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Abstract 

The present numerical investigation deals with the laminar natural convection 

flow of a nanofluid along an isothermal vertical plate. As indicated by the Boungiorno 

model [V], nanofluid is considered a two-part combination (base liquid in addition to 

nanoparticles) where the impacts of Brownian movement and thermophoresis are 

significant. The boundary condition on the fluid flow is new: the nanoparticle volume 

fraction at the plate is passively controlled by assuming that its flux there is zero. The 

outcome of the present study with this new boundary condition is in better agreement 

with the practical applications of nanofluids. 

Keywords: Isothermal Vertical Plate, Natural Convection, NanoFluid, Brownian 

Motion, Thermophoresis.  

 

I.     Introduction 

Nanofluid was introduced by Choi in 1995 [IV]. When nano-sized particles    

(1 – 100 nm) are strategically deployed in the base fluids (water, oil, polymer solution, 

biofluids, etc.), the ensuing nanofluids have been verified to achieve remarkable 

enhancement of thermal conductivity. This significant property makes nanofluids 

potentially useful in many heat transfer applications: electronics cooling, nuclear 

system cooling, transportation (engine cooling/vehicle thermal management), heat 

exchanger, fuel cells, solar water heating, biomedicine, etc. A two-phase model was 

proposed by   Boungiorno [V], who analyzed seven mechanisms between nanoparticles 

and base fluid. Brownian diffusion and thermophoresis prevail over the other five 

mechanisms, namely, inertia, diffusiophoresis, the Magnus effect, fluid drainage, and 

gravity. Many researchers use this model. This model introduces a separate equation 

for nano-particle species diffusion. 
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II.    Literature Review and Objective  

The natural convection process plays an important role in heat and mass 

transfer phenomena in regular as well as nanofluids. Convective boundary-layer flow 

of a nanofluid along a plate was studied by Kuznetsov and Nield [III], Khan and Aziz 

[VI], Nield, A.V. Kuznetsov [III], etc. In those and other related papers, a constant 

volume fraction of nanoparticles at the surface of the plate was assumed by the authors, 

but no information was given as to how to achieve this. In the present numerical study, 

the boundary condition on nanoparticle volume fraction at the surface of the plate was 

reformulated such that its mass flux is zero there. The goal of this research is to build 

a simple, accurate numerical simulation of laminar free-convection flow and heat 

transfer over an isothermal vertical plate inundated in a nanofluid. The numerical 

computations have been carried out for different values of the thermo physical 

parameters relevant to the present problem, namely  Prandtl number (Pr), Lewis 

number (Le), thermophoresis parameter (Nt), the buoyancy-ratio parameter (Nr), 

Brownian motion parameter (Nb). The dependence of dimensionless stream function 

(s), longitudinal velocity (s′), temperature (θ), and nanoparticle volume fraction (f) on 

these parameters are figured and delineated graphically. The reduced Nusselt number's 

independence on these parameters is also demonstrated. A linear regression correlation 

between them is also developed. The results obtained from the present numerical study 

are then compared with the earlier works available in the literature. 

The organization of the present study is as follows: Mathematical model of the 

problem, its solution procedure and the development of codes in Matlab environment, 

results, and discussion, conclusion. 

III.    Materials and Methods    

III.i.  Mathematical Model  

The natural convection flow is steady, laminar, and two-dimensional. The x-axis is 

aligned with the vertical plate and the direction normal to the surface to be y. Following 

Oberbeck-Boussinesq approximation and standard boundary layer approximations, the 

equations for continuity, momentum, thermal energy, and nano-particle species 

governing the flow [V, II]  can be written as:  
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where, u and v are velocity components along x and y  respectively, T∞ and φ∞ are 

temperature and nanoparticle volume fraction far away from the plate respectively, ρf 

is the density of the base fluid and ρp is the density of the nanoparticles, μ, k ,β and α 

are the viscosity, thermal conductivity, volumetric expansion coefficient and thermal 

diffusivity of the nanofluid, g is the acceleration due to gravity, (ρc)f is the heat capacity 

of the fluid, (ρc)p is the effective heat capacity of the nanoparticle material, DB and DT 

are the Brownian diffusion coefficient and thermophoretic diffusion coefficient, 

respectively.  

RHS of Eq. (2) represents the stress component due to viscosity, the convective 

acceleration, the upward buoyancy term due to the thermal expansion of the base fluid, 

and the downward buoyancy term due to the variation in densities of the base fluid and 

the nanoparticles.  The terms in the left hand of Eq. (4) are the convection terms due to 

temperature while the terms in the right-hand side represent the heat enthalpy, diffusion 

of thermal energy due to Brownian diffusion, and thermophoretic effect. A similar 

interpretation may be given to the terms in eq. (5). 

The boundary conditions for the system of equations are: 
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For large y: u= v = 0,   T = T∞ , φ = φ∞           (6) 

We introduce the stream function:  

                       (7) 
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is the thermal diffusivity of the fluid. 

