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Abstract 

In this paper, we take into account the system of differential equations with 

boundary conditions of a fixed elastic beam model (EBM). Instead of finding a solution 

of EBM for a particularly specified load, which is the usual practice, we derive the 

general analytical solution of the model using techniques of integrations. The proposed 

general analytical solutions are not load-specific but can be used for any load without 

having to integrate successively again and again. We have considered load in a general 

polynomial form and obtained a general analytical solution for the deflection and slope 

parameters of EBM. Direct solutions have been determined under two types of loads: 

uniformly distributed load and linearly varying load. The formulation derived has been 

validated on the known cases of uniformly distributed load as appears frequently in the 

literature. 
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I.   Introduction 

Beam theory has a long history, and several engineers, scientists, and others 

have created numerical schemes and tested various techniques to understand important 

structural and performance aspects of beams subjected to loads [I]. There are two 

theories of the beam, namely: the Timoshenko beam theory and the Euler-Bernoulli 

beam theory. The Timoshenko beam (TB) study was enlarged by S. Timoshenko and 

P. Ehrenfest early 20th century [VI]. TB model includes both shear deformation as well 

as rotational bending effects. In the case of the TB model, the beam is thick and the 

angle of the cross-section about the neutral line will change after deflection. The well-

known Euler-Bernoulli beam (EBB) theory is a particular case of TB theory for finding 

load-carrying and deflection characters of a beam. In the EBB model, the beam has no 

change in the angle of cross-section about the neutral line before and after deflection. 

[VII]. 
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Researchers commonly employ a numerical approximation of the beam model 

as a starting point to acquire a better understanding of the Reissner-Mindlin problem, 

which is more complex. When these problems are handled using the finite difference 

method or normal Galerkin finite methods, a negative behaviour known as the locking 

phenomenon [II] occurs. In [III] also, the authors worked out the finite element 

method's p and h-p versions for the TB model. Researchers have also discovered a 

precise analytical solution to the Timoshenko beam problem for both uniform and 

continuous loads in [V]. In [IV], authors proposed and applied a finite difference 

scheme to obtain a numerical solution of the Timoshenko beam under constant as well 

as variable load without facing locking phenomena and discretized system into 

algebraic sum. 

From the present literature review, we have observed that the majority of 

researchers were concerned with numerical techniques while the exact analytical 

methods have been applied in rare cases. The demerit of numerical schemes is that 

these do not provide an exact answer and require a lot of time to reach a more accurate 

value. While available analytical methods require mathematical skills to find the 

solution of the beam model for each applied load. In this research paper, we derive the 

general analytical solution of an elastic beam model by applying techniques of 

integration on the general load function instead of a case-specific load. This general 

solution is able to provide a description of the slope and deflection parameters of the 

elastic beam model subject to any type of varying load just by performing a few 

simplifications and bypasses any need to apply direct integration or transformation 

technique followed by boundary conditions. The established general equations have 

been validated for the case of well-known relations available in the literature for the 

uniformly distributed loads. 
 

II.   Mathematical Model of Elastic Beam 
 

The elastic beam model is usually described by a system of ordinary 

differential equations subject to initial/boundary conditions. We consider the following 

differential equation model representing an elastic beam, written as  

𝑑2𝑀

𝑑𝑥2
= 𝑤                                                                                                          (1) 

𝑑𝜃

𝑑𝑥
=

𝑀

𝐸𝐼
                                                                                                            (2) 

𝑑𝑣

𝑑𝑥
= 𝜃                                                                                                               (3) 

Where 𝑤 is the load function, x is the spatial variable denoting variable length of the 

beam, 𝑀 is the bending moment, E is the modulus of elasticity, I is a moment of inertia, 

𝜃 denotes slope of deflection of beam  and 𝑣 is the deflection of beam. The boundary 

conditions for a fixed beam take the form: 
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  𝜃(0) = 0, 𝜃(𝐿) = 0,  

  𝑣(0) = 0, 𝑣(𝐿) = 0 

III.    Derivation of General Analytical Solution of Elastic Beam 

Let the load function, 𝑤 be defined generally as a polynomial: 

