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Abstract.

The objective of this investigation is to study general surface waves and Rayleigh, Love and
Stoneley waves as particular cases in visco-elastic solids under initial stress of hydrostatic tension or
compression. Firstly, the general theory of surface waves in visco-elastic solids under initial stress has
been formulated.. The visco-elasticity of the solid medium involving time rate of stress and strain is
considered to be of first order, The general n-th order visco-elasticity of similar type is very cumbersome
to handle.. The investigated problems and the wave-velocity equations are in fair agreement with the
corresponding results of the classical problems in absence of viscosity and initial stress.
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1. Introduction.

The Cauchy theory of initial stress has been presented in the book of Love [1].
If a sheet of metal is rolled up into a cylinder and the edges welded together, the
cylinder so formed is in a state of initial stress. The unstressed state can not be attained
without cutting the cylinder open and the cylinder is always in a state of initial stress.
Similarly, if a body is in equilibrium under the mutual gravitation of its parts, it is in a
state of initial stress; if the body is large, the stress is enormous. We may consider the
earth to be in a state of initial stress under its own gravitation. The initial stress is
developed by slow degrees of creep and it is hydrostatic in nature. Moreover, the earth
is under the action of large masses over its surface; it also creates initial stress. Under
such circumstances if waves are propagated over the surface of the earth it may be

influenced by the initial stress. In this paper this initial stress has been taken into
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consideration in studying the surface waves. The theory of initial stress has been
considered by Biot [2] in a different manner which is highly applicable and admits
wider applications and it contains a good number of references [3-6] of the works in
mechanics of continua in dealing with various problems of highly applicable in nature.
Yu and Tang [7] investigated magneto-elastic waves in initially stressed conductors.
Dey and De [21] studied velocity of shear waves in an initially stressed incompressible
anisotropic medium. The mathematical modeling of visco-elasticity has been presented
in the monographs of Flugge [8], Bland [9] and the work of Hunter [10].

In discussing earthquake waves on the surface of the earth, Jeffreys [11-13]
studied surface waves, very befitting to the actual situation of earthquakes. It is
presented to a limited extent in his book 'The Earth' [14]. He also studied the elastic
waves in a stratified medium. Prior to this, Rayleigh [15] studied the elastic waves
‘propagated along the plane surface of the solid. Stoneley [16-18] studied clastic waves
at the surface of separation of two solids and Love waves in a triple surface layer.
Moreover, he studied Rayleigh waves in a medium with two surface layers. Rajneesh
and Deswal [20] investigated surface wave propagation through a cylindrical bore in a
micropolar generalized thermoelastic medium without energy dissipation. Acharya and
Mandal [22] studied propagation of Rayleigh surface waves with small wavelengths in
nonlocal visco-elastic solids.Pal, Acharya & Sengupta[23] investigated effect of surface
stresses on surface waves in elastic solids.

Following these concepts and the theory given by Yu and Tang [7], the present
authors have investigated different types of surface waves in visco-elastic medium
under the influence of initial stress. The wave velocity equations obtained in each case
is in agreement with the corresponding classical results in absence of viscosity and

initial stress.

2. The problems and basic equations
The equations of motion for a perfectly elastic solid under initial stress

(hydrostatic tension or compression) are [7]

d*u, du, 0,
L= Ly 1,j=123 1
s e (4] ) (1)
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where p, is the hydrostatic tension when p; <0 or compression when p, >0, 7;is the

stress tensor over the initial stress, uis the displacement vector with respect to
coordinate axes ox; ,0X2 ,0x3 at time t, and p is the density of the material.

Let us consider that M; and M, be two electrically conducting charge free
isotropic, homogeneous, visco-elastic, semi-infinite solid media welded in contact
under an initial hydrostatic tension or compression. We further assume that the medium
still remains isotropic and homogeneous under the action of initial stress. We consider a
system of orthogonal Cartesian axes 0x;X,x3, where the origin 0 is on the interface of

the two media and ox3 is normal to the interface (fig.1).

M;

M,
X3

:

X3

Figure 1. Interface Geometry.

We now consider the possibility of a type of wave traveling along the positive
direction of x; axis in such a manner that the disturbance produced in largely confined
to the neighbourhood of the boundary of the media and at any instant all particles on
any line parallel to x; axis have equal displacements. According to the first aséumption
we can conclude that the wave is a surface one and from the second assumption it is
easy to understand that all partial derivatives with respect to x; coordinate are zero.

Now, by using the formulae u=gradg + curly , the displacement components , and

u, at any point can be expressed in the following form:

O WO o, OO

. s = ’ (2)
“ os " C By oY
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so that
Ous _ owy Nl_i o ouy , Ouy

N*f=DN%y= : D=
f y B vy

s D= g 3 3
R e By O iri6s G)

where ¢ and y are functions of coordinates x;, X3, and time t, which are, in fact,
displacements potentials.