In order to non-dimensionalize the system of equations (8)-(10), the following 
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Equations (8), (9), and (10) are then transformed to (with a prime denoting 

differentiation with respect to η) 

        (12) 
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The relevant physical quantity characterising the heat transfer rate is the Nusselt 

number. Local Nusselt number is defined as  
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where qw is the wall heat flux. On substitution of the similarity variables (11) in (17), 

the reduced local Nusselt number can be written as  
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III.ii.   Solution Procedure 

Eqs (12) (13) and (14) are coupled nonlinear higher-order ordinary differential 

equations. There are three unknown initial values at the wall: s ( )0 , and  
f ( )0

.  

 

III.ii.a.   Reduction of Equations to First-order System 
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The third-order eq (12) is replaced by three first-order equations, whereas equations 

(13) and (14) are second-order each and is replaced with two first-order equations each. 
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III.ii.b.  Conversion to Initial Value Problems 

Equations (20) denotes a system of first-order ODE of seven variables, so we require 

seven initial values in the boundary condition to solve it. Out of seven, we see three of 

them, namely, s ( )0 , and  
f ( )0

are missing. We assume them as a1, a2, and a3 

respectively. The arrangement of initial conditions is then, at that point: 
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We will solve equations (20) with the adaptive Runge-Kutta method using the initial 

conditions in eq (22). The computed boundary values at  =   depend on the choice 

of  respectively:  
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The correct choice of a1, a2 and a3 yields the given boundary conditions at  =  ; that 

is, it satisfies the equations 

f a1 1 0( ) =
 

f a2 2 0( ) =
                                                  

f a3 3 0( ) =          (24) 

The Newton-Raphson method is issued to solve these nonlinear equations. We take 10 

as infinity for integration, even if we integrate further nothing will change.  
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III.ii.c.  Program Details 

For the solution of equations (20) along with the boundary conditions (22), we develop 

a set of Matlab routines using Newton Raphson and adaptive Runge-Kutta methods 

which are shown in Table 1.  

Table 1: A set of Matlab routines used sequentially to solve equations (20) 

Matlab code Brief Description 

deqs.m Describes the differential equations (20) 

incond.m Statements of initial values for integration, a1, a2 and a3 are guessed 

values, eq (22) 

runKut5.m Integrates the initial value problem using the adaptive Runge-Kutta 

method 

residual.m Provides boundary residuals and approximate solutions 

newtonraphson.m Gives accurate values a1, a2 and a3 using approximate solutions 

from residual.m 

runKut5.m Again integrates equations (20) using correct values of a1, a2 and a3. 

These codes give the numerical values of s s s f f, , , , , ,     in tabular format 

as functions of η with Pr, Le, Nr, Nb, and Nt parameters. In the simulation process, we 

run the codes for the following set of discrete values of the parameters, Pr, Le, Nr, Nb 

and Nt: 

 

Table 2: Values of input parameters 

Input parameters values 

Pr 1, 10, 100, 1000 

Le 5, 10 

Nr 10-5, 0.1, 0.2, 0.3, 0.4, 0.5 

Nb 10-5, 0.1, 0.2, 0.3, 0.4, 0.5 

Nt 10-5, 0.1, 0.2, 0.3, 0.4, 0.5 

 

IV.     Results and Discussion  

IV.i.   Validation of the Numerical Procedure. 

For validation of the codes developed for the solution, the numerical results for 

reduced Nusselt number values (eq. 18)  obtained from them for regular fluid at 

different values of Pr are compared with the values reported in previous works [I,II] in 

Table 3. Table 3 shows an excellent agreement between the present computation and 

the earlier results on the reduced number. 
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Table 3: Comparison with previous works [6, 3] when Le = 10, Nr = Nb = Nt = 10-5 

Pr 1 10 100 1000 

Nur [6] 0.401 0.465 0.490 0.499 

Nur [3] 0.401 0.463 0.481 0.484 

Nur [present] 0.4010 0.4633 0.4811 0.4836 

 

IV.ii.   A representative case 

As mentioned in Table 2, numerical computations have been carried out for different 

values of the parameters involved, namely  Pr, Le, Nr, Nb, and Nt that describe the 

flow characteristics, heat, and mass transfer, and the results are presented in graphs and 

tables. 

We run the above-mentioned codes for the case Pr = 10, Le = 10, Nr = Nb = Nt = 0.5, 

and the obtained profiles of dimensionless stream function (s), longitudinal velocity 

(s′), temperature (θ), and nanoparticle volume fraction (f) shown in Fig. 1. 

 

Fig. 1: Plots of dimensionless similarity functions s(η), s′(η), θ (η), 10f(η) for the 

case Pr = 10, Le =  10, Nr = Nb = Nt = 0.5. (The function f(η ) was multiplied by a 

factor of 10 for better visualization). 

