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Abstract

Krylov-Bogoliubov-Mitropolskii (KBM) method has been extended for obtaining the solutions of
Jourth order more critically damped nonlinear systems. The results obtained by the presented KBM
method show good coincidence with numerical results obtained by Runge-Kutta method. The method is

ittustrated by an example.
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1. Introduction

Krylov-Bogoliubov-Mitropolskii (KBM) [4, 5] is widely spread method to study
nonlinear differential equations. Originally, the method was developed for obtaining
the periodic solutions of a second order nonlinear differential equation with small
nonlinearities. Later, this method has been extended by Popov [9] for nonlinear damped
oscillatory system. Owing to physical importance Popov’s results have been
rediscovered by Mendelson [6]. Murty et al. [7] have been developed an asymptotic
method based on the method of Bogoliubov to obtain the response of over-damped
nonlinear systems. Murty [8] also presented a unified KBM method which covers the
undamped, damped and over-damped cases. Sattar [12] has found an asymptotic
solution of a second order critically damped nonlinear systems. Shamsul {15] has
developed a new asymptotic solution for both over-damped and critically damped

nonlinear systems.
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Sattai' {13] has studied a three-dimensional over—damped.nor;liriear systems. In
article [19] Shamsul has presented a perturbation method for solving a third order over-
damped system based on the KBM method when two roots of the linear equation are
almost equal (rather than equal) and one root is small. Shamsul and Sattar {14]
developed a perturbation technique based on the work of KBM for obtaining, the
solution of third order critically damped nonlinear equations: Shamsul [16] has
investigated approxiﬁlate solutions of third ordcr‘critically nonlinear systems whose
unequal eigenvalues are in integral multiple. In article [16] Shamsul has also
investigated solutions of a third order more critically damped nonlinear system.‘
Rokibul et al. [10] found a new technique for obtaining the solutions of third order

critically damped systems.

In article [7}], Murty et al. also extended the KBM method to solve fourth order
over damped nonlinear systems. But their method is too much complex and laborious.
Ali Akbar et al. (1] again j:;resented an asymptotic method for fourth order over-
damped nonlinear systems which is simple and easier than the method presented by [7]
but the results obtained by [1] method is same as the results obtained by {7] method.
Later Ali Akbar et al. [2] extended the method presented in {1] for fourth order damped
oscillatory systems. Ali Akbar er al. [3] also presented a simple technique for obtaining
certain over damped solutions of an #-th order nonlinear differential equation. Rokibul
et al. [11] have extended the KBM method for fourth order critically damped nonlinear

systems,

In the present paper, we have investigated solutions of fourth order more
critically damped nonlinear systems under some conditions. The solutions obtained by
the presented method show good coincidence with those obtained by numerical
method.

2. The Method
Consider a fourth order weakly nonlinear ordinary differential equation
WL RE + b E kX + kX = =6 f(x, %, %,%) (D

where x*) denote the fourth derivative of x, over dots are denoted first, second and

third derivatives with respect to #; k,, k,,k,, k, are constants, & is the small
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. parameter and f(x, X,%,X)1s the gwen nonltnear function. As the equation is of
fourth order so it has four e:genvalues Since the system is more cr:tlcally
damped so the eigenvalues- are real, negative and three of them are equal.

Suppose the eigenvalues are—A4,~4,~1,-u. Whene =0, the equation becemes
linear and the solution of the linear equation of (1) is o

H

x(1,0)=(a, + by t+c t’)e™ +d, e ™ '(_2)

where a,, by, ¢,, d, are constants of integration.
When ¢ = 0, following [18] the solution of the equation (1) is sought in the form

x(t,e)=(a+bt+ct’ye ™ +de™* +eu (a,b,c, d, )+ (3)
where a,b,c and d are slowly varying function of time ¢ and satisfy ﬂxe first order
differential equation P ;
a(t) = e A(a,b,c,d,t)+--
b(ty=¢ B(a,b,c,d,f)+--
c(ty=¢C\(a,b,¢e,d, )+
d{t) =& D,(a,b,c,d, 1)+

(4)

We only consider first few terms in the series expansion of (3) and (4), we
evaluate  the functions = u, andA 5 By Copr By i= |1 -.’n, suct; that
a, b, c d appeanng in (3) and (4) satisfy the given differential equation (1). 'In order to
' detenmne thesc unknown functions it is customary in KBM ‘method: that the' coirréction
' terms u, s 1 = l 2 ...... n must excludc tcrms (known as secular terms) which mike them
large. Theoretically, the solutlon can be obtained up to the accuracy of any order of
approx1matlon However, owing to the rapidly growing algebraic complex:ty for the
derivation of the formulae, the solution is in general confined to a lower order,
usually the first Murty [8].