  𝑤 = ∑ 𝑎𝑖𝑥𝑖𝑛
𝑖=0  

Substiuting the load function in (1) gives:  

  
𝑑2𝑀

𝑑𝑥2 = ∑ 𝑎𝑖𝑥𝑖𝑛
𝑖=0  

Integratig throughout with respect to 𝑥 leads to: 

  
𝑑 𝑀

𝑑𝑥 = ∑
𝑎𝑖𝑥𝑖+1

𝑖+1
+ 𝑐1

𝑛+1
𝑖=0  

Integrating again  with respect to x gives: 

  𝑀(𝑥) = ∑
𝑎𝑖𝑥𝑖+2

(𝑖+1)(𝑖+2)
+ 𝑐1

𝑛+2
𝑖=0 𝑥 + 𝑐2 

Substituting the expression of 𝑀(𝑥)  in (2), we have: 

  
𝑑𝜃

𝑑𝑥
=

1

𝐸𝐼
{∑

𝑎𝑖𝑥𝑖+2

(𝑖+1)(𝑖+2)
+ 𝑐1

𝑛+2
𝑖=0 𝑥 + 𝑐2} 

Integrating  with respect to x, we have 

      𝜃(𝑥) =
1

𝐸𝐼
{∑

𝑎𝑖𝑥𝑖+3

(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)
+ 𝑐1

𝑛+3

𝑖=0

(
𝑥2

2
) + 𝑐2𝑥 + 𝑐3 }                (4) 

Substituting expression of 𝜃(𝑥) in (3) gives: 

  
𝑑 𝑣

𝑑𝑥 =
1

𝐸𝐼
{∑

𝑎𝑖𝑥𝑖+3

(𝑖+1)(𝑖+2)(𝑖+3)
+ 𝑐1

𝑛+3
𝑖=0 (

𝑥2

2
) + 𝑐2𝑥 + 𝑐3} 

Integrating with respect to x both sides leads to: 

𝑣(𝑥) =
1

𝐸𝐼
{∑

𝑎𝑖𝑥
𝑖+4

(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)(𝑖 + 4)
+ 𝑐1 (

𝑥3

6
) + 𝑐2 (

𝑥2

2
) + 𝑐3𝑥 + 𝑐4  

𝑛+4

𝑖=0

}      (5) 

Applying boundary conditions in (4), we have: 

  𝜃(0) = 0, => 𝑐3 = 0 

  𝜃(𝐿) = 0, gives: 

  𝑐1𝐿 + 2𝑐2 = −2 ∑
𝑎𝑖𝐿𝑖+2

(𝑖+1)(𝑖+2)(𝑖+3)
𝑛+3
𝑖=0                                                             (6) 
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Applying boundary conditions in (5), we have: 

𝑣(0) = 0, => 𝑐4 = 0 

𝑣(𝐿) = 0, gives: 

  𝑐1𝐿 + 3𝑐2 = −6 ∑
𝑎𝑖𝐿𝑖+2

(𝑖+1)(𝑖+2)(𝑖+3)(𝑖+4)
                                                     (7)𝑛+4

𝑖=0   

Subtracting (6) from (7), we have:  

𝑐2 = 2 ∑
𝑎𝑖𝐿𝑖+2

(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)

𝑛+3

𝑖=0

− 6 ∑
𝑎𝑖𝐿𝑖+2

(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)(𝑖 + 4)

𝑛+4

𝑖=0

 

Substituting 𝑐2 in (6) and simplifying leads to:  

 

𝑐1 = 12 ∑
𝑎𝑖𝐿𝑖+1

(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)(𝑖 + 4)

𝑛+4

𝑖=0

− 6 ∑
𝑎𝑖𝐿𝑖+1

(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)

𝑛+3

𝑖=0

 

Thus, the general analytical solution for the deflection profile and slope of deflection, 

respectively, of a fixed elastic beam is summarized in (8)-(9) with determined constants 

in (10)-(11). 

