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Abstract

A Runge-Kutta-Merson method and a Newton iteration in a shooting and matching technique are used
to obtain the solutions of the governing equations. These equations resulted from the unsteady motion of
the magneto-hydrodynamic biviscosity fluid with heat and mass transfer through a uniform porous
medium between two permeable parallel walls, taking into account pulsation of the pressure gradient.
The velocity. temperature and concentration distributions are obtained as a perturbation technique.
During this work we calculate an estimation of the global error by using Zadunaisky technique. The
effects of upper limit of apparent viscosity coefficient, Reynolds number, permeability parameter,
Forschheimer number, magnetic parameter, the steady componemt of the pressure gradient, the
amplitude of the pulsation, Prandtl number, Eckert number, Schmidt number, Soret number and the time
on the velocities, temperature and concentration distributions are evaluated and depicted graphically.
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1. Introduction

The problems of pulsatile flow have gained importance due to their immediate
practical applications in biomechanical and engineering sciences. In physiology,
pulsatile mechanism is involved in urine transport from kidney to bladder through the
ureter, movenient of chyme in the gastrointestinal tract. transport of spermatozoa in the
ductus efferentes of the muale reproductive tracts, and in the cervical canal, in

movement of ovum in the fallopian tube, transport of lymph in the lymphatic vessels.
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In situations like travel in vehicles, aircrafi, operating jackammer and sudden
movements of body during sports activitics, the human body experiences external body
acceleration. Prolonged exposure of a healthy human body to external acceleration may
cause serious health problem like headache, increase of pulse rate and loss of vision on

account of disturbances in blood fiow [ 1 }.

The analysis of the mechanisms respensible for pulsatile transport have been studied
by many authors. The problem of pulsatile flow with reference to stenosis in
microcirculation was analysed by Bitoun and Bellet [2]. Rao and Rathna Devanathan
[3] and Schneck and Ostrack {4] studied pulsatile flow through circular tubes of
varying cross-section at low Reynolds number. In these studies the tube wall is taken to
be impermeable. Macey (5, 6] studied thé steady flow of a viscous fluid through a
circular tube with a permeable wall. Radhakrishnamacharya et al. [7] extended this
study to the flow through circular tubes of varying cross-section and permeable wall.
Eldabe et al. [8,9] studied pulsatile magnetohydrodynamie viscoclastic flow through a
channel bounded by two permeable parallel plates with the c.:ffect of couple stresses on
pulsatile hydromagnetic Poiscuille (low, Many authors have studied the effect of
porous medium on the motion of the fluid. Some of these studies have been made by
Varshney [10], Raptis et al. [11,12], Raptis and Peridikis [13], Elshehawey et al. [14].
Flow through porous media is very prevalent in nature and therefore the study of flow
through a porous medium has become of principle interest in many engineering
applications. Thermal and solutal transport by fluid flowing through a porous matrix is
phenomenon of great interest from the theory and application point of view. Heat
transfer in the case of homogenous fluid-saturated porous media has been studied with
relation of different applicalions like dynamic of hot underground springs, terrestrial
heat flow through aquifer, hot fluid and ignition front displacements in reservoir
engineering, heat exchange between soil and atmosphere and heat exchanges with
fuidized beds. Mass transfer in isothermal condition has been studied with applications
to problems of mixing of fresh and sall water in a quifers, spreading of solutes in
fluidized beds and crystal washers, salt leaching in scils, etc. Prevention of salt
dissolution into the lake waler near the sea shores has become a serious problem of

research [15].
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In this paper, the main aim is to obtain a numerical solution of the probiem of
unsteady magneto-hydrodynamic pulsatile flow with heat and mass transfer. The fluid
used is biviscosity fluid through a uniform porous media between two permeable
parallel plates. The governing equations are solved by making use of Runge-Kutta-
Merson method in a shooting and matching technique and we calculate the global error
by using Zadunaisky technique [16]. We evaluate the influence of upper limit of
apparent viscosily coefficient #, Reynolds number Re, the permeability parameter £,
Forschheimer number Fs, the steady component of the pressure gradient Ps, the
amplitude of the pulsation Po, magnetic parcmeter M, Prandtl number Pr, Eckert

number Ec, Schmidt number Sc and Soret number Sr on the diflerent variables.