Now differentiating the equation (3) four times with respect to substituting the
value of x and the derivatives x, ¥, %, x* in the original cquatlon (1), utilizing the

relations presented in (4) and finally equating the coefficients of £ , we obtain
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%‘ 2
"“(a + - A) yzl+363 +6C, +1 6—§-+66C +02 24
or ot ot or? ot or’

w0 ’ & . ,Y(e o)
+e -é;+}t—,u D+ 5+JL 5;+,u u=—f"(a,b,c,d,t)

=(a+bt+ct?ye ™™ +de

&)

Now we expand 7@ in the Taylor’s series of the form

f _(bt'i'ct )0 ZF (a d)e—(ll'u.u)f +(bt+ct2)i iﬁ;(a’d)e-(ilhfp)l

i, j=0 i, j=0

(6)
+(bt+cr*y? ZF (@d)e ™M 4 (bt 4 op?y ZF (a, d)e*““fﬂ)' +A
=0 i f=0
Thus we can write

i 2 2
e"“(g+y—ij 0 +3§B—-+6C +¢ ———6 ? +66C g T & ?‘
or e i ot or o

\ e y
+e"'”(§—+i-y] D, +(a—‘i+ij (§—+y]u,

=_‘{(bf+sz)o 2 F(@dye me 4 by 4 op2y) D F(a,d)ermm

(7
i, j=0

f, /=0

ey SR @D 1 bt 1 ety R oy et +A}

i =0 i, j=0

We impose the condition that ¥ can not contain the fundamental terms of BN

therefore equation (7) can be separated for unknowns functions u and 4,,B,C,, Dl '

in the following way (see also [11, 14, 16, 17] for details),

-At a Jazc ~(iA+ o1

-A = - F d I# 8
ul & J 9’ B, ac, g Al

A +6—L1=-b>"F(a.d I 9
(L u-a) (2R 5 )= S ©

ol ? ) *4, 8B, 3 ( F) JJ
—+u-2 3—1+6C, M —+A-ul D
g EAY CEREL ) N C IV, P

=3 Fy(a,d)e tim

i, j=0

(10)
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3 . @ .
and [gt-u) (%+y)'ul ==Y Fy(a,d)e " (bt +cr®) = A (11)

i, j=0

Solving the equation (8) we get the value

© (-1 A+ )t
C - 2 cF (a,d)e

= . : _ _ (12)
LS A GG =D A )
Substituting the value of C, from (12) into equation (9), we obtain

2 ) —(id+j

e (B_i_y l]aB=—6Z . cFl(azd)e‘ .
ot ot S -DA+ A+ (G -Du) (13)

- Zb F, (a,d)e"“’“j”)’
i, f=0

Now solving equation (13), we obtain

= cF(a,d)e 0ria) e bF (a,d) e Caink
B =6 ‘ * ' (14)
‘ .~.12=0((1'—1)l+jﬂ)3(il+(]'—l),u)z :;:((i—l)ﬂ+jy)2(i.l+(j—l)p)

Now substituting the value of C, from (12) and B, from (14) into equation (10),

we obtain
2 F d M.+j,u)l
(a+p AJaf +e” (6+z1 u] —IZZC adle
ot P o S (G-Da+ju)

(13)

(i A+ )t @
ZbF(a d) e ZF;)(a,d) e—(iah_,t,u)r
G G-DA+jp)

Now we have only one equation (15) for obtaining the unknown functions 4,
and D,. So we need to impose some restrictions. In this paper, we have used the
restriction that the term e “***" balance with 4, if i>/ and the term e “***¥
balance with D, if j>i. This restriction is important, since under this restriction the
coefficient of 4 and D, do not become large as well as this restriction is useful in the

case of strongly more critically damping systems. This restriction is not used in
previous papers ([10-12, 14, 16, 17]). Thus we shall be able to separate the equation

(15) into two equations, one for 4, and the other for D, .
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Since @, 8,¢,d are proportional to small parametere, so they are slowly varying
functions of time ¢ and as a first approximation, we may consider them as constants in

the right hand side of the equation (4). Now substituting the values of 4,, B,, C, and.