Now, the first order stress-strain relations of an isotropic visco-elastic medium is [19]
0 5, o}

t— |7, =| A+ A4 — |A0, +2| yy+ p,— |e, 4

[’?o ql at) ij (A‘J 2‘1 BtJ if [)u[) Iul a[j if ( )

in which 7,,4,,4, are elastic constants, 7,,4,,4 are constants due to viscosity,

1

e.=—|\u . +u, ) is the strain tensor, &, is the Kronecker symbol and A is the
A it if ¥

dilatation.
Utilizing the equations (4) and (1), the displacement equations of motion for a

conducting first order visco-elastic medium under hydrostatic stress can be written as

[(%+%)+(/"1+A) ]gﬁ (»w« )Vetﬂ [mm &JPOVZM p[mwg—)%—,
v T L
(;wq ] % (rwn )Po 1 ;{nm S R

[(%+%)+(%+M) 2}22 [%m ]Vzus [mmg)pov% =0(m+m§]%,

These relations are true for both the media M; and M,.

/

Now introducing (2) in (5), we have

0
2 Vi§,+V2
a ? = a[ V2¢,
ot L P
0
s Bl
azw 1S
g 7 0 —%"— Vi, ! (6)
0
Vs + Vo —
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where V2 = j'() +2#0 ] szp /11 +2Iul V2 #0 V2
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Equations (6) are applicable to both M, and M, . Here M; is identified by the properties
P Mot > A s thy > 1y
Now in this problem we apply the following boundary conditions of continuity across
the interface of the media M, and M,:

) The displacement components u; at the interface must be continuous.

(1)  The stress components 7,,,7,, and 7,, which are given as

&¢ v 62;//}
i i j[a:eaa ol a2

Lry, = \/”o +4 g]%’ f (7N
o018 ) o)\ o o¢
Lz, = %+AEJV¢+2(%+M&)(&I&3+&§] J

must be continuous across the interface.
3. Solutions
For investigating the equations (6), we consider the harmonic solutions of the

form
( W, uz) |: (x3) (x3),ﬁ2 (xs)]er'(qx,..m) (8)
for the medium M. For the medium M; we can assume similar solutions taking

¢ ., i, in place of @17, .
Introducing (8) in (6) we have

G| ¢ =0,
“ Vi -n 2
Yo,
d*y o’n, 5
dxyzj e n:! o k p_ W - 0’ r (9)
* Vi -, =
d2ﬁ2 = 2 wznk ~ 0
a . ) U, =
: Vs =M =4
Jol
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. y 2 _p?_ w2 oy
where 7, = (17, —i@n, ), Vip =V, =iV, Vig =Vis — iy,

Similar relations can be obtained for M, by using the dashed variables such as

B s hs Ay s s 5P a0d V3 Vi,

Vszu an??;, .

The solutions of equations (9) are of exponential types. Now, as @,y and u, describe

surface waves, they must become vanishingly small as x; — 0. So, for the medium M;

the solutions of equations (6) may be considered in the form of

¢ . |iAe—-x_1("I2 ‘Q'az)i 4 Be"“}(’]‘z‘é‘%)E }ei(qx,—ml},

1
—x;(rr’—ﬁ)iﬂ'(nxu-ﬂ")}
v =Be

1 -

1
2
5 .
| | i)
Vkﬁ.“'hi
P

=("e

¢' =4 |:A'ex.1(r12—§?); 3 B‘e-‘s(’]‘z'fli]i :Iea(nx, —aal)’

1
x3(n=¢ 3 ) i )

w =Be" .
x| n*- A :\ +i{mx —ox)
Cy e Py
g C.e Vis™ = s
where
I w'n, . @1,
1 CF - 3
« D » P
V}j’ =, ; V =~y
DLW 2. 1%
gZ = @ 771( ;'2 @ ’7}(
2~ 5 9 s
Vs = 7?.'; al Vs —% 20’

21

5

P

(10)

(11

(12)



Ind. Jour. Mech. Cont. & Math. Sci., Vol.l July (2006) Pages 16-26

1
While evaluating the quantities like (n2 -t )2 , the root with positive real part is taken

into consideration in each case.
Now applying the boundary condition (7), we have

A-iQ,B = A +iQ,B, (13a)
B o (13b)
iQA+B =-iQ4 +B, (13c)
Y T b T e
p?[lelA+(l+Q22)Bl:|=p = (2104 +(1+0}") B | (13d)
k k
Ve bl
2 2.8 372 2, M
pllp o2 | ooy g J b= OID = N (13¢)
o Faom Bl K

