ON BITOPOLOGICAL SPACES

¹Ajoy Mukharjee, ²Arup Roy Choudhury and ³M.K. Bose³

¹Samar Nagar, Champasari, Siliguri, Darjeeling, W. Bengal- 734003, India, e-mail: ajoyjee@yahoo.com

Received On November 13, 2006

Abstract.

In this paper, we introduce weakly pairwise regular spaces and considering a weakly pairwise regular space, we prove a theorem on β -pairwise paracompactness as an analogue of Michael's characterization of paracompactness of regular spaces.

Keyword and phrases: regular space, pairwise regular space. Paraconpactness.

সংক্ষিপ্রসার

এই গবেষণা পত্রে আমরা একটি যুগ্মভাবে দুর্বল দেশকে বিবেচনা করে যুগ্মভাবে দুর্বল সুষম দেশসমূহকে উপস্থাপন করছি। মাইকেলের বৈশিষ্ট্যযুক্ত সুষম দেশসমূহের আপা-ঘনত্ত্বের সমগোত্রীয় হিসাবে বিটা - যুগ্মভাবে আপা - ঘনত্বের একটি উপপাদ্য প্রমাণ করেছি।

1. Introduction.

A set equipped with two topologies is called a bitopological space. Kelly [2] started the study of bitopological spaces. Then several authors have contributed to the development of the theory. The bitopological paracompactness was first introduced by Fletcher, Hoyle and Patty [1]. They called it pairwise paracompactness. But in presence of pairwise Hausdorffness, a pairwise paracompact space becomes a paracompact single topological space. Later on Raghavan and Reilly [4] introduced the notions of α -, β -, γ - and δ -pairwise paracompactness. They proved a δ -pairwise paracompactness version of Michael's characterization [3] of paracompactness of a regular topological

² Department of Mathematics, Malda College, Malda, W. Bengal- 732101, India, e-mail: roychoudhuryarup@yahoo.co.in

³ Department of Mathematics, University of North Bengal, Siliguri, W. Bengal – 734013, India, e-mail: manojkumarbose@yahoo.com

space. They considered the space to be pairwise regular. In this paper, we introduce weakly pairwise regular space and prove the Michael's theorem for β -pairwise paracompactness considering the space to be weakly pairwise regular. We also give an example of a bitopological space which is weakly pairwise regular but not pairwise regular.

Definitions.

Let (X, τ_1, τ_2) be a bitopological space and let $\tau_1 \vee \tau_2$ denote the smallest topology on X containing both τ_1 and τ_2 . For a set $A \subset X$, $(\tau_1 \vee \tau_2)ClA$ denotes the closure of A with respect to the topology $\tau_1 \vee \tau_2$. We denote the set of natural numbers and real numbers by N and R respectively.

Definition 1 (Kelly [2]). Let i, j = 1, 2. The bitopological space (X, τ_1, τ_2) is said to be *pairwise regular* if for every (τ_i) closed set F and $x \in X$ with $x \notin F$, there exist a τ_i - open set U and a (τ_j) open set V such that $i \neq j, x \in U, F \subset V$ and $U \cap V = \phi$.

In the sequel, we assume i = 1, 2.

Definition 2 (Raghavan and Reilly [4]). A collection $\mathscr C$ of subsets of X is said to be (τ_i) locally finite if for every $x \in X$, there exists a set $G \in \tau_i$ intersecting only a finite number of members of $\mathscr C$.

Definition 3 (Raghavan and Reilly [4]). The space (X, τ_1, τ_2) is said to be β pairwise paracompact if every (τ_i) open cover of X has a $(\tau_1 \vee \tau_2)$ open
refinement which is (τ_i) locally finite.

We introduce the following definition.

Definition 4. The space (X, τ_1, τ_2) is said to be weakly pairwise regular if for any (τ_i) closed set F and any point $x \in X$ with $x \notin F$, there exist a $U \in \tau_i$ and a $V \in \tau_1 \vee \tau_2$ such that $x \in U, F \subset V$ and $U \cap V = \phi$.