  𝑣(𝑥) =
1

𝐸𝐼
{∑

𝑎𝑖𝑥𝑖+4

(𝑖+1)(𝑖+2)(𝑖+3)(𝑖+4)
+ 𝑐1 (

𝑥3

6
) + 𝑐2 (

𝑥2

2
)  𝑛+4

𝑖=0 }                            (8) 

  𝜃(𝑥) =
1

𝐸𝐼
{∑

𝑎𝑖𝑥𝑖+3

(𝑖+1)(𝑖+2)(𝑖+3)
+ 𝑐1

𝑛+3
𝑖=0 (

𝑥2

2
) + 𝑐2𝑥 }                                            (9) 

  𝑐1 = 12 ∑
𝑎𝑖𝐿𝑖+1

(𝑖+1)(𝑖+2)(𝑖+3)(𝑖+4)
𝑛+4
𝑖=0 − 6 ∑

𝑎𝑖𝐿𝑖+1

(𝑖+1)(𝑖+2)(𝑖+3)
𝑛+3
𝑖=0                            (10) 

  𝑐2 = 2 ∑
𝑎𝑖𝐿𝑖+2

(𝑖+1)(𝑖+2)(𝑖+3)
𝑛+3
𝑖=0 − 6 ∑

𝑎𝑖𝐿𝑖+2

(𝑖+1)(𝑖+2)(𝑖+3)(𝑖+4)
𝑛+4
𝑖=0                             (11) 

Equations (8)-(11) enable to directly get the slope and deflection parameters of a fixed 

elastic bean under any type of load, uniform or varying as a polynomial since most 

load functions exhibit polynomial behavior and the nonlinear ones can be 

approximated by power series in 𝑥. 

IV.    Results and discussion 

 Here, we first obtain expressions of the slope and deflection of an elastic 

beam under a uniformly distributed load to validate the approach. Finally, a case of 

the linearly varying load is also considered. The application of the method 

presented here can be extended for any varying load.  

Case-1: For a Uniform distributed load 𝒘(𝒙) = 𝒂  

As per the devised notations earlier, here 𝑛 = 0, 𝑎0 = 𝑎, 𝑎1 = 𝑎2 = ⋯ 𝑎𝑛 = 0. 

Using (10), we have: 
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  𝑐1 = 12 ∑
𝑎𝑖𝐿𝑖+1

(𝑖+1)(𝑖+2)(𝑖+3)(𝑖+4)
0+4
𝑖=0 − 6 ∑

𝑎𝑖𝐿𝑖+1

(𝑖+1)(𝑖+2)(𝑖+3)
0+3
𝑖=0  

  𝑐1 =
12𝑎0𝐿

(0+1)(0+2)(0+3)(0+4)
−

6𝑎0𝐿

(0+1)(0+2)(0+3)
 

  𝑐1 =
12𝑎𝐿

24
−

6𝑎𝐿

6
=

𝑎𝐿

2
− 𝑎𝐿 = −

𝑎𝐿

2
 

  𝑐1 = −
𝑎𝐿

2
 

From (11), we have: 

𝑐2 = 2 ∑
𝑎𝑖𝐿𝑖+2

(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)

0+3

𝑖=0

− 6 ∑
𝑎𝑖𝐿𝑖+2

(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)(𝑖 + 4)

0+4

𝑖=0

 

𝑐2 =
2𝑎0𝐿2

(0 + 1)(0 + 2)(0 + 3)
−

6𝑎0𝐿2

(0 + 1)(0 + 2)(0 + 3)(0 + 4)
 

𝑐2 =
2𝑎𝐿2

6
−

6𝑎𝐿2

24
= 𝑎𝐿2 (

1

3
−

1

4
) 

𝑐2 =
𝑎𝐿2

12
 

Using 𝑐1 and 𝑐2 in (9) gives: 

𝑣(𝑥) =
1

𝐸𝐼
{∑

𝑎𝑖𝑥
𝑖+4

(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)(𝑖 + 4)
+ 𝑐1 (

𝑥3

6
) + 𝑐2 (

𝑥2

2
)  

