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Abstract:

Runge-Kutta-Merson method and Newfon iteration in shooting and matching technique were
used to obtain the solution of the system of the non-linear ordinary differential equations, which describe
the two—dimensional_ flow of a Johnson-Segalman fluid with heat and mass transfer in a planer channel
having walls that are transversely displaced by an infinite, harmonic traveling wave of large wavelength.
Accordingly, we obtained the solutions of the momentum, the energy, and the concentration equations.
The numerical formula of the stream function, the velocity, the temperature, and the concentration
distributions of the problem were illustrated graphically. Effects of some parameters of this problem
such as, Weissenberg number W, , total flux number F, Eckeret number E,., Prandtle number P,, Soret
number S, , Schmidt number S, , Reaction parameter Rc, Radiation parameter R,,, and reaction order m
on these formula were discussed. Also we estimate the gfobai error for the numerical values of solution

by using Zadunaisky technique.

Keyword and phrases : Johnson-Segalman fluid, heat transfer, mass transfer, global error,
peristaltic.
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1. Introduction
The word Peristalsis derives from the Greek word “ nepiotaitikos ” which
means clasping and compressing. It is used to describe a progressive wave of
contraction along a channel or tube whose cross-sectional area consequently varies.
Peristalsis is regarded as having considerable relevance in biomechanics and espemally
~-as’a major mechanism for fluid transport in many biological systems ( as it is in the
human ) {1].
The dynamics of the fluid transport by peristaltic motion of confining
* walls has received a careful study in the recent literature. The need for peristaltic
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pumping may arise ifi circumstances where it is desirable to avoid using any
internal moving parts such as pistons to be one of the main mechanisms of fluid
iransport in a biological system. Specifically, peristaltic mechanism is involved
in swallowing food through the esophagus, urine transport from the kidney to
the bladder through the ureter, movement of chyme in the gastrointestinal tract.
Moreover, in the cervical canal, it is involved in the movement of ovum in the
Fallopian tube, transport of lump in the lymphatic vessels, and vasomotion
of small blood vessels such as arterioles, venules, and capillaries, as well as
in the mechanical and neurological aspects of the peristaltic refltex. In piant
physiology, such a mechanism is involved in phloem translocation by driving a
sucrose solution along tubules by peristaltic contractions. In addition, peristaltic
pumping occurs in many practical applications involving biomechanical systems
such as roller and finger pumps. The application of peristaltic motion as a mean

of transporting fluid has also aroused interest in engineering fields {2 — 4]. In

particular, the peristaltic pumping of corrosive fluids and slurries could be useful

as it is desirable to prevent their contact with mechanical parts of the pump [5].

The Johnson-Segalman model is a viscoelastic fluid model which was developed

to allow for non-affine deformations [6]. This model has attracted a lot of interest

because it has been used by a number of researchers [7—9] to explain the “spurt”

phenomenon. “spurt” is a little understood phenomenon observed in the flow

of a number of non-Newtonian fluids in which there is a large increase in the
volume throughout for a small increases in the driving pressure gradient, at a
critical pressure gradient. Experimentalists usually associate “spurt” with slip

at the wall and there have been a number of experiments [10 — 13] to support

this hypothesis [14]. Our study is an extension of Hayat, Wang, Siddiqui, and
Hutter [5] who studied the peristaltic motion of a Johnson-Segalman fluid in
a planer channel, and who obtained some distributions of the stream function
and the velocity at different values of Weissenberg number We and Total flux
number F. The objective of this work is to investigate the numerical solution
by using Runge-Kutta-Merson method and shooting technique [15], [16] for
the system of non-linear differential equations which arises from the flow of a
Johnson-Segalman fluid with heat and mass transfer in a planer channel having
walls that are transversely displaced by an infinite, harmonic traveling wave
of large wavelength. We obtained the distributions of the stream function,

the velocity, the temperature, and the concentration. Communicated with the
stream function and the velocity distribution, we found that a good agreement
between our results and the previous results in [5] in spite of the difference
between our method of solution. Temperature and concentration distributions

are obtained and the effect of the problem parameters on these solutions are
discussed and illustrated graphically. Also global error estimation for the error

propagation ig obtained using Zadunaisky technique fL7].