It is easy to see that (X, τ_1, τ_2) is weakly pairwise regular if and only if for any point x and any (τ_i) open set G with $x \in G$, there exists a $U \in \tau_i$ such that $x \in U \subset (\tau_1 \vee \tau_2) clU \subset G$.

Result.

Theorem. Let (X, τ_1, τ_2) be weakly pairwise regular. Then the following statements are equivalent:

- i) X is β -pairwise paracompact.
- ii) Each (τ_i) open cover of X has a $(\tau_1 \vee \tau_2)$ open refinement that can be decomposed into an at most countable collection of (τ_i) locally finite families of $(\tau_1 \vee \tau_2)$ open sets.
- iii) Each (τ_i) open cover of X has a (τ_i) locally finite refinement (not necessarily $(\tau_1 \vee \tau_2)$ open).
- iv) Each (τ_i) open cover of X has a $(\tau_1 \lor \tau_2)$ closed (τ_i) locally finite refinement.

In the above theorem, we consider the space to be weakly pairwise regular. We now give an example of a bitopological space which is not pairwise regular but weakly pairwise regular.

Example. If τ_1 and τ_2 are the usual topology and the right order topology on R, then the bitopological space (R, τ_1, τ_2) is obviously weakly pairwise regular. In fact, if F is a (τ_1) closed set with $x \notin F$, then there exists an open interval (a, b) with $x \in (a, b) \subset R - F$. Let $a < \alpha < x < \beta < b$. Then $x \in (\alpha, \beta) = U \in \tau_1$, $F \subset (-\infty, \alpha) \cup (\beta, \infty) = V \in \tau_1 \subset \tau_1 \vee \tau_2$ and $U \cap V = \phi$. And if K is a (τ_2) closed set with $x \notin K$, then $K = (-\infty, \alpha]$ for some $\alpha \in R$ and $x > \alpha$. For $\beta \in (\alpha, x)$, $x \in (\beta, \infty) = G \in \tau_2$, $K \subset (-\infty, \beta) = H \in \tau_1 \subset \tau_1 \vee \tau_2$ and $G \cap H = \phi$. But it is not pairwise regular. In fact, if $x \in (a,b)$, then $x \notin B = (-\infty, a] \cup [b, \infty)$, a (τ_1) closed set but R is the only (τ_2) open set containing B.

Proof of the Theorem.

- $i) \Rightarrow ii$): Straightforward.
- $ii) \Rightarrow iii)$: Let \mathscr{U} be a (τ_i) open cover of X. Then there exists a $(\tau_1 \vee \tau_2)$ open refinement \mathscr{V} of \mathscr{U} such that $\mathscr{V} = \bigcup_{n \in \mathbb{N}} \mathscr{V}_n$, where the sub-collection \mathscr{V}_n of \mathscr{V} is (τ_i) locally finite for each n. Suppose $\mathscr{V}_n = \{V_{n\alpha} \mid \alpha \in A\}$. Since \mathscr{V} is a refinement of \mathscr{U} , there exists a set $U_{n\alpha} \in \mathscr{U}$ such that $V_{n\alpha} \subset U_{n\alpha}$. We write $G_n = \bigcup_{n \in \mathbb{N}} U_{n\alpha}$. Then $\mathscr{G} = \{G_n \mid n \in \mathbb{N}\}$ is a (τ_i) open cover of X. Let $E_n = G_n \bigcup_{i < n} G_i$. If $x \in X$ and n_0 is the smallest n such that $x \in G_{n_0}$, then $x \in E_{n_0}$. Therefore $\{E_n \mid n \in \mathbb{N}\}$ is a cover of X and is a refinement of \mathscr{G} . It is also (τ_i) locally finite. In fact, G_{n_0} is a (τ_i) open n of $n \in \mathbb{N}$ which does not intersect any E_n for $n > n_0$. The collection $\{E_n \cap V_{n\alpha} \mid n \in \mathbb{N}, \alpha \in A\}$ is then a (τ_i) locally finite refinement of \mathscr{V} and hence of \mathscr{U} .
- $iii) \Rightarrow iv$: Let $\mathscr U$ be a (τ_i) open cover of X. For $x \in X$, we choose a U_x $\in \mathscr U$ such that $x \in U_x$. Since X is weakly pairwise regular and U_x is (τ_i) open,