D, into the equation (4) and integrating, we obtain
[
a=a, + EIA, (ay. by, ¢,4,d,,1) dt
0

b=by+& [B(ay,by,co,dy. 1) dt
’ (16)
c=c, +£fC,(a0,bD,co,dé,t) dr
0

d =dy+ & [D,(ay,by,¢5,d,, 1) dt
0
Substituting the values of a,b,¢,d and u, in the equation (3), we get the
complete solution of (1).

Thus the determination of the first approximate solution is completed. The

solution can be carried out for higher order systems in the same way.
3. Example
As an example of the above procedure consider a fourth order weakly nonlinear
system governed by the ordinary differential equation
x® +hX+ i+ kx+kx=—ex’ (17)
Here f =x’
Therefore,
f(o) = ase-u: +3a3d e @Arn +3ad? @ ~(Av2u) +dle 3t

+ (3aze'3’“ +6ad e @it | 342 g~(A2u)i )(bt +Vctz)
+(Bae™ +3d g~@Hmr Bt + ) + (Bt +ci?) e

Therefore, for equation (17), the equation (8)-(11) respectively become

2
e*"[(—aa;Jr,umA] aaf, = —{3a2 ce”' +6acd e 13047 e'“*z‘")‘} (18)
{
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2
e"“(§+ ,u—/%j [‘;‘?‘ +6%C—‘J= ~Batbe™ +6abd e +3b etemil (19)
- (]

_ 2 ;
e"’(§;+y—lj(%+36—(;3—'-+6C,J+e"”(—§—r+l—p) D,

=—{aje"3'“ +3a%d eGP 4 3,92 e—(l+2,u)l+d38—3:{4f}

(20
and
; :
(9— +/1] (34»#]111 = —{b3t36"3" +6abct’ e +3b7 ctt e
ot or
+3ac’ ' e 4 3bc? Pt 4t P e p6bed P e (2])
+3c*dr? e"(2l+”)'.-é3abztze_3h +3db2!2-e‘(u+'u“}
The solution of the equation (18) is _
Co=la’ce™ +hacd e ™" 4 cd? e (22)
3
Where ll =%—, [2 :——é—_z N 13 — ——2-—-—-——
42 G- ) 2A(A+ ) 47 (i A)

Putting the value of C, from the equation (22) in the equation (19), we obtain

Bi=m, a’ce® +m, acde ™™ +m, cd? et
1 i 2 3

24 A 2 2 (23)
+m, a’be* +mabd e ymbd? e
9 18 9
where M=, My =, M= —
447 (34— ) A(A+ 4) du(u+A)
3 i 3 3
m,

:2—,-“—’ mS :-———-—2.— P m6 :*2———
44" (34— ) A{A+ p) 4p(p+A)

To separate the equation (20) for determining unknown functions A,and D, in this

paper we impose the restriction that term e “**#" balance with A ifizj and D, if

J > i. Under this restriction, we obtain
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ot o’
12 A(A+ymyacd e + 61 (u—3A)m, a’be (24)
—6A(A+ u)meabd e ®FH — 6 (u-32)ac e

+24 Alyacd e gPeT _3q2d oAk

2
e'*'(iﬂl—x]a o 6m, A(u—~3A)atce*

. 3
e"”(§+i—p] D= =6u(A+u)mycd? e ™ — 6 u(4+ pImbd? e s

+6(A+p)lcd? e M2 _3qg? o tlu _ g3g-dui (25)

The particular solutions of (24) and (25) respectively become

A =na’ce** +n,acd e P

+ny, a’be?* +nabd e 4 p gt c e . (26)
tngacde™ Mt n P 4 poatd ene
Dy =pcd®e ™ 4 pbd? e 4 pad? e F O L p e 27y
27 18 9
Where .”.!1 —-—_—-4——**, n2 =—--—4’ n] :_3_—,.,___,
84 (34 — ) A+ A) 8L (34— )
yoe S o 9 L __ 18
YA+ A A (w-34)" C O Au+ A
L 1 3 9
T AR =34 T e ) A=
9 b3 o
P 16#4 ’ 3 8/.!3 Py (3}”_2‘)3

The solution of the equation (21) for is

u :(”1 £+t ¥ t+r4)(b3 +6abc)e‘“’ +(r5 ' 4rf rn t+r9)
x(b* c+act)e™ +(rmt5 +r 4Rt +r,4t+rls)bcz g
+(r16t6 a8 gt H Rt g £ a4, )t e .
+(r23 £+, 0 +r_-,_5r+r25)t‘>cahe*‘”2 A ' (28)
+(r27t4 +rgl + 1yt +.v'30r,‘—1-1r‘3!)(:2 de 2P