2 Formulation of the problem

Consider a two-dimensional infinite channel of uniform width 2n
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filled with an incompressible non-Newtonian fluid cbeying Johnson-Segalman
model with heat and mass transfer in the presence of solar radiation with
chemical reaction. We choose a rectangular coordinate system for the
channel with X along the center line and ¥ normal to it (see figure ().
We assume that an infinite train of sinnsoidal waves progresses with velocity
c along the walls in the X —direction.

The geométry of the wall surface is defined as

B (%,8) = n+ bsin (2; (X — ct)) , W
Where b is the amplitude and X is the wavelength. We also assume that there is
no motion of the wall in the longitudinal direction (extensible or elastic wall).
3 Basic equations

The basic equations governing the flow of an incompressible fuid are the fol-
lowing equations

the continuity equation

V-v=0 , : (2)
the momentum equation
dv
the temperature equation
oT 2 .
PCp T,jt~—+(V-V)T =kVT+P+V-gq 1 (4)

the concentration equation

ac o
[E +(V-V) c] =DVC+ l—)ffiva —A(C-C)™ (5)

Where V is the velocity vector, f is the body force per unit mass, p is the

dt
Also T and C are the temperature and concentration of the fluid, F is
the dissipation function, x is the thermal conductivity, ¢p is the specific heat

density, (——— is the material time derivative, and o is the Cauchy stress.

18



Jour. Mech. Cont. & Math. Sci., Vol.2, No.1 July (2007) Pages. 16-45

capacity at constant pressure, g is the radiative heat flux, D) is the coefficient
of mass diffusivity, xr is the thermal diffusion ratio, T., is the mean fluid
temperature, A is the reaction rate constant, and m is the reaction order.

Johnson and segalman {18] proposed an integral model which can also be
written in the rate-type form. With an appropriate choice of kernel function
and the time constants, the Cauchy stress S in such a Johnson-segalman fluid
is related to the fluid motion through the following relations,

o=—-PI+1 ' (8)
T=2uL+85 , (7)
ds T . .
S +my E?+S(W_“L)+(W““'L) S| =2nL , (8)

Where L is the symmetric part of the velocity gradient and W is the skew-
symmetric part of the velocity gradient, that is

_l- T

L_2m+R]

1 T
W_EW*R] ;

R=gradV . (9)

Also, — PI denotes the indeterminate part of the stress due to the constraint
of incompressibility, 4 and % are viscosities, 7, is the relaxation time, and “a”
is called the slip parameter. When a = 1, the Johnson-Segalman model reduces
to the oldroyed—B model [1]; when a = 1 and y = 0, the Johnson-Segalman
model reduces to the Maxwell fluid; and when my = 0, the model reduces to
the classical Navier-Stokes fluid.

Let U and V be the longitudinal and transverse velocity components of the
fluid, respectively.

For unsteady two-dimensional flows, the velocity components can be written
as follows ' :

V=(U(X,¥,1), V(X700 . (10)

Also, the temperature and the concentration functions can be written as
follows,

T=T(X,¥,t) , C=C(X 71 . (11)

The equations of motion (2), (3) and the constitutive relations (6), (7), and
(8) in the absence of body forces take the following form:-

19



Jour. Mech. Cont: & Math. Sci., Vo0l.2, No.1 July (2007 Pages 16-45

au v
ox tovr 0 o m
( + U= 6 + V== )U
at X ay
_ BP(X,Y,t) F2) 2)? 8%y
= PR (g b ) U+ L L a9)
d d 6
_ 3P(X=37wf) & 8\ o, 95xv , 85¢y
= T v +“(6X2+6172 VS5 t oy 0
au = o .0 ;B
2p6X = Sgw+1my [E‘l-Uﬁ'"i’V-é—?‘]S X
8 v AT
20 mSxz 25 +ma [0 -a) 5z (1 ) 55| 8xv . 05)
au  av = o a _ 8] =
a7 " ax SXY*”’1[3t+U§§+V‘5}“"']SXV
ey 3_ 8‘7 =
3 [“ ) 5% (““)5?] X%
av U =
+ [(1—a)———(1+a) ?]SY’? . (16)
v - 8 - 0 oo i) 1 iz
2#5{; = Syy +my [*3“£+U8X+Vé~i—;] Syv
—2(17?’115)'}76—‘—/- + 1 [(l—a)gy-—(l-lv )BV] Sy - (17)
ay
The dissipation function ® can be written as follows
v,
(IJ—TUE}-(: 5 (]8)
o = a[(22)+ () + (%) +(% ], g, 00
- “HI\Bx oY | X avy XXEX
- 8u BV . oV ' |
+Sxy (‘“: -+ ﬁ + 5yy‘5? (19)

