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Abstract

The aim of this paper is to investigate the problem of steady flow of micropolar fluid in an
annulus bounded by two co-axial circular cylinders of radii a and b, b being greater than a. The annular
flow takes place under the action of constant pressure gradient. The velocity and microrotation
component as well as the rate of discharge of the fluid through the annulus and time time of efflux have
been derived analytically in closed forms. Numerical calculations have been given to find out the velocity
in viscous fluid and micropolar fluid and a percentage decrease in micropolar fluid over viscous fluid
correspanding to this flow have been compared. The microrotation has also been calculated numerically.
The rate of discharge for viscous flow is greater than the corresponding rate of discharge in micropolar
fluid flow and a percentage decrease is also calculated It is clear from the numerical calculations that
the fluid velocity is always less in micropolar fluid than in viscous fluid. Also the rate of discharge in

micropolar fluid is considerably less than that of viscous fluid In fact, all important results are less in
micropolar fluid than the viscous fluid.
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1. Introduction.

In recent years a new class of fluids executing microscopic effects arising from
the local structure and micromotion of the fluid elements has been considered by many
researcher /1,2,3,4,5 /. In this class the fluid elements are influenced by the spin inertia
and for this result it supports stress moments and body moments. As the constitutive
equations and the field equations are very complicated and cumbersome to handle, the
mathematical problem is not easily amenable to solution as in the corresponding
classical problem. A micropolar fluid, in general, exhibits the microrotational effects

and microrotational inertia and therefore it supports couplestress and body couples.
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In reality this type of fluids are sometimes considered to be more useful than the
classical fluids. Classical mechanics of fluids will not be very appropriate under such
circumstances where microscopic effects are to be considered. For example, Colloidal
fluids, liquid crystals, fluids with additives and suspensions fall into this category.
Moreover, if we consider the physical structure of the fluid, it is adequately
accomodated by the fluids consisting of bar-like lelments, diatomic gases and animal
blood. Clearly, to investigate the flow problem of such type of fluids the classical
continuum theory breaks down. Under such circumstances it is necessary to consider a
mathematical structure of fluid indentical to the micropolar fluid as considered by
Eringen /1,2,3,4,5].

Recently, the unsteady flow of a micropolar fluid past a rotating cylinder has
been considered by Sengupta and Pal f6]. They [7] also considered the problem of
transient flow of micropolar fluid through a rectangular channel. Ghosh and Sengupta
[8] studied the steady motion of a micropolar fluid through a cylindrical pipe. They /9]
also investigated asymptotic suction problem in the unsteady flow of micropolar
liquids. Sengupta and Pal [70] considered the problem of steady flow of a mic;ropolar
fluid in an annulus bounded by two co-axial circulaxi cylinders. The velocity and
microrotation comporients are obtained in closed form and then stresses and couple

stresses are derived.

Following the concept of micropolar fluid as proposed by Eringen /1,2,5,] and
also following the line of mathematical development of such type of problems as
considered above, the authors of the present paper has investigated steady flow of a
micropolar fluid through a co-axial circular cylinder with radii a and b, b 4being greater
than a and under constant pressure gradient. A numerical investigation of the titled
problem has been made in different directions. Percentage decrease of the velocity and
rate of discharge from classical viscous fluid micropolar fluid has been exhibited

numerically.,
2. Basic equations of motion

In the absence of external body force and body couples, the equations of motion
for a micropolar fluid through co-axial circular cylinders bounded by radii a and b
(b>a) are
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(A+2u+X)VVy —(u+X)VxVxV +1Vx & -~ Vp = pvy (1)
and
(@+B+6)VV .5 -8VxVxa+xVxv—2xa = pjcs )

where v is the velocity, o is the microrotation vector and p is the pressure. The

quantities A, u,x,a, 8,0 and j are constants depending upon the characteristic of the

particular fluid and

—Eog £gy, +0,,0
Vi = kavt;O'k = 0wy
ot ot

The fluid being assumed to be incompressible and homogeneous with constant
density p, the equation of continuity is

V=0 3)
3. Statement of the problem and its solution.

Here we wish to find the solution of the equations (1) and (2) when the fluid is
flowing steadily through co-axial circular cylinders bounded by radii a and b (b>a), the

pressure gradient being regarded as constant,

We choose cylindrical co-ordinates (r,0,z), the z-axis being taken along the axis
of the co-axial cylinders.For a steady flow parallel to the axis we seek to determine the

velocity and microrotation components as
vr = vﬂ =0 2 = &)(r) (4)

c,=0,=0, o,=0(r)

with p, =p =0 and v, =0.

Putting f;_p = ~p, where p, is the constant pressure gradient, we have from (1)
'z
and (2)
(u+x)ra’) +x(ro) =-rp, (5)
5(0"4-10) -xw' -2x5=0 (6)
r
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where the superposed primes indicate the differentiation with respect to r.