20103 (0t -1)+ 202} 4-2073R |- L[ (1 (0 1)+ 2%} A +2i0,7B]  136)

N T

From (13b) and (13e) we have C=C =0.Hence we conclude that there is no
propagation of the displacementu,. Therefore, the wave velocity equation is obtained

from (13a), (13c), (13d) and (13f) by eliminating the constants A4,B,4,B, in the
determinant form as

in which,
M, =1, M, ==y, My, =-1, M;, = 1Q2= My, =10, My =1, M, = iQ;’ =
V2 : Vs
My =pB52ig, b pn—’?(1+Qz) My =p 20 M= ;;f (1+Qz )
) e

k

k

M4 = :; {VJJ(QZ 1)"'21/;:.2%'}’ M42 =—-$—2in1/§ s M43 :"%{V;(‘PZ(Q;Z _1)"'21/;:;2}:
k k
M, =—£,,2iQ‘2V,;f
7

Equation (14) gives the wave velocity along the common boundary of the two media in
presence of initial stress in the nature of hydrostatic tension (or compression) and of

first order viscosity including strain rate and stress rate.
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4. Particular cases

A) Rayleigh Waves: In the particular case of Rayleigh waves the interface M;is

considered as free surface and the medium M is treated as vacuum. Then from (13d)

and (13f) we have
2iQ,A+(1+0}) B, =0 (15)

(Ve (07 -1)+202} 4-2i0,/2B =0 (16)

For the indispensable constants A4, B, from equations (15) and (16) to assume non-zero
values, we have

IM,|=0 .G.j=12) - L {1
where, M, =2iQ,, My, =1+ 0} , My, =V (O} 1)+ 2V , M, =-2iQ, V2.
Equation (17) represents the visco-elastic Rayleigh wave velocity equation under the
initial stress in the nature of hydrostatic tension (or compression) in a medium
including strain rate and stress rate.
Now, in the absence of viscous effect the equation (17) reduces to
2iP, 1+ P}

=0 18
AU G

2 2
(1)) @
,]:;22=1_

[V.i —&}f {Vli—ﬂ]nl
P P

Equation (18) represents the elastic Rayleigh wave velocity equation under the

where, P’ =1-

influence of initial stress, hydrostatic tension (or compression) in nature.
Further, in absence of initial stress (i.e. p, = 0) we obtain from equation (18) the

Rayleigh wave velocity for the elastic medium as

2\ 2\ 352
C c C
(=) = L&) ®

2
@ ! g ooy 4 ;
where, ¢’ = —-. This equation is in complete agreement with the classical result B.
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b) Love Waves: In case of Love wave wu,will be the only component of

displacement vector u to play the role. Here we consider that the medium M, is
bounded by two horizontal plane surfaces at a finite distance H apart and the upper
plane surface is free while the medium M, is extended to an infinitely great distance

(figure 2).

X2

Figure 2: Formulation of Love wave.

In this case, the striking fact is that the displacement in medium M; may no longer
diminish with distance from the boundary of two media M; and M, so that for M, we

can preserve the full solution as

174 A
2t @’ i o’y
, ) Vet = B0y y Vgt -2y :
u, =|Ce 2 + C,e £ g% -ot) (20)

’

Here, the restriction that the real part of the expression| | o'y be positive is

' p -t
Vil - Hp
o k

not necessary.

For all times the boundary conditions for the present case are:

I. u, and 7,, are continuous at x; =0
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. 7,,=0 at x,=—H , for all times and places.

Applying these boundary conditions we have

C=C+C, (21a)
/ b /2
V2 w'n, B2 a'n, o
b g TR | o (21b)
| Py T
jol P
i %
1 = WI_V;;S':)-Z'T?‘ , i ﬂz_VksT";i-'U:]
Cie R i {2y

Now, eliminating C,C,,C, from equétions (21a), (21b) and (21c), we have

s ) &
2 3 0 3w -
P R P . S g lcz—’?;.q 0 @
Tk ve-Sp Th V' =2tn, Vs =229,
P P
where ¢ = £
n

Equation (22) represents the required wave velocity equations for Love wave in a
visco-elastic solid medium under an initial hydrostatic tension or compression. It is
clear that Love waves depend upon viscous field and initial stress of hydrostatic tension
or compression.

O Stoneley Waves: According to the classical theory, Stoneley waves,

generalized form of Rayleigh waves, propagate in the vicinity of the interface of two
semi-infinite solid media M; and M;. So, from our general case, Stoneley wave
propagating along with common boundary of M; and M, can be determined by the
roots of the wave velocity equation (14). Again, in the absence of viscosity, initial
stress and strain rate and stress rate, this equation surely reduces to the classical result

of Stoneley.
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