5 32 324 2 2 g e D
+(r32t +r33t+r34)ab e +(r35t +r36t+r37)b de
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where r —————1— ) r=rs— 2 +i
. U8 (u-34) TRl (=32 24

6 9 9
B =K 7 +—-2-
(4—31)°  A(u-34) 2

6 9 9 15
Ta =y~ 7 2 2 e
(-3 A(u-34)y" A" (u-34) 24

3 4 6
by S F, =g X9~ +—
84 (u—34) { (u—321) ﬂ,}
12 18 18
K, =KX o s
(=34 A(u-31) 2
24 36 36 30
Fg =¥ X9— 3"‘ ) +'—3
(=32  Au-33) 2B(u-32) 4
24 36 36 30 45
T = % T 7 T3 2 3 + S s
(=340 Aw-31 Au-31)° A (u-31) 24
‘/
g S PR N |
Y8 (-3 e (u-32) 24
' 20 30 30
fyy =y % +—
—31) RETIE.

% % 75
(y 3,1) Ay A &

{ 180 180 150 225}
=l X

+ - +
(u- 3/1) T A(u=34P  Z(u-31)7 A(u~31) 24

I 180 180 150
s = o X (,u 3/1) T A -34)° A u-320°  A(u-34)°

50 315
4 * 5
A (ﬂ—u) 44

1 6 9
he =—F——— = -t
T8 A (u-32) i r‘ﬁx{ (;1—3/1)+2/1}
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.oy 30 45 WA
BT =3 A3 A2

_ ' 120 180 180 150
Fig = hg X9— 7+ 2 32 t3
(u=34  A(u-32)7 ABu-31) 24
360 540 540 450 675
Fyo =g X T 7+ 7 a3 g
(=30)"  Au-32  A(u-31)° A(u-31) 24

720 1080 1080 900 675 945
Ia0™= higsy— s+ PR et s T T o4 Ky
(-3 A(u-34)" A (u-31)"° A (z—34) A (u-31) 22
720 1080 1080 960
Ty =hs 6 st a T3 3
(U-34)" A(u-34Y A (u-32)" P(u-34)
675 945 315
+ - +
A (=31 24° (=31 XA

o8 ¥ A T
2224+ w) P22 A+ )

R 2
PP 22 T a(A+n) A+

F.

.13, 9 L9 60
OB 2 A A+ ) (A+ u)’

Fn =— < Vi =1 X E+ 12
7244+ )’ BT A+
roer )3, 18 M '
PO AAr ) Aty
ro =rgxi e 18 72 240
POETR A A@+ ) Grw)
3 9 36 120 360
r3] =Fyg X 7 -+ 3 + = 5 =+ 3 + P
28 A (A+p) @A+ AQ+p) A+

3 2
G YIOEyIS T = X{I_(y—u)}’

Fu —I‘XL—— 2 + 2
O 2 Au-34) (u-34)
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3 ‘ i
_ 3 _ L1
P G o r”x{(um /1}

Foo =1 X 12 =+ 3 + l
TOE T A Au+r) 228

Substituting the values of 4,, B, C,, D, from the equations (26), (23), (22) ‘and
(27) into equation (16), we obtain

a_a. +8{n] ac'2 C'U(]_ e-eir)+ n,a,c, dn (l_e—(at-nu}.')
—Ho

22 (A + 1)
L agbn(l - e'“")+ 1, Gy by dy e 8 a < (1 = e_“‘) (29)
Y G+ 22
+2%6 % o (1 - e-(,w)r-)+ e ) a;(l - e_“r)+ n,a; d, (1 = e-(mm)

22 A
b, +e md G (1-e ), ma 6 4 -]

22 @+
mcyd, (l—e"z‘”)_l_ m, agbo(l—e'“’) L) b, d, (1 —e_(’“"')‘)
R 22 T Gl (30)
by s (1 _e-z,u:)
T zﬂ

€1);

fee v L& e, (l—e'”“)Jr I, ay ¢y dy e+ +l3 c,dl e
0 24 (A+ ) 2u

: dz A+t 2 (At 2 A+ 3 2ut
d\=d0+€ plco Oe +p2bﬂdoe . +p3aﬂdﬂe +p4doe (32)
G+ ) A+ 4 A+ p) 2u