2. Mathematical analysis

We consider the unsteady flow with heat and mass transfer of a viscous,
incompressible, and electrically conducting non-Newtonian fluid (biviscosity fluid) in a
porous medium between two permeable parallel plates sit.uated at y = 0 and A, under the
action of the fluid gradient. The céo’rdinates system used is given in Fig. 1. The x- axis
is taken in the dircction of the flow and the y- axis is taken normal to the plates. We

assume that a uniform magnetic field B, acting along y- axis. The fluid is being

Fig. 1. Schematic of the problem

injected into the wall through y = 0 and is being sucked through y = A with uniform
velocity V.

The governing equations used in this problem can be written in normal tensorial
notation as following (repeated indices are assumed over (i,j =1,3) unless otherwise

stated).
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Continuity equation:

dp '
——+pV, =0, 1
b (M

Momentum equation:

‘ or,
Bl-,-/!-: Tor | i +l€;‘,k J,-B,‘ +£V, -b VJ‘ Vi K ’ (2)
dt pox, pox, p " P '

——

Temperature equation:
v,
a _pvirele o 3)
dt p.  Ox,
Concentration equation:
LSy DV°C + Df"—vlr, 4)
dt T

"

where ¥, and 7, are the velocity and stress components, T and C are the temperature

!

and concentration distributions, P and p are the fluid pressure and density of the fluid,
; . \ s : d
J; and By are the current density and intensity of magnetic induction, 9; denotes

differentiation with respect to time following the material particle and €urb v, ky,

D and T, are the permutation symbol, Forchhemer's constant, kinematic viscosity,
specific heat, thermal diffusion ratio, coefficient of mass diffusivity and mean fluid
temperature,

We choose the biviscosity model [17] to describe the non-Newtonian fluid, which is

in the usual notation

' P,
2 +—=—=le,, T>=m,
[ i

rl'[ =3 (5)
i Iy
2(;1,, +--——'—Je,, <L,

The [ollowing quantity is introduced as a non dimensional parameter including ..

ﬂ=ﬂ35‘

»
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where up is the plastic viscosity, p, is the yielding stress, n=e; e;, which ej; is the (i,j)
component of the deformation rate and the value of § denotes the upper limit of

apparent viscosity coellicient. For ordinary Newtonian fluid p, =0.

Since the two walls are infinite in extent, all quantities are functions of y and ¢ only,
V=(U,V,0), B=(0,By,0). From equation (1) we get V=V which is the velocity of the

suction or injection at the walls. Equations (2), (3) and (4) reduce to

2 2
Xy, 2 L )ﬂf’B"u—Ku—bu’, (6)
ot dy pox p k
o, _, T v 3
—tV, =k, MUY 7
5tV gy hr Tt ﬂ)(ay) )
2
%,y % _p0C, ph OT &
ot v ¥ T,
where o is the electric conductivity, The appropriate boundary conditions are
u=0, =t and C=C, at  y =90, &)}
u=20, T =T, and C=C, at y=nh, (10)

where 4 is the distance between the two plates.

Let us introduce the dimensionless quantities as follows:

..} x'—lx * i s w'~—~h—w t'—~V'—'t

[/"9 h ’ y hy9 ,/” » h ) (Il)
P - 1 P. T.__T Tf. C'=€_C'2,

PVu 1,-T, ¢, -C,

After substituting from equation (I11), eqs. (6), (7) and (8) may be written in
dimensionless form afler dropping star mark.

ou ou P 1. 1
e Y (M - Fa?,
atyta RUTP ( k)" oA (12)

or or 1 T Ec, ., (gg)’

& o RP ' R (13
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aC oC 1dC o'T :
el e etf e, (14)
o oy S oy oy |

2

B h
where R, = ﬂ/i(the Reynoldsnumber), M = i I(; (the magnetic field parameter),
. Vg P%

V .
= % (the porosity parameter), F, = hb(Forschheimer number),

2

P = Zl(Prandtl number), F¢ = Vo — (Eckert number),
k, c(l, -T,)

Dk, (T, - Ty)
hTm VO (CI - CZ )

S, = %(Schmidt number) and S, = (Soret number). (15)

For pulsation pressure gradient, let

_@=(5_P) +(3_P) o (16)
ax \ax), \or), '