there exists a (τ_i) open set V_x such that $x \in V_x \in (\tau_1 \vee \tau_2) clV_x \subset U_x$. Then the collection $\mathscr{V} = \{V_x \mid x \in X\}$ forms a (τ_i) open cover of X and so by iii, there exists a (τ_i) locally finite refinement $\{A_\gamma \mid \gamma \in \Gamma\}$ of \mathscr{V} and hence of \mathscr{U} . If $A_\gamma \subset V_x \subset U_x$, then $(\tau_1 \vee \tau_2) clA_\gamma \subset U_x$. Therefore by lemma 20.4 (Willard [5]), $\{(\tau_1 \vee \tau_2) clA_\gamma \}$ is a $(\tau_1 \vee \tau_2)$ closed (τ_i) locally finite refinement of \mathscr{U}

 $iv) \Rightarrow i$): Let \mathscr{U} be a (τ_i) open cover of X and \mathscr{V} be a (τ_i) locally finite refinement of \mathscr{U} . For each $x \in X$, let W_x be a (τ_i) open set such that $x \in W_x$ and W_x intersects a finite number of sets $\in \mathscr{V}$. Then $\mathscr{W} = \{W_x | x \in X\}$ is a (τ_i) open cover of X. Therefore \mathscr{W} has a (τ_i) locally finite $(\tau_1 \vee \tau_2)$ closed refinement \mathscr{F} For each $V \in \mathscr{V}$, we write

$$V^* = X - \bigcup \{ F \in \mathscr{F} \mid F \cap V = \emptyset \}.$$

Since \mathscr{F} is (τ_i) locally finite, it is $(\tau_1 \vee \tau_2)$ locally finite and hence by lemma 20.5 (Willard [5]), it follows that the collection $\{V^* \mid V \in \mathscr{V}\}$ is a $(\tau_1 \vee \tau_2)$ open cover of X. We now show that it is also (τ_i) locally finite. Let H_x be a (τ_i) open nbd of x intersecting F_1, F_2, \ldots, F_n of \mathscr{F} . But

$$H_x \cap V^* \neq \phi$$

$$\Rightarrow F_k \cap V^* \neq \emptyset$$
 for some $k = 1, 2, ..., n$,

$$\Rightarrow F_k \cap V \neq \emptyset$$
 for some $k = 1, 2, ..., n$.

Again each F_k can intersect only a finite number of $V \in \mathcal{N}$. Therefore H_x can intersect a finite number of V^* . Thus $\{V^* \mid V \in \mathcal{N}\}$ is (τ_i) locally finite.

For every $V \in \mathscr{V}$, let $U(V) \in \mathscr{U}$ satisfy the condition $V \subset U(V)$. Then the collection $\{V^* \cap U(V)\}$ is a $(\tau_1 \vee \tau_2)$ open (τ_i) locally finite refinement of \mathscr{U} . Therefore X is β -pairwise paracompact.

References

- P. Fletcher, H.B. Hoyle III, and Patty C.W., 'The comparison of topologies', Duke Math. J. 36(1969), 325 331.
- 2) Kelly J.C., 'Bitopological spaces', Proc. London Math. Soc. (3)13(1963), 71–89.
 - 3) E. Michael, 'A note on paracompact spaces', Proc. Amer. Math. Soc 4 (1953), 831 838
- T.G. Raghavan and I.L. Reilly, 'A new bitopological paracompactness',
 J. Austral. Math. Soc. (Series A) 41(1986), 268 274.
- 5) S. Willard, General Topology, Addison-Wesley, Reading, 1970.