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Abstract

The effect of radiation on combined free and forced convection flow of an electrically conducting
viscous fluid through an open-ended vertical channel permeated by a uniform transverse magnetic field has
been considered. The temperature on the walls has been supposed to vary linearly with distance and there is
no heat flux on the boundaries. Assuming oprically thin limit, the expressions for velocity, induced magnetic
field, temperature and the non dimensional flow-rate are obtained and the influence of radiation on these
quantities are observed either graphically or in tabulated forms.
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1. Introduction
~ The problem of heat transfer in electrically conducting fluids has drawn the
attention to the research workers due to its wide applications in diversified fields like in the
design of pumps, shock tubes, magneto- hydrodynamic generators etc., a comprehensive
review of Which was given by Romig [1]. Siegel [2], Perlmutter and Siegel [3] and Alpher
[4] considered the forced convection of an electrically conducting fluid flowing through a
channel in the presence of a uniform transverse magnetic field. Gershuni and Zhukhovitsky
[5] solved the problem of convective flow through‘ a vertical channel taking the wall
temperatures to be constant, whereas Yu [6] dealt with the same problem when the wall
temperatures vary linearly with vertical distance in presence of a uniform transverse
magnetic field.
But for space applications and higher operating temperatures, the effect of radiation
to the above problems must be taken into account. Grief, Habib and Lin [7] considered the

problem of fully developed laminar convection flow of a radiating gas in a vertical channel
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in optically thin limit. Viskanta [8] solved the problem of forced convection flow in a
horizontal channel in presence of a uniform magnetic field and studied the influence of
radiation on the temperature but not on the induced magnetic field. Gupta and Gupta [9]
solved the radiation effect on the combined free and forced convection flow of an
electrically conducting fluid insidé on open-ended vertical channel and permeated by a
uniform magnetic field. For the case of rarefied gases, Sanyal and Samanta [10] solved the
problem allowing for a velocity slip at the boundary surface.

In the present paper we disscuss the effect of radiation on the combined free and
forced convective hydromagnetic vertical channel flow with zero heat flux at the

boundaries in the case of optically thin limit.
2. The problem and fundamental equations

Let us consider fully developed steady hydromagnetic laminar flow of an
electrically conducting incompressible viscous fluid through an open-ended vertical

channel in presence of a uniform magnetic field B, in the direction normal to the plates at a
distance 2L apart. We take the origin at the centre of the channel, the z-axis along the
vertical direction and the x-axis along the direction perpendicular to the plates. The
uniform magnetic field B, acts in the direction of x-axis. In such a case the velocity and
the induced magnetic field have only a component in the vei'tical direction which we
denote by v and B respectively and all other physical quantities except temperature T and
pressure p are functions of x alone [9]. We take the temperature inside the fluid as [9]
T=T*(x)+Nz (1)

where N is the vertical temperature gradient.
The momentum equations in the x and z directions are

ap BdB -0 @
6x M dx , .
d’v B, db 1 6p
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where
0 =1 ®-To,, “

pis the fluid density, p1 is the magnetic permeability and g is acceleration due to gravity
and Tw,is the reference temperature. The equation of continuity is satisfied identically.
The energy equation on neglecting the viscous and Ohmic dissipation is
2 L]
w=al® 1 24, )
dx pC, Ox

where o is the thermal diffusivity of the fluid, C, is the specific heat at constant pressure
and q, is the radiative heat flux. '
The magnetic induction equation is

2

+0'yBa—§xv—=0, - ©)

o being the conductivity of the fluid.

The fluid does not absorb its own emitted radiation in the case of optically thin
limit or, in other words, there is no self absorption, but the fluid absorbs radiation emitted
by the boundaries.

