Rightarrow (i).

Suppose (v) holds. Let $n \le a < c$. Then by Theorem 2.4(iii), < c, a > is the n-kernel of a skeletal congruence. Since (v) holds, so there is an annihilator n-ideal J such that $< c, a >= J = J^{++}$. Then $a \land c \le a$ implies $a \in < c, a >= J = J^{++}$. Since a < c implies $c \notin < c, a >= J = J^{++}$.

So there exists $e \in J^+$ such that $m(c, n, e) \neq n$. But m(a, n, e) = n implies $(a \land e) \lor n = n$. That is, $a \land (e \lor n) = n$ and so $a \land ((e \lor n) \land c) = n$.

Also $m(c, n, e) \neq n$ implies $(e \lor n) \land c > n$ and so $n < (e \lor n) \land c \le c$ with $a \land ((e \lor n) \land c) = n$. Thus [n) is disjunctive. A dual proof of this gives that (n] is dual disjunctive and so by Theorem 2.7, $P_n(S)$ is disjunctive.

Recall that a nearlattice S with 0 is semi-Boolean if it is distributive and the interval [0, x] is complemented for each $x \in S$.

Theorem 2.9. Let S be a distributive nearlattice with a central element n. Then $P_n(S)$ is semi-Boolean if and only if the map $\theta \to Ker_n\theta$ is a lattice isomorphism of SC(S) onto $K_nSC(S)$ whose inverse is the map $I \to \theta(I)$, where I is an n-ideal of S.

III. Conclusion

In this paper, we extend the concept of n-Kernels of skeletal congruences on a distributive nearlattice and establish several fundamental results on n-Kernels of skeletal congruences. We also give the notion of n-Kernels of skeletal congruences and prove some interesting results on n-Kernels of skeletal congruences in a distributive nearlattice.

IV. Acknowledgement

I am grateful to the reviewers for their valuable comments and suggestions to improve this paper.

Conflict of Interest:

There was no relevant conflict of interest regarding this paper.

References

- I. A. S. A. Noor and M. B. Rahman, Congruence relations on a distributive nearlattice, *Rajshahi University Studies Part-B*, *Journal of Science*, 23-24(1995-1996) 195-202.
- II. A. S. A. Noor and M. B. Rahman, Sectionally semicomplemented distributive nearlattices, *SEA Bull. Math.*, 26(2002) 603-609.
- III. M. A. Latif, n-ideals of a lattice, Ph.D. Thesis, *Rajshahi University*, *Rajshahi*, 1997.

- IV. S. Akhter, Disjunctive Nearlattices and Semi-Boolean Algebras, *Journal of Physical Sciences*, Vol. 16, (2012), 31-43.
- V. S. Akhter, A study of Principal n-Ideals of a Nearlattice, Ph.D. Thesis, *Rajshahi University, Rajshahi*, 2003.
- VI. S. Akhter and M. A. Latif, Skeletal congruence on a distributive nearlattice, *Jahangirnagar University Journal of Science*, 27(2004) 325-335.
- VII. S. Akhter and A. S. A. Noor, n-Ideals of a medial nearlattice, *Ganit J. Bangladesh Math. Soc.*, 24(2005) 35-42.
- VIII. W. H. Cornish, The Kernels of skeletal congruences on a distributive lattice, *Math. Nachr.*, 84(1978) 219-228.
- IX. W. H. Cornish and Hickman, Weakly distributive semilattice, *Acta. Math. Acad. Sci. Hunger*, 32(1978) 5-16.