Therefore, we obtain the first approximate solution of the equation (17) as

xte)y=(a+bt+ct’ye™ +de™ +eu (ab,c, d,r) (33)

where a,b,c,dare given by the equations (29)-(32) and w, given by (28).
4. Result and Discussion

By means of extended KBM method an asymptotic solution of a fourth order
more critically damped nonlinear system has been found in this paper. It is usual

to compare the perturbation solutions to the numerical solutions to test the

101



Jour. Mech. Cont. & Math. Sci., Vol.- 2, No- | July (20607) Pages 91-107

accuracy of the approximate solutions. With regard to such a comparison
concerning the presented KBM method of this paper, we refer to work of Murty et
al. [7]. In the present paper, we have compared the solutions obtained by (33) to
those obtained by Runge-Kutta method for different values of A and x as well as

different set of initial conditions.

First of all x(t,&)has been computed by (33) in which a, 4, ¢, d are calculated
by (29)-(32) with initial conditions a, =05 b5,=00, ¢,=04, d,=0.1 for
different wvalues of Aand H# say ()A=4, u=35 (i) ‘A =4.5, ',u =3
(i) =4, p=2 (iv) A=25, #=1when £=0.1. The corresponding numerical
solution has been computed by Runge-Kutta method and percentage errors are

calculated. All the results are presented in Table 1 and Table 2.

Table 1

T Xx; x; Error% X3 X3 Error%
0.0 0.599998 | * 0,599998 0.00000 0.599999 0.599999 0.00000
0.5 0.098580 0.098577 0.00304 0.085554 0.085553 0.00116
1.0 0.019504 0.019497 0.03590 0.014977 0.014972 0.03339
1.5 0.003995 0.003991 0.10022 0.002750 0.602747 0.10921
2.0 0.000796 0.000794 0.25188 0.000507 0.000506 0.19762
2.5 (0.000152 0.000152 0.00000 0.000094 0.000094 0.00000
3.0 0.000028 0.000028 0.00000 0.000018 0.000018 0.00000
3.5 0.000005 0.000005 0.00000 | 0000004 0.000004 | 0.00000
4.0 0.000001 0.000001 0.00000 0.000001 0.000001 0.00000
4.5 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000
5.0 0.000000 0.000000 (.00000 - 0.000000 0.000000 0.00000

Initial conditions are a0 =0.5, 5, =00, ¢,=04, d, —0 l and £=0.1
X, is computed by (33) using (i) A =4, =35

X, is computed by (33) using (ii}) A = 4.5, H=3

x; and x; are corresponding numerical solutions.
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Table 2

o -
T X X Error% Xz X Error% 1

0.0 | 0.599998 (.599998 0.00000 0.599852 0.599852 0.00000

0.5 1 0.117994 0.1179%0 0.00339 0.232841 0.232761 0.03437

1.0 | 0.030G20 0.030006 0.04665 0.110893 0.110643 0.22595

1.5 0.008450 0.008439 0.13034 0.055381 0.055059 0.58482

2.0 0.002536 0.002531 0.19755 0.027769 0.027473 1.07742

2.5 0.000810 0.000808 0.24752 0.014051 0.013823 1.64942

30 | 0.000273 0.000272 0.36764 0.007276 0.007117 2.23408

3.5 1 0.000096 0.000095 1.05263 0.003893 0.003788 2.77191

4.0 | 0.000034 0.000034 0.00000 0.002156 0.002088 3.25676

4.5 0.000012 |° 0.000012 0.00000 0.001229 | 0.001187 3.53833

5.0 0.000005 0.000005 | 0.00000 0.000717 0.000691 3.76266

Initial conditions are a, = 0.5, b, =0.0, ¢, =04, d, =0.1and £=0.1.

x, is computed by (33) usifg (iii) A =4, p=2

x, is computed by (33) using (iv) 4 =2.5, g=1

x;and x, are corresponding numerical solutions.

From Table 1, we see that when the ratio of A and u 1s O(1), the errors are greater
than the errors when the ratio of 4 and zis 1.5. Again from Table 2, we see that when
the ratio of 4 and u is O(3) the errors are much greater than the error when the ratio
of 2 and uis 2. Thus we see that when the ratio of the ecigenvalues A and u lies

between O(1) and O(3), the errors occur much smaller than 1%.

