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Abstract 

In this analysis, we apply prominent mathematical systems like the modified 

(G'/G)-expansion method and the variation of (G'/G)-expansion method to the 

nonlinear fractional-order biological population model. We formulate twenty-three 

mathematical solutions, which are clarified hyperbolic, trigonometric, and rational. 

Using MATLAB software, we illustrate two-dimensional, three-dimensional, and 

contour shapes of our obtained solutions. These mathematical systems depict and 

display its considerate and understandable technique that generates a king type 

shape, singular king shapes, soliton solutions, singular lump and multiple lump 

shapes, periodic lump and rouge, the intersection of king and lump wave profile, and 

the intersection of lump and rogue wave profile. Measuring our return and that 

gained in the past released research shows the novelty of our analysis. These systems 

are also capable to represents various solutions for other fractional models in the 

field of applied mathematics, physics, and engineering. 

Keywords: Nonlinear fractional order biological model, the modified ( )GG -

expansion method, the variation of ( )GG -expansion method, mathematical 

solutions, nonlinear partial differential equations, lump, and rogue wave. 

I.     Introduction 

Nonlinear fractional order biological population model (NFBPM) are widely 

executed to communicate plenty of substantial miracles and nonlinear dynamical 

implementations in the field of applied mathematics, mathematical physics, 

engineering, image processing, biology, stochastic dynamical systems and others 

related fields. For obtaining the exact solutions of NFBPMs, numerous effective and 

good setup approaches have been demonstrated including the variation of ( )GG -
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expansion method [XXII], modified ( )GG -expansion schemes [XXV, XXIV, 

XXVI, XXIII], fractional sub-equation technique [XV,XXIX], Sine-Gordon 

expansion method [IV], Kudryashov schemes [XVIII], Jacobi elliptic task technique 

[XIX], the Jacobi elliptic ansatz technique [VIII], fractional iteration algorithm [XIII, 

XIV], the unified technique [XXVII], modified decomposition schemes [III], the 

hyperbolic and exponential ansatz method [VII], natural transformation technique 

[XII], Hirota’s simple schemes [XX, XVII], the modified extended tanh expansion 

system [VI], and significantly more. At present, Shehata and Amra [V] found a 

significantly critical growth of the ( )GG - expansion process, called the variation of 

( )GG  -expansion development strategy to get exact solutions of fractional 

nonlinear biological population models. We instrument the variation of ( )GG -

expansion way and modified ( )GG -expansion schemes for making exact solutions 

to the fractional nonlinear models in the current work to communicate the reasonable 

and straightforwardness of the cycle. Thusly, we can easily trade the partial request 

nonlinear populace models into NPDE or NODE through fitting transformation, for 

the reason everyone familiar with fragmentary analytics comes up short on any 

difficulty. The main benefit of the cycle executed in this concentrate over different 

plans is that it contributes extra novel exact solutions, including added independent 

parameters, and we make a couple of novel outcomes too. The specific responses 

have a huge importance in revealing the principal gadget of the actual occasions. 

Aside from the powerful importance, the specific responses of fractional order 

nonlinear population models support the mathematical solvers to analyze their 

outcomes' precision and help them in solidness examination. In our ongoing exertion, 

we instrument the variation of ( )GG  - expansion scheme and modified ( )GG -

expansion scheme for developing exact solutions of NFBPM. We can consequently 

effectively change over NFBPM into nonlinear PDE or ODE by means of fitting 

transformation, with the motivation behind everyone familiar with fractional math 

coming up short on any difficulty. 

In this stream object, the first segment presents the option of the investigation as an 

introduction. The second segment represents several investigations of the variation of 

( )GG  - expansion scheme and modified ( )GG -expansion scheme. In the third 

segment, we will get the solutions of the NFBPM equation through the considered 

technique. In the fourth segment, we will deliver numerous computative simulations 

of the solution obtained. The conclusion is presented in the last segment. 

II.     Methodology and fractional calculus 

In this section of the analysis, overall instructions on fractional calculus 

theory can be found at [XXI, I, XVI]. In this paper, we will use the modified ( )GG -

expansion and variation of ( )GG -expansion methods [XXVIII, XXX, II, IX] to 

solve nonlinear fractional partial differential equations in the sense of modified 

Riemann-Liouvalle derivative by Jumarie [X]. The Jumarie’s modified Riemann-

Liouvalle derivative of order   is defined by the following expression : 
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Some important properties of the fractional modified Riemann-Liouvalle derivative 

have been summarized and some useful formulas of them are [XI] 
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We consider  
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Where 
T

is a polynomial of  
Q

as well as its derivatives. In this equation, the partial 

fractional derivatives involving the highest order derivatives and the nonlinear terms 

are included. Le and He [31, 32] proposed a fractional complex transform to convert 

fractional differential equations into ordinary differential equations (ODE).  