20



Jour. Mech. Cont. & Math. Sci., Vol.2, No.1 July {2007) Pages 10-15

Also, we using Rosselant appreximation {19] we have

Sl L (20)

Where, o is the Stefan Boltizman constant and «g is the mean absorption
coefficient. We assume that the temperature differences within the flow are
sufficiently small such that T may be expressed as a linear function of temper-
ature. This is accomplished by expanding T in 2 Taylor series about 73 , and
neglecting higher-order terms {20], one gets,

T* s ATST — 3T . (21)
* Then, equations (4), and {5) can be written as follows:-

oar  -or 8T

+ U-——=— + V@Y
B P 627‘ 1600 , 3 8°T
N axz * 3pcpro 2 BY?

+2_u a0 +(9€3 s @i)'ﬁ,_(i ’
"a_f Y ax 8y

pc,,ax “pep \BY pc, aY (22)

av ' 8%

ac  -a8c  _ac
T tax tVap
_ p (azc &C\ . Der (62'1‘ 9*T

oxz Tovz) v T, \ax2 T oy

) —A{C-C)™ . (23)

In the fixed coordinate system (X,Y) , the motion is unsteady because
of the moving boundary. However, if observed in a coordinate system {z,9)
moving with the speed ¢, it can be treated as steady because the boundary

shape appears to be stationary. Tha tra.nsfommt:on between the two frames is
given by :

| i=X—-¢c , §=Y . (24)
The velocities in the fixed and moving frames are related by

a=U—-—¢ , =V . (25)

Where, (&,7) are component,s of the velocity in the moving coordinate sys-
tem.

Then, the egunation’s {12)- (17) (22), and {23) can be written in the moving
coordinate system as follows:-
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C B (26)
ox
L L
P\"ez " "oy
Bﬁ 62 62 _ 6333 Bg-zg :
. 3 el 27
Bz TH a-2+3372) * oz T By (27)
Mmoo ‘3 v
fed g Uc’??}
ap g 83:1; 851;9
T i 2
o TE\pgE t ) % By &
2 cl. = Bzz + 1M ‘ﬁ,—w+1—)8 S5z — 2amn §——@
77(9.{?3 T 1 0 8? EF 1o 8.’1
Jv | .
—+rrtq [(1 - a1) % — {1+ CL) 5?):] Sz . (29)
da G _ _ ~
ay % = Sz + M1 uaﬁi‘ + v ()g S x4
e O a0 _
s la-ag-aro g
TrLy 9v 8?1 = -
T N s _ 8 , _ Ou
2??6—37 = Sgy + 17 u,g% + ’E.’—a—g Spg — zaml_sﬂ_i;%
aa ] v _
+1q ii(l—a-)‘;d‘g‘ —(l +ﬂ’) “5%} S 5 (31)
(9_T -+ @.g = ._H'__ 82T + azT 160-0 3 8211
T 8y po, \ 072 < 3pcprn © Oy2
R A AN AN A
PCp O oYy 8 o]
-a.-E:T: O ‘—1— ML I g'ﬂ@ i?z
pcy 0% pey, (f‘l"y * 55) ¥ o, 87 (32)
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7]

3\%

+§£_ (320 &C
5 =

Dmy (62‘1‘ 62T) AG ~ Co)™ _(33)

In order to simplify the governing equations of the motion, we may introduce
the following dimensionless transformations:-