The equations (12), (13) and (14) can be solved by using the following perturbation
technique:

u=u, +u,e™,
T=T +Te" a7
C=C, +Cye"™

Substituting from (16) and (17) in (12), (13) and (14) and equating the like terms on

both sides, we get the following system equations:

) |
Ly gy +[M+i},,+ﬂi-a+mf =(5—”] , (18)
R, dy k) dy T e
: _
L+l ol +(M +i+iw)u,, 2 =(-‘3£) , (19)
R, dy k dy ox J,
! dT E fdun Y dr -
Ch—(I+ Y = -2 =0, 20
R.P, dy’ Rc( ¢ )( dy] dy kel

d’T, 2. . (duYdu) dT
P UL NLITEY 20 e T8 LTI, 1
TP SRR v e el L 2h

6
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il d’T, ;
id (} +Sr l} - d(q =0, (22)
S, dy dy dy
‘I dzcﬂ + dz?;’} _ dCﬂ

s, &y T dyt

—iwC, =0. (23)

The dimensionless boundary conditions are

u =0, u,=0, 7,=1, T, =0, C, =1, Co=0 at y=0 24)
u =0, u,=0, T,=T,=0, C,=C, =0 at y=1|
We assume the complex variables v, 7o and Coas follows:

Uy = Uy, +iD U,

T, =T, +ioT,, { (25)

C,=Cy +iwC,

Equations (19), (21) and (23) reduce to the following system of equations after

comparing the real and imaginary parts

I _ I du GP

_EU ﬂ I) w +(M+ k}um +_‘i;—!+2E:u.ruiJI -’ Uy, =(E£)"’ (20)
d
’EI‘(] ﬁ_’) uo} +(M + ;)unz iy + Z;z +2Fu up, =0, (27)
2

1 d T;t” + .Z_E-(] G H ﬂ—')(du" )[ du,,, ]— dTm +(u2 Taz & 09 (28)
RP dy R T Ny Ndv ] dy

f dz:,;m , (du ){dum ]__ iy 1, -0, (29)
R.P. dy dy ) dy
1 d*C da’T,, d
o 201 +43, ;” - Cu +a’ Cp, =0, ' G0)
S, dy dy dy

2 2

1d°Cy o d’T,, dCy ~C, =0, 3h

S, & a7 Ay

and hence the boundary conditions (24) transform into

u =0, uy =ty =0, T, =1, Tyy=T, =0, C, =1, G5 =Cp, =0 at y=0 32)
u, =0, Uy =ty =0, T, =T =T, =0, €, =Cp =Cp =0 at y=1f
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3. Numerical treatment

Let
us=Y, uy =Y, u,= Y, Is;=Y,, T, = ¥, ,T,=¥,,, Cs=V,;, Cp,= Yisand Cp,= ¥,;.

Hence equations (18), (20), (22) and (26-31) can be written as follows:

i 3
K'=Y29Y;="(T_% Y, +(M+% YI+F‘Y'2-P_,..,].

R B
Y;:}’;,Y;:m Y4 +(M+£)Y'3 +2F‘,.}J| }G—WZYS"P‘J,],
__R_| I
Y;:n,yﬁm Y, + M+E Y, +2F, Y, Y, +Y, |,
! /-
Y, =Y, Yy =R PrY,—EPr(l+ Y7, L 133)

¥y = y0. Yo =R, Pr (Y, —@’ ¥, )-2EPr({+ 7)Y, ¥, ,

Ky =Yg, By =R Pr(¥; +Y,,)-2EPr(1+ pHY, ¥, |

V=YY, ==88 (R PrY,—EPr(I+ )] )+ S, ¥,,

¢ =V,

g ==8.8, (R, Pr(¥, -w’ Yy)-2EPr(I+ ﬂ_I)Yz Y )+ 8, (Yw—a)z Kok
Yo =Fa by ==8.8, (R, Pr(¥;+1,,)-2EPr (14 7)Y, ¥ )+ S, (N +Yy5),

where prime denotes to differentiation with respect to y and this system (33) subject to
the boundary conditions

h=0, ,=Y=0, I, =1, \,=V,=0, I, =, Y|.5=Yn=0 at y=0 (34)
=0, \;=Y;=0, V;=Y,=Y,=0, },=Y;=V,=0 at y=1]|

To apply shooting method we use the subroutine DO2HAF from the NAG Fortran
library, which requires the supply of starting values of the missing initial and terminal
conditions. The subroutine uses Runge-Kutta-Merson method with variable step size in
order to control the local truncation error, then it applies modified Newton-Raphson
technique mentioned before to make successive corrections to the estimated boundary
values. The process is repeated iteratively until convergence is obtained i.e. until the
absolute values of the difference between every two successive approximations of the
missing conditions is less than & (in our case ¢ is taken = 10°7)..