Implement the traveling variable: 

            
( ) ( ) ,

)1(
,,, 3 











+
−+===



ta
iyxpQtyxQQ                      (6) 

where 3p  and a  are a constant to be determined later. Implementing (6) into (5), we 

find: 

               
( ) 0,...,.','',', 22

33

2

33 =−− QapQapQpQpQS .                               (7) 

II.i.   The modified (G'/G)-expansion method 

According to the modified (G'/G)-expansion method, we have 
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,0=++ GGG                                          (9) 

where ( )SVi  ,......,2,1 ,   and   are coefficient constants later. Implementing 

the homogeneous balance principle in equation (7), the positive integer S can be 

determined. From equation (5), we find that 

              
,2−=                                                                       (10)                                                                  

where   
4

42 −
=  and    is calculated by    and  . So,   satisfies (10), 
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Family III: By implementing (9) and (8) and (7) and collecting all terms in the same 

order of 


together, the left-hand side of (7) is converted into a polynomial in 


. 

Equating each coefficient of the polynomial to zero, we can get a set of algebraic 

equations which can be solved to find the values of the studied method.  

II.ii.    Variation of ( )
G

G -Expansion Method. 

According to the the variation of (G'/G)-expansion method, we have 
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where   )/'( =  and )/'( = . and )(= and )(=  represent the 

solution of the coupled Riccati equations  
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These coupled Riccati equations give us four types of hyperbolic function solutions 

including sech, tanh, csch and coth such as   

),(sec)( = h        ),tanh()( =
 

),(csc)( = h        ).coth()( =  

Step 4: A polynomial in 


 or 


 is accomplished by plugging equation (11) into 

equation (7). Determining the coefficients of the equivalent power of 


 or 


 

produces a system of algebraic equations, which can be determined to construct the 

values of iR
and iS

using MAPLE. Turning the over-measured values of iR
and iS

 

in 11, the general solutions of the studied equation complete the calculation of the 

result of the proposed model.   

III.    Fractional-order biological population model 

We consider the proposed model: 
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Where Q  denotes the population density, )( 2 cQb −  represents the population 

supply due to births and deaths, b  and c  are constants and   is a parameter 

describing the order of the fractional time derivative [4]. For our purpose, we 

introduce the following transformations:
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where a  is a constant and .12 −=i  From (13) and (12), we have: 

        02 =−+ cbbQQa                             (14) 

III.i.   Fractional-order biological population model via modified ( )−
G

G   

expansion method. 

Now implementing the method of homogeneous balance between the highest order 

derivative and non-linear term in (14), then we find, .1=S According to the modified 

(G’/G)-expansion method, we get                                                                              

        
1

10

1

1 ++= −

− VVVQ
                  (15) 

Substituting (15) into (14), collecting the coefficient of   and setting them to zero, 

then we find the following set of solutions: 
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Substituting the values of Cluster I into (14), then we achieve : 
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Substituting the values of Cluster II into (14), then we achieve: 
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Cluster III:  
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Substituting the values of Cluster III into (14), then we achieve:
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Fig. 1. The graphical representation of Eq.(16):(a) real 3D shape, (b) complex 3D 

shape,(c) real contour plot (d) complex contour plot, (e)real 2D shape, and (f) 

complex 2D shape. 
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Fig. 2. The graphical representation of Eq.(17): (a) real 3D shape, (b) complex 

3D shape,(c) real contour plot (d) complex contour plot, (e)real 2D shape, and (f) 

complex 2D shape. 
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Fig. 3. The graphical representation of Eq.(19):(a) real 3D shape, (b) complex 

3D shape,(c) real contour plot, (d) complex contour plot, (e) real 2D shape, and 

(f) complex 2D shape. 
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Fig. 4. The graphical representation of Eq.(22): (a) real 3D shape, (b) 

complex 3D shape,(c) real contour plot, (d) complex contour plot, (e) real 

2D shape, and (f) complex 2D shape. 
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Fig. 5. The graphical representation of Eq.(24): (a) real 3D shape, (b) 

complex 3D shape,(c) real contour plot, (d) complex contour plot, (e) real 

2D shape, and (f) complex 2D shape. 