0+4

𝑖=0

} 

𝑣(𝑥) =
1

𝐸𝐼
{

𝑎0𝑥0+4

(0 + 1)(0 + 2)(0 + 3)(0 + 4)
+ 𝑐1 (

𝑥3

6
) + 𝑐2 (

𝑥2

2
)} 

𝑣(𝑥) =
1

𝐸𝐼
{

𝑎𝑥4

24
+ (−

𝑎𝐿

2
) (

𝑥3

6
) + (

𝑎𝐿

12
) (

𝑥2

2
)} 

𝑣(𝑥) =
1

𝐸𝐼
{

𝑎𝑥4

24
−

𝑎𝐿𝑥3

12
+

𝑎𝐿2𝑥2

24
} 

𝑣(𝑥) =
𝑎

24𝐸𝐼
{𝑥4 − 2𝐿𝑥3 + 𝐿2𝑥2} 

From (8), we have: 

𝜃(𝑥) =
1

𝐸𝐼
{∑

𝑎𝑖𝑥𝑖+3

(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)
+ 𝑐1

0+3

𝑖=0

(
𝑥2

2
) + 𝑐2𝑥 } 

𝜃(𝑥) =
1

𝐸𝐼
{

𝑎0𝑥0+3

(0 + 1)(0 + 2)(0 + 3)
+ (−

𝑎𝐿

2
) (

𝑥2

2
) + (

𝑎𝐿2

12
) 𝑥 } 

𝜃(𝑥) =
1

𝐸𝐼
{

𝑎𝑥3

6
−

𝑎𝐿𝑥2

4
+

𝑎𝐿2𝑥

12
} 

𝜃(𝑥) =
𝑎

12𝐸𝐼
{2𝑥3 − 3𝐿𝑥2 + 𝐿2𝑥] 
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One can readily verufy that the expressions for 𝜃(𝑥) and 𝑣(𝑥) clearly match with those 

found in books and literature for an elastic bean under uniformly distributed load. 

Case-2: For a Linear distributed load, 𝒘(𝒙) = 𝟏𝟎𝟎𝒙  

In this case, 𝑎0 = 0,  𝑎1 = 100,  𝑎2 = 𝑎3 = ⋯ 𝑎𝑛 = 0, and  𝑛 = 1. 

Using (10), we get: 

    𝑐1 = −15𝐿2 

From (11), we obtain:  

   𝑐2 =
10𝐿3

3
 

From (8)-(9), we have: 

   𝑣(𝑥) =
5

6𝐸𝐼
(𝑥5 − 3𝐿2𝑥3 + 2𝐿3𝑥2) 

   𝜃(𝑥) =
5

6𝐸𝐼
{5𝑥4 − 9𝐿2𝑥2 + 4𝐿3𝑥}     

For a realistic display, we consider the beam of length L = 30ft, with EI = 161111 unit, 

the deflection and slope parameters are shown in Figures I and II, respectively. We can 

verify that the maximum deflection is attained at 
𝐿

2
= 15𝑓𝑡 as expected. For case II, 

similar results are shown in Figures III and IV. Thus, the method devised in this study 

successfully leads to the expression of slope and deflection of an elastic beam under 

any type of varying load.   

 

Fig.1.  Deflection of elastic bean under applied uniformly distributed load 
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Fig.2.  Slope of elastic bean under applied uniformly distributed load 

 

Fig.3.  Deflection of elastic bean under applied varying linear load 



 

 

 

J. Mech. Cont. & Math. Sci., Vol.-17, No.-11, November (2022)  pp 54-62 

Mehria Nawaz et al 

 

61 

 

 

Fig.4.  Slope of elastic bean under applied varying linear load 

V.   Conclusion 

We have found a general analytical solution to the elastic beam model with 

defined boundary conditions in this study. The uniform distributed load and linear load 

are two different kinds of constant and variable loads, respectively, for which this 

general form has been validated as well. We have determined the deflection and slope 

of the elastic beam just by simplifications and validated the results with already existing 

solutions. 
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