- ’\ ] = n : A — c ¥ T e H
s = i.’s’ Zrn® h= }——l
B P Y E ) T
T - T3 - Cz
9 - T2 L] ¢ Cl CZ (34)
Substituting (34) into equations (26)-(33) we obtain the following
non-dimensional equations:-
dJu dv '
JE + E =0 (35)
Re(&ua +v-—-) -—(1+N)@
52 32 Js 63
2 T Y
nst ) +o—- 5y (36)
a a ap
62 92 ds _Js
2_ 2 xy vy
) +ay2 v+ & By +¢ay ,(37)
Ou a 7} Bu
2NJ$ -— Szx + We (61;5;- +va) Sz — wcsng
ov Ou
W, [(1 —a) 5$ — {1+ a) a] Suy {38)
u v a o
N\ — & — = * /e A -
(6y+ 3;1:) Spy + W (6ur?z+t&y)q"_.
- - We du v
+2 [(1“*0)‘5—!;"—(1+Q)6 }SII
I-V v du '
e la-asq-ara P, . o9
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v 8 v
2N—a—y— = Sy, + W, ﬁu%+u%)'sw—24zwﬂswa
W, {(l—a)%—(l-i-a)d'%] &5 3 (40)
oe o8
R‘(""&r By
N 1 62626+329)+ 4 P%e
B 8z " 8y ) * 3R, Oy?
ou o
e[ () (3) 0 () ()]
+Ecﬁsnz+E‘_—q,(az By +E3W3y . {(41)
R (n8 2 L L pZe ., 2o
s,(a”az” 32") R.t™ (42)

Where, the dimensionless paraméters are defined by:-

2mn
&= Tﬂ;,!
B = B
7
N = a
Wc ::Pmlc
a
P, = 0%
"
Pl
R, =
400T§'
F. =
(T -~ T2)
g =Y
g Dy (I — T2)
T TmV (C} i Cz)

{ Wave number),

{ Reynolds number),

( viscosity parameter),

( Weissenberg number },

(Prandtle number),
{Radiation parameter),
{Eckert number), _

(Schmidt number),
{Soret number},
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A(C) - C)" a2

R.=

Equation (35) allows the introducing of the dimensionless stream function
¥ (z,¥) in terms of

(Reaction parameter).

i
= =—6—-= 4
u 3 v ) B (43)
In terms of %, we fined that (35) is identically satisfied, while the other
equations take the forms,

o |Gy~ 55 5) 7 )

8 oy B Osys Oy
” —(1+N)6—2+(628 jgy ay‘f +6E T (ag)
3 8 S a\ oy
% (e o) o)
3
= —a+M g - 5"';3‘5+6‘Z;§ )+52"’;;"+5——‘9;;v . (45)
oy &8 B D
2N6('_3—Ea§ = SII+W65($§£—§B_§)STT
Fd 2]
—2aW853m—§—g;
d2
[(1— )52—-—‘5’-+(1+ )ay‘f] Sy, (46)
Py LY\ _ . (a8
V(G G) = s (3 e ay) o
2 2.,
L [(1-@‘”’ ~(l+a )aﬁg"‘i]sm

"2."
_K [(1_ )626—+(1+ )d ]syy , (47)

&y (o8 By s
_2N66Iay = Syy -} Wed (EE - Z‘?;é;) Syy
+2aWe63yy%
5 _
W, [(1 g?f +(1+a) 52%5’-"5] Sy (48)
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./ By 08 vy 56
m%aﬁ‘aa)

= i(526_22+@)+_§_2_2_€
ax? " 8y?) " 3R, 0y°
s (Z)+ (5 + (B) v (2]
+Ecasw%}"-f-+gcszy [- zgm’f g ’f] yé‘? 2;’ , (49)
+8, (azg;g + %2) - chéf'- . (50)

Boundary conditions:-

The boundary conditions for the dimensionless stream function in the moving
frame are,

P=0, (by convection)

a2 . .
d“y Y TP — on the centerline y =0 |
A2

dp . .-

B = —1 (no slip condition) st the wall

v=F

y=~nh (51},

where, F is the total flux number. We also note that A represents the
dimensionless form of the surface of the peristaltic wall.

h{z) =1+ xsinz
Where, x =

3lo

. ( is the amplitude ratio or the occlusion )

The boundary conditions of the temperature and the concentration are

T = T], C:CH at
T = Ty, C=0

Rl
o
= 2D

at (52)
Where, T} and C are the temperature and the concentration of the fluid at &

lower wall of the channel, T and C» are the temperature and the concentration
of the fluid at an upper wall of the channel,

Then, the dimensionless boundary conditions are given by:-
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v = 0 , %:0 . 8=1, ¢=1 at y=0,
1;’ = F ¥ %=_1 ’ 0=0, ¢'=0 at y=h- (53)

Equations for large wavelength

A general solution of the dynamic equations (44) — (50) for arbitrary values
of all parameters seems to be impossible to find. Even in the case of Newtonian
fluids, all analytical solutions obtained so far by Shapiro et al. [21], and by
Srivastava [22] are based on assumptions that one or some of the parameters
are zero or small. Accordingly, we carry out our investigation on the basis that -
the dimensionless wave number is small, that is,

d<l , (54)

which corresponds to the long-wavelength approximation [21]. Thus, to low-
est order in 4, equations (44) — {50) give