It is clear that the profiles for the temperature function θ (η) and the stream function 

s(η) possess similar forms to the case of a regular fluid. It is noteworthy that the value 

of f, nanoparticle volume fraction at the wall is negative. This indicates that the effect 

of thermophoresis is such that an elevation above the ambient surface temperature leads 

to a reduction in the relative value of the nanoparticle fraction at the surface. 
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IV.iii.   Correlation 

We run the codes developed in the present study for 125 sets of values of Nr, Nb, and 

Nt in the range [0.1, 0.2, 0.3, 0.4, 0.5]  with Pr = 10 and Le = 10, and the reduced 

Nusselt number (eq. 18) from the solutions are shown in Table 4. The linear regression, 

performed on the results, yielded the correlation 

Nurest = 0.465 – 0.0009Nr – 0.0029Nb – 0.0748Nt         (25) 

with a maximum error of less than 0.94%. This may be compared with the correlation 

where the nanoparticle volume fraction at the plate is actively controlled [II], which 

was 

Nurest = 0.465 – 0.0055Nr – 0.256Nb – 0.160Nt      (26) 
 

Table 4 - Values of 
−  ( )0

with Pr = 10 and Le = 10 

−  ( )0
 

Nb Nt Nr = 0.1 Nr = 0.2 Nr = 0.3 Nr = 0.4 Nr = 0.5 

0.1 0.1 0.4560 0.4562 0.4563 0.4564 0.4565 

0.2 0.4353 0.4344 0.4336 0.4327 0.4318 

0.3 0.4164 0.4148 0.4131 0.4114 0.4097 

0.4 0.3991 0.3969 0.3946 0.3923 0.899 

0.5 0.3832 0.3805 0.3777 0.3749 0.3719 
       

0.2 0.1 0.4705 0.4712 0.4719 0.4726 0.4733 

0.2 0.4486 0.4488 0.4489 0.4490 0.4491 

0.3 0.4288 0.4284 0.4281 0.4277 0.4274 

0.4 0.4106 0.4099 0.4092 0.4085 0.4077 

0.5 0.3939 0.3930 0.3920 0.3909 0.3899 
       

0.3 0.1 0.4859 0.4869 0.4878 0.4888 0.4897 

0.2 0.4625 0.4630 0.4634 0.4639 0.4644 

0.3 0.4413 0.4414 0.4415 0.4416 0.4417 

0.4 0.4220 0.4218 0.4216 0.4214 0.4212 

0.5 0.4043 0.4039 0.4035 0.4030 0.4026 
       

0.4 0.1 0.5029 0.5040 0.5051 0.5062 0.5073 

0.2 0.4775 0.4782 0.4788 0.4795 0.4802 

0.3 0.4546 0.4550 0.4553 0.4557 0.4560 

0.4 0.4340 0.4341 0.4341 0.4342 0.4343 

0.5 0.4151 0.4150 0.4149 0.4148 0.4146 
       

0.5 0.1 0.5217 0.5230 0.5242 0.5255 0.5267 

0.2 0.4939 0.4947 0.4956 0.4964 0.4973 

0.3 0.4691 0.4697 0.4702 0.4707 0.4712 

0.4 0.4469 0.4471 0.4474 0.4477 0.4480 

0.5 0.4267 0.4268 0.4268 0.4269 0.4270 
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and had a maximum error of about 8%. Nurest seems to be almost independent of the 

Brownian motion parameter Nb [eq. (25)] with the modified boundary condition on 

nanoparticle volume fraction at the plate, whereas this parameter has significant effects 

in the case of actively controlled nanoparticle volume fraction at the plate [eq (26)]. Eq 

(25) demonstrates the reduced Nusselt number decreases as the parameters Nr and Nt 

each increase, which increases the thermal boundary layer. 

V.     Conclusions    

In the present numerical simulation, the steady, laminar, two-dimensional flow 

of a nanofluid along an isothermal vertical plate with realistic boundary conditions on 

nanoparticle volume fraction at the plate is presented. Boungiorno model of nanofluid 

is employed. The prevailing nonlinear partial differential equations of flow are 

converted into a set of nonlinear ordinary differential equations by similarity 

transformations. Afterward, they are abridged to a first-order system and integrated 

using Newton Raphson and adaptive Runge-Kutta methods. The whole numerical 

procedure is coded in a Matlab environment. Relevant dimensionless stream function 

(s), longitudinal velocity (s′), temperature (θ), and nanoparticle volume fraction (f) are 

registered and represented graphically for different values of five dimensionless 

parameters, namely, Lewis number (Le), Prandtl number (Pr), buoyancy-ratio 

parameter (Nr), Brownian motion Parameter (Nb), and thermophoresis parameter (Nt). 

The dependence of the reduced Nusselt number on these five parameters is illustrated. 

A linear regression correlation between them is also developed. The current review 

uncovers that the reduced  Nusselt number (Nur) is a declining function of each of the 

parameters Nr and Nt (buoyancy-ratio parameter and thermophoresis parameter 

respectively), and nearly independent of Nb (Brownian motion parameter), whereas, in 

the case of actively controlled nanoparticle volume fraction at the plate, Nb has 

significant effects. The conclusion of the present simulation is in good concurrence 

with the previous reports available in the literature. 
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