III.ii.    Fractional-order biological population model via variation of  ( )−
G

G  

expansion method. 

Now implementing the method of homogeneous balance between highest order 

derivative and non-linear term in (14), then we find, .1=M  According to the 

variation of ( )−
G

G   expansion method, we get                                                                               
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Substituting (31) into (14) and applying the necessary steps. Collecting the coefficient 

of   and   solving the resultant system, then we find the following set of solutions: 

Cluster I: 

,bWa =  ,0=OR ,
2

1
1

W

c

W
R −

−
= ,1 WS =

4

1

2

4

1








−= cW

 
Substituting the above values in (31), we get: 

  

( ) ).tanh(
2

1

)tanh(
1 








+++


= W

W

c

W

W
Q           (32)                                                                           

 

  

( ) ).coth(
2

1

)coth(
2 








+++


= W

W

c

W

W
Q                (33)     

Cluster II: 

,IbWa =  ,00 =R ,
2

1
1

WI

c

W
R −−= ,1 IWS =

4

1

2

4

1








−= cW

 
Substituting the above values in (31), we get: 

  

( ) ).tanh(
2

1

)tanh(
3 








+++


= IW

IW

c

W

IW
Q             (34)                                           

 

  

( ) ).coth(
2

1

)coth(
4 








+++


= IW

IW

c

W

IW
Q            (35)     

Cluster III: 

,bWa −=  ,0=OR ,
2

1
1

W

c

W
R +

−
= ,1 WS −=   

4

1

2

4

1








−= cW

 
Substituting the above values in (31), we get: 

( ) ).tanh(
2

1

)tanh(
5 








+−+



−
= W

W

c

W

W
Q     

            (36)                                                                            

( ) ).coth(
2

1

)coth(
6 








+−+



−
= W

W

c

W

W
Q     

            (37)     

Cluster IV: 

,IbWa −=  ,0=OR ,
2

1
1

WI

c

W
R +

−
= ,1 WIS −=   

4

1

2

4

1








−= cW

 
Substituting the above values in (31), we get: 
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( ) ).tanh(
2

1

)tanh(
7 








+−+



−
= IW

IW

c

W

WI
Q            (38)                                

( ) ).coth(
2

1

)coth(
8 








+−+



−
= IW

IW

c

W

WI
Q                        (39)    

 

 
 

 

 

 
 

Fig. 6. The graphical representation of Eq.(32) :(a) real 3D shape, (b) complex 

3D shape,(c)  real contour plot, (d) complex contour plot, (e ) real 2D shape, 

and (f) complex 2D  shape. 
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Fig. 7. The graphical representation of Eq.(32): (a) real 3D shape, (b) 

complex 3D shape, (c) real contour plot, (d) complex contour plot (e) real 2D 

shape, and (f) complex 2D shape. 
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Fig. 8. The graphical representation of Eq.(34):(a) real 3D shape, (b) complex 

3D shape, (c) real contour plot, (d) complex contour plot (e) real 2D shape and 

(f) complex 2D shape. 
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Fig. 9. The graphical representation of Eq.(37): (a) real 3D shape , (b) complex 3D 

shape , (c) real contour plot ,(d) complex contour plot  (e) real 2D shape and (f) 

complex 2D shape. 
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Fig. 10. The graphical representation of Eq.(37): (a) real 3D shape , (b) complex 3D 

shape , (c) real contour plot ,(d) complex contour plot  (e) real 2D shape and (f) 

complex 2D shape. 
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Fig. 11. The graphical representation of Eq.(38): (a) real 3D shape , (b) complex 

3D shape , (c) real contour plot ,(d) complex contour plot  (e) real 2D shape and 

(f) complex 2D shape. 
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Fig. 12. The graphical representation of Eq.(39): (a) real 3D shape, (b) complex 3D 

shape, (c) real contour plot, (d) complex contour plot  (e) real 2D shape, and (f) 

complex 2D shape. 

IV.    Numerical Simulations 

In this portion, 23 new calculational outcomes are laid out, for example, 

trigonometric, hyperbolic, and rational determinations that addressed as king type, 

anti-king type, singular king, lump type, rogue type, the interaction of lump and 

rogue, multiple lump and rogue, interaction of lump and rogue with king solution, 

periodic lump, and rogue shape via our recommended techniques. A couple of 

graphical portrayals of the above-characterized new computational arrangements of 

the nonlinear fractional-order biological population model got using the proposed 

strategy have been given. Scarcely any picked computational outcomes will be 

portrayed as three-dimensional, two dimensional with different t and contour shapes. 
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Here, we partitioned the numerical simulation of two proposed techniques in the 

following two sections (4.1) and (4.2). 