(1+N);2=a;;"+% . {55) |

% =0 , (56)

S 5 We (1 +a) SW%,% ~0 , (57)

noY :sx,,+%(1—@3”‘3;—‘;"—%(1“)%% . @8

sy + We () sw,,g%f’ -0, (59)

P%g:g e g:z 2B, (%Zylﬁ)z + Ecs,,yzz—‘f e (60)

| R Y . . (61)
Substituting (57) and (59) into (58) yields,
" (%)

Sy = (62)

=)

Substituting (62) into (55) and (60), and using (56) we finally have,
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d*y
N[22
d? (d.y2 diy .
- + =0 ' (63'3)
dy2 - . dzw d'y4
(1rwea-an (5F))
1 -4\ 420 N a2\ °
—t =+ E. |2+ =0
(5 +5%) &+ = vy | (w9) 0
(1+w3(1_az) (dyz))
(63-b)
1 d%¢ d?g s
S_CEF+STEy_2_R“¢ =0 . (63-0)

We can see that, the velocity equation (63 — e) is the same resulting as the
main paper [5], but the temperature equation (63 — &), and the concentration
equation (63 — c)are the addition of the main problem.

The system of non-linear ordinary differential equations (63) together with
the boundary conditions (53), will be solved numerically by using Runge-Kutta-
Merson method and a Newton iteration shooting and matching technique.

4 Numerical solution

The system of non-linear ordinary differential equations (63) can be written as
following:-

1
(1-w2(1-a?) ")
(1+wza- aﬁ)ep"z)2 :
2WE(1-a?)p y" ]
. (1 +W2(1 - a2)¢”2)2
aW2 (1-a?) (1- W2 (1-a?)$"?) v"y"

(1 FW2(l - a'«’)w‘“z)

1+

3

z —3P.E R, N "
3Rn + 4P, [ (1 P Wez (1 _ 02) ?pﬂg) P
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¢ =5.50" +S.R™ . (64)

With the following boundary conditions:-

$(O) =0 , ¢ (0)=0, 8(0)=1 , ¢$(0)=1 ,
wh) = F , vy (W)=-1, 8(R)=0 , ¢{k)=0 . (65)

We take,

Y, = v, Ys=0 , Yi=¢ ,
i = ¥

sziﬁ;

Y. = Y; ,

YJr-N :

(1-W2(1—— a?) YZ)
(1+ W2 (1-a2) Y3
2WZ (1 - a?) Y3Y2

(1+W2(1-a?) Y2’
4Wé (1-a?) (1—(W271) )2) Y2)vav2 |-

(1+W2(1—a?) ¥2)

Yr5 = Yﬁ ¥ ;
. _3P,.E.R, N 2
= (o cm)|g
Yo (3R,.+4P,.)-[ +(1+W2(1—a2)Y2)]Y
Y, = Y3 , .
Yo = —5.5Y +SRY" . (66)

Subject to the boundary conditions:-

Yi@©=0 , 50 =0 , Y3(0)=1. ¥p(0)=1,
i(h)=F , Ya(h)=-1, Ys(h)=0, ¥a(h)=0 .  (67)

To apply shooting method we use the subroutine DOZHAF from the NAG
Fortran library, which requires the supply of starting values of missing initial
and terminal condjtions.
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The subroutine uses Runge-Kutta-Merson (as an initial value solver) with
variable step size in order to control the local truncation error, then it applies
modified Newton-Raphson technique to make successive corrections to the es-
timated boundary values. The process repeated iteratively.until convergence
is obtained, i.e. until the absolute value of the difference between every two
successive approximations of the missing conditions is less than ¢ (in our case
is taken = 1073).