From (5) we get

o= (——;-rP, —xa)+% @))

where C,; is an arbitary constant.
Putting this value of @' in (6) we obtain

a"+i-(k2+i2)a_-rp 25 @)
r r d r
where
1
po|24tx x E,pz=x—Pl_
H+x & 2(u + x)8

The general solution of (8) is

G = AI(kr)+BK(kr)+Pr x4 9)
k5 r

where I, is the modified Bessel function of the first kind of first order and K; is the
modified Bessel function of second kind of first order and A, B are arbitrary constants.
Putting this value of o in (7) and integrating we find

2 2u
k( [——AI (kr) + BK, (h)]—2(2ﬂ+x)+2”+x .C, logr+C (10)

where [,Ko modifiéd Bessel function of order zero and second kind respectively and C
is an arbitrary constant.
The walls of the circular cylinders being sufficiently rough to prevent any

slipping, the boundary conditions are

w(a)=w(b)=0 (11)
o(ay=oc(b)=0 (12)
Using (11) and (12) we get from (9) and (10) |
C Pa
Al (ka) + BK; (ka) + — k2 -E;—= kz
C, Pb
Al (kb) + BK; (kb) + ——-—L =227
1 (kb) 1(kb) 3 b Py
~X X 1uloga P,a
I,(ka). A+ ————k,(ka).B C+C=—"——
k(u+x) o (k) +k(y+x) o (ka) +2y+x ¥ 2(24+ %)
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2
X1 (kb). A+ —— k,(kb)B+ L8O o o PibT
k(p+ x) k(g +x) 2u+x 22u+ %)

In order to find the constants A,B,C and C;, we write the above four relations in

the form
ad+a,B+a,C +a,C=p (13)
@yA+ayB+ay,C +a,C =4 (14)
ayA+ay,B+a,C +a,C=p, (15)
agd+a,B+a,C +a,C=8, (16)
where
x —ha
a,, =1 \(ka), &, = k\(ka),a, =m,a|4 =0,0, = PR
x -Pb
ay =1,(kb),a,;, = k,(kb),a,, =‘k—2’g£saz4 =04, = kzz s
~x ' x 2yloga -Pa’
= ———— [ (ka),a;, =————k,(ka),a,, = _ .
; k(2 + %) o(ka), ay, ) o(ka), a;; 2/,t+x =10, = 202n+x)
x 2/.zlogb ~Pb’
- —— A ——ky (kD) a,, = o T
Qg = k( 5 ) 1, (kb),a,, = T o{kb),ay, 2;.1+x =14 = 2(2y+x)
From (13),(14),(15) and (16), we have by Cramer’s rule
A=2ip B o B o A
A E) A sy A s A ]
where A =lau [;  ij=1234

and A, is obtained from A by replacing I-th column by [ﬂ, 55,0, ]’
Hence we finally obtain from (9) and (10)

a(r)——[AI(kr)+A k(kr)+ Py +-";A—§-l] | (17)
P[rz.A 21, -I
w(r)_—[ T { Ay (k) + A (k7)) 2(2#+x)+2”+xlogr+A4 J (18)

The rate of discharge of the fluid is given by
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Q= J-:K _Lba) (r).d8@dr

= —A—[k T ){A \[BI, (kb) — al, (ka)] + A, [bk, (kb) - ak  (ka)]}

PA

___h8 e 4 __!"ég__ 2 o _}_ 1 2 l 5 3 q
8(2y+x)(b a )+2,u+x{(b logh—a” loga) 2(b a )}+2A4(b a’)] (19)

Let t be the time of efflux and V be the volume of liquid. then, t=

0=

is given by (19).

4, Numerical results

where Q

Now we calculate numerically the values of the velocity ® and microrotation ¢

of micropolar fluid for various distance of the fluid elements taking Py =x=1,6=1.9

p=9and a =1, b = 5. the corresponding velocities word o for viscous fluid are

calculated and these are exhibited in the following table.

Table—1
R W ) Percentage G
of decrease

1.5 0.1332308 0.128734 3.3531286 0.1148912
2 0.2037843 0.1939937 4.80443937 0.1556432
2.5 0.2337157 0.219508 6.0790525 0.1671549
-3 0.2328485 0.2159035 7.277264 0.1636742
3.5 0.2064236 0.1889052 8.4866265 0.1489642
4 0.1575687 0.1421385 9.7926809 0.1214605
45 0.0883016 0.0783324 11.289943 0.0753788

We also calculate numerically the value of the rate of discharge Q of micropolar fluid

when P, =

x=1,8=19,p=9anda= 1, b= 3. The corresponding rate of discharge q

for viscous fluid is also calculated and these values are shown in the following table.
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Table — It

Q _ ' Q Percentage of decrease |

87332011 6.8332181 21.75586

5. Discussions

Clearly, from the numerical investigation of the problem we find that the

velocity of the micropolar fluid as well as the rate of discharge are always decreased

from the classical viscous fluid. The decrease in velocity in micropolar fluid from the

classical viscous fluid gradually increase as the fluid elements recedes more and more

from the axis of the cylinder. it is exhibited in the table. Moreover, it is that the

microrotation component gradually increase upto a certain distance from the axis of the

cylinder and thereafter it gradually decreases.
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