Using the relation [11]

0q . = 'deu)
=4(T-T k. dA
Ox ( “’)J M’( ar ), )

for optically thin limit and for non-grey gas near equilibrium, we have from &)

2 »
m,=a%£;_c@2 ®)
where
4 % de :
C = k 24 | dA
pPCp 6[ 10[ ar Jo o
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In the above, k, is the absorption coefficient, €,, is the Plank function, T is the reference

temperature and the subscript zero indicates that all the quantities have been evaluated at
the reference temperature.
Integrating (2) w.r.t.x, we get

2

B
P-—§;;+.f(2) (10)

Using (10} we have from (3)

+—. (1)

The L.H.8. is a function of x alone and the R.H.S. is a function of z only. So each side
must be equal to the same constant C, (say). Therefore we must have

d’v B, db
V—t
dx MO dx

+gp@" =C,. (12)

The constant C, is to be determined either from the conditions of pressure to which the
channel is subjected or from the mass flow through the channel,
Introducing the following dimensionless quantities for convenience

13)

2
M= BOL[L:| = Hartmann number,
pU

NL*
R,=gf
va

= Rayleigh number,

P, = aou = Magnetic Prandtl number,
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the equations (12), (6) and (8) reduce respectively to

d*u  M? db
+———-R t=C 14
dﬂz Pm d?] a 25 ( )
1 d*b & du (155
P, dn* dn
d’t | |
an? - Ft =-u (16)
where
& c,.r
F= C,sz ‘ (D
a av
Integrating (15) w.r.t.n we get
1 d
Eﬁ-l- u= ConsmntéC3 (18)
Eliminating u and b from (14), (16) and (18), we have,
w‘—wwwﬁ)y'@ﬁF+Ry=c 19)
dn* dn’ ? ! |
where
C4=M2C3-C,

3. Solutions
We assume that the fluid flows through the vertical channel with zero heat flux on
the non-conducting boundaries so that -

ﬂ0 at n=+¢1, (20)
dn :

b=0 at n=tl. 1)
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The no-slip boundary conditions are
u=0 at n==%1. (22)

The solutions for the temperature t (1), velocity u (n) and the induced magnetic
field b (n) are obtained from (19), (14) and (18) satisfying the boundary conditions
(20),(22) and (21) as

Cy
t(n) = Ajcoshkyn + Arcosh ko + MF+ R, (23)

u(m) = (F - Ky2)Acosh Ky + (F - K2) Ajcosh Kom + (24)

M*F+R,

P

m

M:(F—klz)%[r]sinh K, —sinh K,q]-l-(F-—Kf)-;i[nsiﬂh K,-soh Kp]  (25)
$ 2

where
1 1 12
K, K, =[—2'(F_+M2)15{(F—M2)2 —4Ra}”2]

- FC,K,sinhK,
[(M2F +R){(F - K})K,CoshK, sinh K, - (F — K7 )K, sinh X, cosh K, }]

A=

Af = FC,K,sinh K,
[(M?F + R, W{(F - K})K,CoshK ,sinh K, - (F - K2)K, sinh K, cosh K,}]

The non dimensional flow rate @ due to thermal conduction are

&= iud,,:z A (F-K2)sinhK, + 22 (F - K2)sinh K, + — 4 (26)
; O T MF R,

2
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4. Numerical results and disscussions _
Taking R =1, M?= 10, C,= 1, the effect of radiation has been shown in figures 1
and 2, where we find that the temperature t(n) decreases with increasing F but the velocity

u(n) increases with F. The behaviour of b(n) with F is shown in fig. 3, which is

symmetric but reversed in the regions ~1<n <0 and 0<7 <1

The variation of flow rate & with F for M2= 10 is shown in table 1.

Table 1
Flowrate @
M2=10
F
1 2 3
0.11 0.12 0.16
0.16 -
\—_40:‘:\' F=1

0.02 +

i
I

-1.5 -1 -0.5 0o 7 05 1 1.5

Fig.1 Variation of temperature with F.
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Fig.2 Variation of velocity with F.

0.015 4 b/Py

Fig. 3 Behaviour of b(n) with F.
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