5 Estimation of the global error

We use the Zadunaisky technique [17], [23] for calculating the global errer, which
can be explained in the following steps:-

1— We fined the interpolating polynomial of ¥; , (# = 1,2,3,...... ,8) from
the values of Y; and we named it P, , (1 = 1,2,3, ...... ,8) and we find the

L}]

interpolating functions of ¢4, 8", 4" , and we named it as -

v =g (z) , § =@ , ¢ =g

1
Lo (-W2 (1 - a?) (B (2)))
(1+ W2(1 - a?) (P (x))2)°
2W2 (1 s a2) By (z) (Ps(2))?

(1+ W2 (1 —a?) (P (2))2)°
AW (1—a?) (1 - W, (1—a®) (P ()7) s (@) (Pa (=) |

(1+W2(1 - a?) (P (2))?)°

qi(z) = N

o

_ [ —3P.E.R, N .
v = (Fhasr) 2 arwr eme) B
g3 ()} = —5:5rq2 (x) + S R (P; ()™ . (68)
2— We calculate the defect functions D;(z), (i = 1,2, 3, .........., 8), which can

be written as follows

Di(z) = Pi(z)-FPlz)=0 , Do(z)=P'(z) - Ps(z)=0,

Ds(z) = P"(z)-Ps(@=0 , Ds(x)=P™ (2} —ar(2)

Ds{z} = PFj(z)~Ps(z)=0 , Dg(z)=P(z)~q(z) ,

Dr(z}) = F(z)-P(z}=0 , Ds(a)=Fr(z)—qa(z) . (69)
3— We add the defect function D;(z),(i = 1,2,3,.......... ,8) to the original

problem, which ¢can be written as follows
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Zy = L2 ,
Z, = Z3 ,
Zy = Zy .
Z, = N 1
. = (1—W2 (l—a"’)Z?)
(1 +W2(1-a?) Z’)
2W2 (1 — a?) Z3Z3
(1+ W2(1 —a?) 22)°
w2 (1-a?) (F-w? (l—a”)zﬂ)z zz | tDale)
: (1+w2 (1— a2) 22)°
Z; = Zﬁ 1 v
T —3F.E R, N »
Ze = (3Rn+4P,.)[2+(1+W3(1_02)Z§)]Za +D6($) s
Z:f = ZB 3
Z; = —S(:STZ; + SCRCZ-}n “+ DB (1;) N (70)

4— We solved the pseudo problem (70) by the same method and we will have
the solutions Z;,(3 = 1,2,3, .ccueeneeee ,8).
5— We calculate an estimation of the global error from the formula

€ =&y — % (xza) =2, - (31'?-) 1 (n=1,2,....,6) (1)

Where, Z, is the approximate solution of (70), ( the pseudo problem ) at
the point =, , and Z(z,} is the exact solution of the pseudo problem at z,.
obviously the exact solution of (70) is Z(z) = P(z). The values of the global
error are shown in table (1). This error is based on using 11 points to find the
interpolating polynomials F;(z) of degree 5.

In order to achieve the above task we used combination of programs in
Fortran ( using NAG library routine DO2HAF ) and Mathematica package.

6 Numerical results and discussion

The present work generalized the problem of a Johnson-Segalman fluid with
heat and mass iransfer in a planer channel. Equations (63) with the boundary
conditions (53) are approximated by a system of non-linear ordinary differential
equations. This system was solved numerically by using a Runge-Kutta-Merson
method and a Newton iteration shooting and matching technique. The func-
tions %, u, #, and ¢ are obtained and illustrated graphically as shown in figures
(2) -~ {17) for different values of , Weissenberg number W, , total Aux numberF,
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Bckeret number F,., Prandtle number B. , Soret number S, , Schmidt npumber
8. , reaction parameter R, , radiation parameter R,,, and reaction order m. The
other parameters are chosen as h =1, N =1, and a = 0.8 . During the curse
of numerical sclution, we noticed that the values of ¢ and u are the same as
obtained by [5]. The effect of Weissenberg number W, shown in figures (2} —(3).
It is ohserved that, The temperature 8 decreases with increasing W, , while the
concentration ¢ increases with increasing W, . Figures (4) — (7) describe the
effects of the total flux number F on the stream function distributions 1, the
velocity distributions u, the temperature distributions 8, and the concentration
distributions ¢. It is observed that as F decreases, 4, u, and § increage, while
¢ decreases. Figures (8) and (9) display results for the temperature profiles
and the concentration profiles respectively. It is clear that as F. increases, the
temperature increases, while the concentration decreases. Figures (10) and (11)
display results for the temperature distributions and the concentration distrib-
utions respectively. It is seen that, the temperature increases with increasing
the Prandtle number F, , while the concentration decreases with increasing Fr
. Figures (12), (13), and (14) display the variation of the concentration distri-
butions for several values of the Schmidt number S, , the Soret number 5, ,
angd the Reaction parameter R, respectively. It is clear that, the concentration
decreases with increasing of S, , S, , and R. . Figures {(15) and (16) display
the variation of the temperature distributions and the concentration distrib-
utions for several values of the Radiation parameter H,. It is noted that, as
R, increases the temperature increases, while the concentration decreases. In
figure (17) the concentration distributions are shown. It is observed that, the
concentration increases with increasing the reaction order m.