4. Estimation of the global ervor

We use Zadunaisky technique [16] to calculate the global error, which can be

explained in the following steps:

1.We interpolate the functions of Y; (I=1,2,...,18) from the values of Y; and we named

them Py (I=1,2,.....,18). and we interpolate the functions of
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ut,um,um,T" To1:T02.C,.Cqy,Cp; and we named that R, (y) =u; ,R,(y) = ug,,
R,(») =ug, R, () =T R () =T5,Re(¥) = T, R, (1) = C, Ry (») = Cg , Ry (1) = C

2. We calculate the detect functions Dy (1=1.2,...,18), which can be written as follows:

Di()=0, - P,=0, DD,()»= P, —-R,(»).- Diyy= P, -P,=0,
Ds)y=Py —Ry(y).  Ds)= Py =P=0,  Dely)= Py —=R;(»),
Dap)y=P; =P, =0,  Da(y)= PR (y),  Do(y)= P - P, =0,
Dio()=Pj ~Rs(»), Du()= B, ~P,=0, Din(y)= P, ~R((»),
Di0)=P; ~Pu=0, D)= Py ~R;(3),  Disy)= Pis ~ Py =0,

Dis()=P), —Rg(»), Dis(y)= P, ~P;=0, Du(y)= Pig —Ry(»). (35)

3. We add the detect functions D, (I=1,2,...,18) to the original problem (33) and change

every Y; with another variable Z, (I=1,2....,18).

4. We solved the pseudo problem by the same method and we will have the solution

Z(y) whose elements Z; (I=1,2....,18).

5. We calculate the global error from the relation e;= Zp-Z(vo)= Zy-POn), (n=1,2,...,6),
where Z, is the approximated solution of the pseudo problem at the point y, and Z(y,) is

the exact solution of the pseudo problem at y;, .

Obviously the exact solution of original problem (33) is
Z(yn)= B(yn).
The values of the global error are shown in table (1). This error is based on using 6
points to find the interpolation polynomials Py (I=1,2....,18), of degree 5.
In order to achieve the above task we used combination of programs in Fortran
(using NAG library routine DO2HAF) and Mathematica package.

y iy =y, error(e[) Ts=y1' erior(e7) V13 error(eld)
0 .000D+00 | .000D+00 1 000D+00 1 D00D+00

0.2 S61D-01 { .000D+00 | 810 D+00 { .000D+00 | .812 D+00 | .000D+00
0.4 S18D-01 | .000D+00 | 614 DHIO | 000DH00 | 618 D00 | 000D+
0.6 S200-01 | .000D4+00 [ 414 DH00 | .000D+00 [ 418 D+00 | .000D+H)0
0.8 J65D-01 | .000D+00 | .21 D400 | .000D+00 [ 212 D+00 | .000D+00

I L000D+00 | .555D-05 | .000D+00 | 822D-06 | .000D+00 | .504D-07

Table (1).
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5. Numerical results and discussion

Our aim in this research is to study the MHD pulsatile flow with heat and mass
transfer of non-Newtonian fluid (biviscosity fluid) in a porous medium between two
permeable parallel plates. The equations of momentum, energy and concentration have
been solved by using perturbation technique. A Rung-Kutta-Merson method and a
Newtonian iteration in a shooting and matching technique are used to solve the
nonlinear differential equations. The velocity, temperature and concentration
distributions are caiculated for different values of upper limit of apparent viscosity
_coefficient £, Reynolds number R., the magnetic parameter A, the porous parameter k,
Forschheimer number Fs, the steady component of the pressure gradient Ps, the
amplitude of the pulsation Py, Prandt] number Pr, Eckert number Ec, Schmidt number

Sc, Soret number Sr, and the time.