IV.i.   Numerical Simulations via  modified ( )GG -expansion method 

In the ongoing segment, we have offered various numerical simulations using the 

proposed approaches. To make sense of the powerful exhibitions of the responses 

procured in segment 3. Figures 1-5 show the graphical portrayals of a few chosen 

computational consequences of the issue got using the concentrated on strategy. They 

are presented underneath. 

Figure 1 exhibits the unique presentation of Eq.(16)using the parameters 

.1.0,1.0,5.1 ===   Specifically, Figure 1 shows the 3D form, 2D form, and 

contour form. Eq.(16). This shape addresses the multiple bright and dark lump wave 

profiles. The solution attributes of Eq.(17)  are displayed in Figure 2 using 

.1.0,1.0,5.1 ===   This shape addresses the single bright and dark lump 

wave profile. The nature of the result of Eq.(19) is shown in Figure 3 using 

.5.0,5.0,1 ===  This shape addresses the multiple periodic bright and dark 

lump wave profiles. In Figure 3 we also demonstrate the 2D and contour plot of 

Eq.(19). Figure 4 exhibits the unique presentation of  Eq.(22)  using the parameters 

.1.0,1.0,5.1 ===   Specifically, Figure 4 shows the 3D form, 2D form and 

contour form of Eq.(22). This shape shows the single bright lump wave and single 

soliton wave profile. The solution of Eq.(24) are displayed in Figure 5 with 3D, 2D, 

and contour shapes which represents the intersection of multiple periodic lump and 

rogue wave profile for .1.0,1,1 ===   

IV.ii.    Numerical Simulations via variation of ( )GG -expansion method 

In this part, we have introduced more than a couple of mathematical representations 

of the use of the proposed technique. To make consideration of the viable shows of 

the reactions secured in segment three. Figures 6-12 display the graphical depictions 

of a couple of chosen computational outcomes of the issue got utilizing the focused 

procedure. They are presented in descending. 

Figure 6 exhibits the unique presentation of Eq.(32)  using the parameters 

.1.0,0,2,1 ==== ycb  Specifically, Figure 6 shows the 3D form, 2D form, and 

contour form of Eq.(32). This shape tends to the single bright and dark lump wave 

profile as well as rogue wave profile. The solution of Eq. (32) 

.01.0,2,1,2 ==== ycb represents the intersection of the king wave and 

multiple solitons which is illustrated in Figure 7. Figure 8 manifests the powerful 

execution of Eq.(34) using .7.0,2,2.0,5.0 ==== ycb  Specifically, Figure 8 

illustrates the 3D figure, 2D figure, and contour figure of Eq.(34). This shape 

addresses the intersection of lump and kinky wave profile. Figure 9 manifests the 

powerful execution of Eq.(37) using .007.0,3,2.0,5.0 ==== ycb  

Specifically, Figure 9 illustrates the 3D figure and contour figure of Eq.(37). This 

shape represents the lump, rogue, and soliton solution wave outline. Also, the 
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solution of Eq.(37)  demonstrates the intersection of the king and lump waveform 

.5.0,2,2.0,5.0 ==== ycb  which is displayed in Figure 10. The graphical 

representation of Eq.(38) describes the king and anti-king wave profile for 

.005.0,1,3,2 ==== ycb exhibits in Figure 11. The solution of Eq.(39) for 

.5.0,1,3,2 ==== ycb exposures to the periodic lump and rogue wave profile, is 

in Figure 12. 

V.     Conclusion 

Our review has analyzed the new computational responses of the NFBP 

model by the proposed techniques. Various new computational outcomes have been 

accomplished in hyperbola, rational and trigonometric equations portrayed in king 

type shapes, singular king shapes, soliton solutions, singular lump and multiple lump 

shapes, periodic lump and rouge, the intersection of king and lump wave profile, the 

intersection of lump and rogue wave profiles. Contrasting our gained reactions and 

that acquired in recently composed research articles presents the uniqueness of our 

examination. The pre-owned technique's showcase uncovers that these strategies' 

adequacy and impact and their solidarity to carry out other nonlinear biological 

models merit future examination. 
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