Again x(r,£) has been computed by (33) for the same cigenvalues ()4 =4,
w=35 (i) 1=45, p=3 (i) =4, =2 ({v) 1=25 pu=1 with another set of
initial conditions a, =04, b, =00, ¢,=03, » =0.1 whene=025. The

corresponding numerical solutions are computed by Runge-Kutta method and are

presented in Table 3 and Table 4
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Table 3
T X X' Error% - X, X3 Error%

0.0 | 0.499998 0.499998 0.00000 0.499999 0.499999 0.00000
0.5 0.081663 0.081659 0.00489 0.072379 0.072376 0.00414
1.0 0.015841 0.015831 0.06316 0.012755 0.012748 0.054%1
1.5 0.003190 0.003184 | 0.18844 0.002370 (.002366 0.16906
2.0 0.000628 0.000626 0.31948 0.000445 0.000444 0.22522
2.5 0.000119 0.000119 (4.00000 0.000085 0.000085 0.00000
3.0 0.000022 - 0.000022 0.00000 0.000017 0.000016 6.25000
3.5 0.000004 (0.000004 0.00000 -0.000003 0.000003 0.00000
4.0 0.000001 0.000001 0.00000 0.000001 0.000001 0.00000
4.5 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000
5.0 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000

Initiai Conditions are g, =04, b, =0.0, ¢, =03, d, =0.1and £ =0.25.

x, is computed by (33) using (i)A =4, 4=3.5 :

x, is computed by (33) using (i) A =4.5, u=3

x, and x, are corresponding numerical solutions.

Table 4
T X x; Error% X2 x; Error%

0.0 | 0.499997 0.499997 0.00000 0.499809 0.499809 0.00000
0.5 0.161082 0.101072 0.00989 0.197367 0.197186 0.09179
1.0 0.026358 0.026337 0.07973 0.094747 0.094200 0.58067
1.5 0.007645 0.007629 0.20972 0.047913 0.047218 1.47189
2.0 0.002369 0.002361 0.33883 0.024507 0.024875 2.64712
2.5 0.000777 0.000774 0.38759 0.012715 0.012231 3.95715
3.0 0.000267 0.000266 0.37593 0.006762 0.006424 5.26151
3.5 0.000095 0.000094 1.06382 0.003707 0.003484 6.40068
4.0 | 0.000034 0.000034 (.00000 0.002093 0.001951 7.27831
4.5 0.000012 0.000012 0.00000 0.001210 0.001122 7.84313
5.0 0.000005 0.000005 0.00000 0.000712 0.000658 8.20668

Initial conditions are a, = 0.4, b, =0.0, ¢; =03, d, =0.land £ =0.25.
x; is computed by (33) using (i) A =4, u=2

x, is computed by (33) using (iv) A =25, u=1

x,and x, are corresponding numerical solutions.
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We again see from Table 3 that when the ratio of A and u is O(1), the errors are
greater than the errors when the ratio of A and g is 1.5. Again from Table 4, we
observed that when the ratio of 2 and y is O(3), the errors are much greater than thc
errors when the ratio of 4 and g is 2. Again when the ratio of A and u are gréater

than 3 the errors oceur much smaller than 1% (see Table 5). J

Table 5

T X X Error%
0.0 0.599995 0.599995 0.00000
0.5 0.141914 - 0.141922 0.00563
1.0 0.053305 0.053312 0.01313
1.5 0.025802 0.025805 0.01162
2.0 0.014249 0.014251 0.01403
25 0.008351 0.008352 0.01197
3.0 0.005008 0.005009 0.01996
3.5 #.003027 0.003027 0.00000
4.0 0.001834 0.001834 0.00000
4.5 0.001112 0.001112 0.00000
50 0.000674 -0.000674 0.00000

Initial conditions are a, = 0.5, b, =0.0, ¢, =04, d,=0.1 and £=0.1
x, is computed by (33) using A =4.0, u=1.0
x, is corresponding numerical solutions.

Thus from all five tables we see that if the ratio of the eigenvalues 4 and g is less
than or greater than 3, the solution (33) gives desired results. If the ratio of 4 and u is
(1), the system undergoes strongly more critically damping. In this case the errors are
also smaller than 1%. Therefore, the solution (33) is also usable for strongly more
critically damped systems. When A =3 the solution (33) breakdown and in this case

the treatment will be different.

5. Conclusion

In the presence of different critically damping effect, a formula has been presented
for obtaining the solutions of more critically-damped non-linear systems governed by
the fourth order ordinary differential equation. For different set of initial conditions as

well as for different set of eigenvalues the solutions obtained by this method show good
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coincidence with the corresponding numerical solutions. The solutions are also useful

for strongly more critically system,
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