The effects of physical parameters on the velocity distribution are indicated through
figures (2-9). In these figures the velocity distribution u is pbtted versus the coordinate
y. Figs. (2) and (3) illustrate the effects of upper limit of apparent viscosity coefficient
pand Reynolds number R.. It is found that the velocity increases with increasing both
fand R,. the effect of the magnetic parameter M on the velocity is to decrease it which
is clearly depicted in figure 4. Figures (5), (6) and (7) are plotted to elucidate the
influences of the porous parameter k, the steady component of the pressure gradient Ps
and the amplitude of the pulsation Py on the velocity. It is observed that as £, Ps and Py
increase the velocity increases. The influences of Forschheimer number Fs ar'ld the time
t on the velocity are illustrated in figures (8) and (9). Increasing Fs and t have a
tendency to decrease the velocity.

The effects of different parameters on the temperature distribution 7 are indicated
graphically through figures (10-17). In figures (10), (11) and (12), we observe that the
temperature distribution 7 decreases with the increase of the magnetic parameter M,
Forschheimer number Fs and the time t. The effects of upper limit of apparent viscosity
coefficient A, Reynolds number R., porous parameter &, Prandtl number Pr and Eckert
number Ec on the temperature distribution T are elucidated in figures (13), (14), (15),

(16) and (17). It is seen that T increases as f3, R,, &, Pr and Ec increase

10
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Figures (18-25) are graphed to illustrate the effects of the physical parameters on the
concentration distribution C. The concentration is plotted versus y for various values of
B, R., k and Schmidt number Sc in figures (18), (19), (20) and (21). It is found that C
increase with the increase of 8, R, k and Sc. The effect of M, Fs, t and Soret number Sr

in figures (22), (23), (24) and (25). It is indi.cated that as M, Fs, ¢ and Sr increase C

decreases.
Fig. 2. Vielocity distribution plolted egainst position for 1272, Fig. 3. Velocity diskibuiion plotted against position for t=xn,
Rex, 1, Met, K=.01, Py=i0, PO=7, Pre1, E=2, Scw. 15, 5r=05, oA, M1, K=.01, Ps=10, PO=7, Pr=1, E=2, Scw.18, Sre.05,
Fel0, wel o6 Fa=10, wei,
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Fig 4. Velocity distribution potted against position for t=p/2, b=4, | 5. Velogty dishitaion plotted -
Roe 4, k=01, Py=t0, POs?, Pret, Ex2, Sox 15, Sr=05, Fa=10, Fg k4 Plotted against position for
-t t=n/2, b=4, Re=1, M=1, P10, PO=7, Pr=t, E=2,
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Fig. 6. Vafocily distribution plotied against position for t2x/2, Fig. 7. Velocity distribution plottad against position for tayf2,
bed, Res, 4, W1, K=01, PD=7, Prat, Ex2, Sc«. 18, 5re.08, 74, Rem. 1, M1, K01, Pa=10, Pr=t, Ex2, Sc= 15, Sr=.05,
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Fig. 8. Vetocity distribution plotied against pasition for t=n2, fi=4,
Re=.1, Me1, K=01, Ps=10, PO=7, Prel, Ex2, Sc=.15, Sr=05,
wel,

| wem F5=10
i — — —-Fs=100

Fig. 9. Veloclty distdbution plotied mgainsi position for =4,
Ra= 1, b=1, K=.D1, Pg=10, P0=T, Pre1, E=2, Sc=.15 Sm05,
Fa=10, wetf,

Fig. 11. Temperakra distribulion plotted against position for
120, g=4, Re=.1, M=1, K=.01, Ps=10, PO=7, Pr=1,E=2,
$c=.45, 5r=.05, w=1.

Fig. 10. Te#mpemturs disidbulion plotted apainst postiion for
1+0, a4, Re=.{, K= 0t, P3=10, POs7, Pr1, E=2, Se= 15,
Sr.05, Fs=10, w=1.