7 Conclusion

In this work, we have studied the motion of a Johnson-Segalman fluid with
heat and mass transfer in a planer channel. We concerned our work on obtain-
ing the temperature and the concentration distributions which are illustrated
graphically at different values of the parameters of the problem. During the
study we have that, the solutions of the stream function and the velocity are
the same as the main problem [5] in spite of the different of numerical method
which we are used. The technical method which used to solve this problem
is Runge-Kutta-Merson method and a Newton-iteration shooting and matching
technique. Global error estimation is also obtained using Zadunaisky technique.
The errors estimated justify the use of the approximate solution as a suitable
approximation to the calculated physical values.

8 Applications

Peristalsis is now well-known to physioclogists to be one of the major mecha-
nisms for fluid transport in many biological systems. In particular, a peristaltic
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mechanism may be involved in swallowing food through the esophagus, in urine transport from
the kidney to the bladder through the urcthra, in movement of chyme in the gastrd-inttstinal
tract, in the transport of spermatozoa in the ductus efferents of the male reproductive tracts and
in the cervical canal, in movement of ovum in the female fallopian tubes, in the transport of
tymph in the fymphatic vessels, and in the vasomotion of small blood vessels such as arterioles,
venules and capi-llarits. In addition, peristaltic pumping occurs in many practical applications_
involving biomechanical system. Also, finger and roller pumps are frequently used for pumping
corrosive or very pﬁre materials so as to prevent direct contact of the fluid with the pump’s

internal surfaces.
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Table 1
y y=Y1 orror (en) u=Y2 error (o2n) B=Ys arror {gén) ¢=Y1 orror (e7n)
0 | .000D+00 0000D+00 | -2420+01 | .1300D+00 | .100D+01 | .0000D+00 | 100D+01 | 0000000
0.4 - 2420400 4200D:01 | -244D+01 | .1000D+00 | .927D+00 | .0000D+00 | 820D+00 | .0000D+00
0.2 - 4820400 2000001 | -208D+01 | 6000D-01 | 853D+00 | .0000D+00 | BB10+00 | 1000D-02
03 -7180+00 2400001 | -234D+01 | 1000001 | .776D+00 | .0000D+00 | .520D+00 | .1000D-02
04 - 949D+00 2200001 | -208D+01 | -40000-0¢ | .702D+00 | 3000002 | .393D+00 | -t000D-02
05 -1170+01 2000001 | -215D+01 | -7000D:01 | B220+00 | B00OD02 | .280D+00 | -8000D-02
08 - 1380401 4000001 | -200D+01 | -BOOOD-01 | .534D+00 | 1400001 | .182D+00 | -12000-01
07 ASTOH01 | .00000+00 | -181D+01 | -5000001 | 436D+00 | 1700001 | .100D#00 | -1560D-01
08 1740401 00000500 | -1580401 | -1000D01 | .317D+00 | 4700001 | 388D-01 | -1460D-01
08 -188D+01 1000001 | -4310+01 | .1000D-01 | .175D+00 | 8000002 | 273D-02 | ~7940D-02
1 - 2000+01 00000+00 | -100D+01 | .0000D+00 | .133D-08 | -76930-08 | -144D-08 | .8344D-06

Note: ths table contains the values of the dimensionless physical quantities, the streamline function v, the
velocity u, the temperature 8, and the concentration § at the values of the dimensionless distance y, (y = [0,1]).
Also, this table contains the values of the global errot eln of , the global error ezn of w, the global ertor esn
of 9, and the global error emof §,
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Figure (2). The temperature profiles are plotted versuse y for different values of We
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Figure (3). The concentration profiles are plotted versus y for different values of
We for a system as in figure (2).
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Figure (5). The dimensinless velocity profites are plotted versus y for
different values of F for a system as in figure (4).
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Figure (11). The concentration profiles are plotted versus y for different values of Pr for
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