II Fs=1 ! -
i—---Fs=100' M=5
| ------- Fs=125i - — = -M=10
....... M=15
1.5 ;s
Fig. 12 Temperature distribution plotted against position for Fig. 13. Tempamture distribution plotied against position for t=0,
A=4.Re=1, M=1, K=.01, Ps=10, PO=7, Pr=1, E=2, S¢=.15, Re={, Mri, K=01, Psx10, PO=7, Pr1, E=2, Sc= 15, 508,
Sr=.05, Fs=10, w=1, Fe=10, w=1.
1.2 12
- =
1 - ! =5
0.3
08 ———-p=8
08 o8
04 cd N e p=4
Tl Bt hal ] & EE F
a2 o2
ul L, y ”
032 [ os 1
¥ ts

Flg. 14, Temperature distribution plotted against
position for 1=0, g =4, M=1, K=.01, Ps=10, PO=7, Pra1, Ex 2,
Sc=.15, Sr=.05, Fs=210, w=1.

Fig 15.Tempemiure distibution ploited sgainst pasiiion for
=0, =4, Re=.1, Mxt, Ps=10, PO=?, Pret, Ex2, Sc= 15,
Sr=05, Fs=10, w=1,

e K= 005
- - K= 01
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Fig. 16 Temperature distritudion plolted agairst positionfor
t=#2. =4, Re=.1, M=1, K=04, Ps=10, P0=7, E=2, §c=.15,
Sr=05, Fs=10,w=1,

Fig. 17. Temperature dislribulion plotied against position for
=2, fi=d Rew | Net, K= (1, Ps=10, PO=7, Scx.95, Sm.05,

Fa=10, w=t.
12
| Ec=2
".- ~ - - Ec=30 |
| S Fc=100
i

Fig. 18 Concertration distrituion plotted against posilion for
120 Re=.1, M=1, K=.01, Pa=10. PO=7, Pr=1, E=2, Sc=.15
Sre.05, Fee 10 wat.

H

i — =5

L ———-bet

I

| reiesen N=4
|Ts

Fig. 19. Coneentrafion disiribution platied against poaition for
t=0, A=4, M1, K=01, Ps=10, PO=7, Pr=1, E=2, Sc=.15,
Sr= 08, Faui0, wet,

Fig. 20. Conceniralion distribution plotied against posilion for
=0, 1=4, Re=.1, M= 1, P3=10, PC=7, Pr=1, E=2, 5¢= 15,
Sr=.05, F5=10, w=1.

—K=.005;

— e K201

Fig. 21, Conceniration distritertion plelted ageinst position for
=2, End, Rea.1. Mal, K=0f, Pa=(0, POs7, P, E=2,
Sr=05, Fes{0, w=t.

-
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Flg. 22. Conenkalion dislibulion plolled agsinst porilion Fig. 23. Concentralion distribution plofted againsi position
for t=0, a4, Rew.1, Ku.01, Ps=10, PO=7, Pr=t, Ex2, fori=0, p=d, Re= 1, Mxf, Kv.01, Par10, POXT, Pra{, En2,
Sce {5, Sre 08, Fanll, wet. Sce 15, Sm 05, wel.
—Fs=10
i — — —-Fs=100
i
[ Fs=125
i
ts
Fig. 24. Conceniretion diskibution plotied mgainat positon Fig. 25. Concantrafion distibulion plotied sgainst position
for flad, Rew 1 M=, K=Dt, Pa=10, PO=7, Pmi En3, for t=w2, fi=d, Re= 1, Mr1, K= 01, Pa210, POul, Pra, Eu2,
Sca. 15, Sm 05, Fax{0, wai. Sc= 15, Fe=10, wel,
129 12
i Sr=05
{ == —~5r=50
|
R LT Sr=100
i

6. Conclusion

In this paper, we have studied the problem of unsteady flow with heat and mass
transfer of non-Newtonian fluid (biviscosity fluid) through a uniform porous medium
between two permeable parallel plates in the presence of magnetic field. The equations
of momentum, energy and concentration are solved by using the perturbation technique,
The governing equations were solved by using Rung-Kutta-Merson method and Newton
iteration in shooting and matching technique. Also, we obtain an estimation of the error
propagation by using Zadunaisky technique. The errors estimated justify the use of the
approximated solutions as a suitable approximation to the calculated physical values.

Numerical calculations are presented for the velocity, the fluid temperature, fluid
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concentration and their dependence on the material parameters of the fluid. The effects
of these parameters are discussed by a set of graphs. It was found that increases in any
of the following: Reynolds number and the porous parameter caused increment in the
velocity, temperature, concentration distributions and inversely increases in the

magnetic parameter, Forschheimer number and the time caused reduction in the same

distributions.
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